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The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations∗

John Guckenheimer†, Kathleen Hoffman‡, and Warren Weckesser§

Abstract. The forced van der Pol oscillator has been the focus of scientific scrutiny for almost a century, yet
its global bifurcation structure is still poorly understood. In this paper, we present a hybrid system
consisting of the dynamics of the trajectories on the slow manifold coupled with “jumps” at the
folds in the critical manifold to approximate the fast subsystem. The global bifurcations of the fixed
points and periodic points of this hybrid system lead to an understanding of the bifurcations in the
periodic orbits (without canards) of the forced van der Pol system.
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1. Introduction. During the first half of the twentieth century, Balthazar van der Pol
pioneered the fields of radio and telecommunications [6, 7, 29, 32, 33, 34]. In an era when
these areas were much less advanced than they are today, vacuum tubes were used to control
the flow of electricity in the circuitry of transmitters and receivers. Contemporary with Lorenz,
Thompson, and Appleton, van der Pol experimented with oscillations in a vacuum tube triode
circuit and concluded that all initial conditions converged to the same periodic orbit of finite
amplitude. Since this behavior is different from the behavior of solutions of linear equations,
van der Pol proposed a nonlinear differential equation

x′′ + µ(x2 − 1)x′ + x = 0,(1.1)

commonly referred to as the (unforced) van der Pol equation [32], as a model for the behavior
observed in the experiment. In studying the case µ � 1, van der Pol discovered the importance
of what has become known as relaxation oscillations [33]. These oscillations have become the
cornerstone of geometric singular perturbation theory and play a significant role in the analysis
presented here. Van der Pol went on to propose a version of (1.1) that includes a periodic
forcing term:

x′′ + µ(x2 − 1)x′ + x = a sin(2πντ).(1.2)

In a similar equation, he and van der Mark first noted the existence of two stable periodic
solutions with different periods for a particular value of the parameters and observed noisy
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behavior in an electrical circuit modeled with (1.2) [35]. Van der Pol further speculated that
(1.2) also had this property.

Van der Pol’s work on nonlinear oscillations and circuit theory provided motivation for
the seminal work of Cartwright and Littlewood [22]. In 1938, just prior to World War II,
the British Radio Research Board issued a request for mathematicians to consider the differ-
ential equations that arise in radio engineering. Responding to this request, Cartwright and
Littlewood began studying the forced van der Pol equation and showed that it does indeed
have bistable parameter regimes. In addition, they showed that there does not exist a smooth
boundary between the basins of attraction of the stable periodic orbits. They discovered what
is now called chaotic dynamics by detailed investigation of this system [7, 8, 9, 20, 21].

Since its introduction in the 1920’s, the van der Pol equation has been a prototype for
systems with self-excited limit cycle oscillations. The equation has been studied over wide
parameter regimes, from perturbations of harmonic motion to relaxation oscillations. It has
been used by scientists to model a variety of physical and biological phenomena. For instance,
in biology, the van der Pol equation has been used as the basis of a model of coupled neurons
in the gastric mill circuit of the stomatogastric ganglion [15, 26]. The Fitzhugh–Nagumo
equation [12] is a planar vector field that extends the van der Pol equation as a model for
action potentials of neurons [18]. In seismology, the van der Pol equation has been used in
the development a model of the interaction of two plates in a geological fault [5].

Despite the continuing work of many scientists and mathematicians (see [13, 16, 17, 19,
26, 28, 30, 31], for example), bifurcations of this system have been studied little. This paper
is the first in a series that seeks to give a thorough analysis of the dynamics inherent in the
forced van der Pol equation in the relaxation regime. Here we focus upon a two-dimensional
reduced system derived from the forced van der Pol equation, classifying the bifurcations of
the simplest periodic orbits in this reduced system.

2. Fast subsystems and the slow flow. We begin by setting notation and defining the
fast subsystems and slow flow of the forced van der Pol equation. First, we change variables
to express (1.2) in a more convenient form by rescaling time t = τ/µ, so x′ → ẋ/µ and
x′′ → ẍ/µ2, where ẋ ≡ dx/dt. By defining y = ẋ/µ2 + x3/3 − x, we transform (1.2) into the
system

1

µ2
ẋ = y − x3

3
+ x,

ẏ = −x+ a sin(2πνµt).

Defining new parameters ε = 1/µ2 and ω = νµ and converting these equations into an
autonomous system by defining θ = ωt, we obtain the system

εẋ = y + x− x3

3
,

ẏ = −x+ a sin(2πθ),

θ̇ = ω

(2.1)
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as a vector field on R
2 × S1. We regard S1 = R/Z and use coordinates [0, 1] for S1, under-

standing that the endpoints are identified. We also use the system in the form

dx

ds
= y + x− x3

3
,

dy

ds
= ε(−x+ a sin(2πθ)),

dθ

ds
= εω,

(2.2)

obtained by rescaling time by s = εt. In the relaxation regime, namely, ε � 1, these equations
can be analyzed using singular perturbation theory [14]. The variable x is commonly referred
to as the fast variable, and the variables y and θ are the slow variables. Exploiting the two
time scales in (2.1) and (2.2), trajectories are decomposed into fast and slow segments. This
decomposition is achieved by considering the dynamics of the singular limit ε = 0 in (2.1)
and (2.2).

The limit ε = 0 in (2.2) results in the family of fast subsystems. For each y and θ, the fast
subsystem is a one-dimensional differential equation for x, with y and θ acting as parameters.
If |y| > 2/3, there is a single stable equilibrium, and if |y| < 2/3, there are two stable and
one unstable equilibria of the fast subsystem. The forward limit of each trajectory is one
of the stable equilibria. The singular limit ε = 0 of (2.1) results in a differential algebraic
equation. The first equation in (2.1) becomes y = x3/3− x, which defines a two-dimensional
manifold called the critical manifold. The critical manifold is the union of equilibria of the
fast subsystems. The remaining two equations of (2.1) define implicitly a vector field on the
critical manifold at regular points of its projection onto the (y, θ) coordinate plane. This
vector field on the critical manifold is called the slow flow of the system. We call the pieces
of the critical manifold composed of stable equilibria of the fast subsystems the stable sheets
(there are two disjoint stable sheets—one where x > 1 and one where x < 1), and we call the
piece composed of unstable equilibria the unstable sheet (where |x| < 1).

The relationship between the full system (ε �= 0, (2.1)) and the slow flow was studied by
Tikhonov [2, 24] and later by Fenichel [11]. Fenichel proved that there exists a slow manifold,
that is, an invariant manifold, within distance O(ε) of the critical manifold on compact regions
of regular points. Moreover, the slow flow on the critical manifold gives O(ε) approximations
to trajectories of the forced van der Pol equation.

For ε �= 0, systems (2.1) and (2.2) are equivalent, but the limit systems as ε → 0 are
quite different. The trajectories of (2.1) consist of segments for which the fast subsystem is
a good approximation to the dynamics and segments for which the slow subsystem is a good
approximation to the dynamics. The transitions between these segments occur at folds. Folds
are the singular points of the projection of the critical manifold onto the (y, θ) plane. For the
forced van der Pol equation, these folds occur at x = ±1, y = ∓2/3. As ε → 0, many solutions
of the full system approach curves that are concatenations of trajectories of the slow flow and
trajectories of the fast subsystem, joined at fold points of the critical manifold.

Figure 2.1 shows a trajectory of the full system ((2.1), ε �= 0) along with the critical
manifold and the slow flow on that manifold. This figure illustrates the roles of the fast
subsystems and slow flow in understanding solutions to the full system. The yellow curve is a
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Figure 2.1. The two-dimensional surface illustrates the critical manifold of the forced van der Pol equations
(2.1). In this example, a = 2.3 and ω = 1. The white arrows are the vector field of the slow flow on the critical
manifold, and the white curves are corresponding trajectories of that vector field. The green and red asterisks
located at the folds of the critical manifold are the folded singularities, foci and saddles, respectively. The yellow
curve represents a solution to (2.1) for ε = 10−4.
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Figure 2.2. These are examples of the slow flow. In (a), the parameters are a = 2.3 and ω = 1, the same
as in Figure 2.1. In (b), a = 20 and ω = 5, which are the same values shown in Figures 4.1(a) and 4.2. The
plots show the stable and unstable manifolds of the folded saddles, along with the circles x = ±1 and x = ±2.
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solution to the full system (2.1), with ε = 10−4, a = 2.3, and ω = 1. The blue two-dimensional
surface is the critical manifold, and the white curves and arrows show the trajectories of the
slow flow and its vector field on the critical manifold, respectively. Notice that the solution to
the full system appears to follow the slow flow until it reaches a fold in the critical manifold,
where it then appears to follow the fast subsystem until again reaching the critical manifold.
The red and green asterisks mark folded singularities, points on the fold curves of the critical
manifold that play a central role in our analysis of bifurcations. Figure 2.2 gives examples of
the slow flow for two sets of parameter values. The folds of the critical manifold are the lines
x = ±1, and the “landing points” of the jumps from the folds (that is, the projections of the
fold lines along the fast variable onto the critical manifold) are the lines x = ±2.

The next section defines a reduced hybrid system whose solutions come from piecewise
smooth curves that approximate solutions of the system (2.1) and consist of segments that
are solutions to the fast subsystems and slow flow.

3. The reduced system. The main idea of this paper is to study the global bifurcations
of the forced van der Pol equation by studying a reduced system Ψh, a hybrid dynamical
system that combines solutions to the slow flow of (2.1) with discrete time transformations
along trajectories of the fast subsystems. Specifically, the reduced system is defined to follow
the slow flow on the stable sheets |x| ≥ 1 of the critical manifold and to have discrete time
jumps from (θ,±1) to (θ,∓2) on the boundaries of the two stable sheets. The boundaries of
the two stable sheets are folds of the projection of the critical manifold (see Figure 2.1) onto
the two-dimensional space of slow variables. Trajectories of the system Ψh give approxima-
tions to many trajectories of the full three-dimensional flow. We explain the nature of this
approximation in section 4.

The projection π(x, y, θ) = (y, θ) of the critical manifold onto the (θ, y) space of slow
variables is singular on the fold curves x = ±1, y = ∓2/3. Due to these singularities, we use
(θ, x) as coordinates for the slow flow, with (θ, x) lying in one of the two closed half-cylinders
x ≥ 1 or x ≤ 1. We reparametrize the slow flow to obtain the vector field

θ′ = ω(x2 − 1),
x′ = −x+ a sin(2πθ).

(3.1)

The vector field (3.1) is obtained from the forced van der Pol equation (2.1) by differentiating
the algebraic equation y = x3/3− x to obtain ẏ = (x2 − 1)ẋ, substituting the result into the
van der Pol equation (2.1), and rescaling the time by (x2 − 1). We shall henceforth call the
system (3.1) the slow flow since it has the same trajectories as the original slow flow on the
stable sheets of the critical manifold. However, there are several ways in which this rescaled
system (3.1) differs from the slow flow in its original coordinates. First, it is defined on the
fold curves, while the original equations are not due to the singularity of the projection π.
Second, it reverses time on the unstable sheet, represented by the cylinder |x| < 1 in the (θ, x)
coordinates. Therefore, the direction of the slow flow on the unstable sheet of the critical
manifold is opposite that defined by (3.1). Note that the system (3.1) has equilibrium points
on the circles x = ±1 if a ≥ 1. These equilibria are called folded equilibria. They approximate
points where the flow of the van der Pol equation (2.1) is tangent to the fold curves. The
van der Pol equation (2.1) has no equilibria.
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We establish a few basic properties of the slow flow. If x > a > 0, then x′ < 0, while
if x < −a < 0, then x′ > 0. Consequently, the region |x| < a is forward invariant for
system (3.1), and all trajectories flow into this region. The vector field is symmetric with
respect to the symmetry given by T (θ, x) = (θ+ 1

2 ,−x). We also observe that the divergence
of the vector field is constant, namely, −1. Therefore, its flow can have at most a single
periodic orbit. Periodic orbits must be T -symmetric (otherwise, there would be a symmetric
partner) and consequently cross x = 0. The equilibrium points of the slow flow lie on the
circles x = ±1. We conclude that all trajectories with initial conditions satisfying |x| > 1
reach the circles x = ±1 unless they lie in the stable manifold of an equilibrium point, in
which case they approach x = ±1 as t → ∞.

The equilibrium points of the slow flow lie at the points (θ, x) = (± sin−1(1/a)/2π,±1).
Here sin−1 is regarded to be a double valued “function” on (−1, 1). If a = 1, there are two
equilibrium points; if a > 1, there are four equilibrium points. The linear stability of the
equilibria is easily computed [28] using the Jacobian of the slow flow equations:

( −1 2πa cos(2πθ)
2ωx 0

)
.

At a = 1, the equilibria are saddle-nodes. For a > 1, two of the equilibria are saddles. In
the parameter interval 1 < a <

√
1 + 1/(16πω)2, the two remaining equilibria are stable

nodes. When a =
√

1 + 1/(16πω)2, these equilibria are resonant with a single negative eigen-
value, and when a >

√
1 + 1/(16πω)2, they are stable foci. We see below that some global

bifurcations of Ψh depend upon the type of stable equilibrium points found in the slow flow.
We label the coordinates of the saddle point on x = 1 as (θ, x) = (θ1s, 1) and the coordi-

nates of the node as (θ1n, 1). The unstable and stable manifolds of the saddle will be denoted
by the standard notation Wu and Ws, respectively. We further define the point p1u = (θ1u, 1)
to be the first intersection of the unstable manifold Wu of (θ1s, 1) with x = 1 and set θ2si

to be the θ coordinate of the ith intersection of the stable manifold Ws of the saddle (θ1s, 1)
with x = 2 as Ws is traversed backward from x = 1 into the region x > 1. This notation
will be used in our description of the properties of the hybrid system Ψh and its bifurcations.
Figure 4.1 displays phase portraits of the slow flow for two sets of parameter values.

4. Return maps. When ε > 0 is small, trajectories of the van der Pol equation (2.1)
with initial conditions near the stable sheets of the critical manifold that do not pass close
to the folded singularities are approximated by trajectories of the reduced system Ψh [19].
Consequently, bifurcations of the reduced system identify the location of parameters at which
bifurcations of the van der Pol equation are expected. Our primary goal in this paper is to
identify bifurcations of the reduced system Ψh. (Later papers in this series will investigate
the relationship between bifurcations of Ψh and those of the van der Pol equation (2.1).) In
this section, we develop and describe a return map from the circle S2 (defined by the equation
x = 2) to itself as a means of describing periodic solutions to the hybrid system Ψh.

4.1. Derivation of the half-return map H. Using the observations in the last section, we
define two maps P± along trajectories from the circles S±2 defined by x = ±2 to the circles
S±1 defined by x = ±1. At points that are not in the stable manifolds of the equilibria, the
maps P± are well defined and smooth. At transverse intersections of the stable manifolds of
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the saddles with S±2, the maps P± are discontinuous. At the circles x = ±1 on the critical
manifold, trajectories of the forced van der Pol equation jump from a fold to the circles
x = ∓2 on the critical manifold. For the two-dimensional reduced system, we define the
operators J+(θ, 1) = (θ,−2) and J−(θ,−1) = (θ, 2) that describe the discrete jumps in Ψh.
The return map for Ψh to the circle S2 is then given by the composition J−P−J+P+ since

P+ : S2 → S1,

J+ : S1 → S−2,

P− : S−2 → S−1,

J− : S−1 → S2.

Actually, the map J−P−J+P+ is the perfect square of a half-return map H. To define H,
we use the symmetry operator T (θ, x) = (θ + 1

2 ,−x). We note that the slow flow and the
reduced system Ψh are symmetric with respect to the transformation T , T 2 is the identity on
S1 ×R, and the following relations hold: TP+ = P−T and TJ+ = J−T . Then the return map
J−P−J+P+ = J−P−TTJ+P+ = (TJ+P+)(TJ+P+) is the square of the map H = (TJ+P+) on
the circle S2. Consequently, the periodic orbits of Ψh can be divided into those that are fixed
by the half-return map H and those that are not. Because T phase shifts θ by 1

2 , the fixed
points of H all yield T -symmetric periodic orbits that make exactly two jumps—one from
x = 1 to x = −2 and one from x = −1 to x = 2. In this paper, we study the bifurcations of
periodic orbits of the reduced system Ψh with a focus upon fixed points and period 2 points
of the half-return map H. These bifurcations correspond to bifurcations of periodic orbits in
the forced van der Pol oscillator that are T -symmetric and have just two jumps. The stable
periodic orbits studied by Cartwright and Littlewood [9, 20, 21] are in this class: they are
T -symmetric with two jumps and yield fixed points of H.

4.2. Properties of H. The half-return map H depends on the two parameters a and ω.
The lines a = 1 and a = 2 divide the a-ω plane into regions in which H has fundamentally
different properties. The map P+ is a diffeomorphism of the circle S2 to the circle S1 for
0 < a < 1. In this regime, x decreases along all trajectories in the strip 1 < x < 2, implying
that H is a circle diffeomorphism. Its rotation number depends upon ω, increasing with ω.
All rotation numbers in [12 ,∞) are realized as ω varies in (0,∞).

When 1 < a < 2, the map P+ no longer maps the circle S2 onto the circle S1. Its image I1
excludes the portion of S1 that lies below the unstable manifold Wu defined in the previous
section. The discontinuities in the domain of P+ occur at points in Ws ∩S2. There is a single
point of discontinuity since the circle S2 is a cross-section for the flow and Ws crosses S2 only
once. It also follows that the map P+ remains increasing in this parameter regime. Thus H
is a family of increasing maps of the circle into itself with a single point of jump discontinuity
in this parameter regime. This implies that H still has a well-defined rotation number, and
the period of all of its periodic orbits is the denominator of the rotation number. Quasi-
periodic trajectories are still possible, but the set of parameter values yielding quasi-periodic
trajectories is likely to have measure zero [16].

When 2 < a, the map P+ is no longer monotone. There are two points p2l = (θ2l, 2) =
( 1
2π sin

−1( 2
a), 2) and p2r = (θ2r, 2) = (1

2 − 1
2π sin

−1( 2
a), 2) at which P+ has a local maximum
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Figure 4.1. The structure of the reduced system in the half-cylinder 1 < x for (a) (ω, a) = (5, 20) and (b)
(ω, a) = (10, 20). Unstable manifolds Wu are drawn with dot-dash curves, stable manifolds Ws are drawn solid,
the trajectories originating at the points p2l are drawn dashed, and the circles x = 2 are drawn as dotted lines.

and minimum, respectively. On the interval D = (θ2l, θ2r), P+ has negative slope, while on
S1 − D̄, it has positive slope. There are two crucial additional aspects to the structure of
H as a piecewise continuous and piecewise monotone mapping of the circle. First, there are
discontinuities of P+ at intersections of D with Ws. (There may be only one such intersection
point.) At the points of discontinuity in Ws∩S2, there is a jump with limit values 1

2 +θ1s = θr
and 1

2 + θ1u = θl. We denote by ql and qr the points (θl, 2) and (θr, 2) in S2. Second, we
observe that the maximum height of Wu is a decreasing function of ω and is unbounded as
ω → 0. Therefore, if ω > 0 is small enough, Wu intersects the circle S2. When this happens,
it divides S2 into two intervals. The points in S2 above Wu have their images in IH = [ql, qr],
while the points in S2 below Wu have their images to the left of ql. (If 0 < θ1s <

1
2 < θ1u < 1,

then IH ⊂ [0, 1]. Otherwise, if 0 < θ1u < 1
2 , the circular arc IH contains 0, and it is convenient

to choose a fundamental domain for the universal cover of the circle S2 that contains [ql, qr].)
Note that Ws lies above Wu.

Figure 4.1 shows the structure of the flow in the strip 1 < x < 2.25 for a = 20, with ω = 5
on the left and ω = 10 on the right. (Note that θ = 0 and θ = 1 are identified, so the flow is
actually on a cylinder: (θ, x) ∈ S1 × R.) The folded saddles ps are located by the symbol ×.
Their stable separatrices are drawn as solid curves, and their unstable manifolds are drawn as
dot-dashed curves. The circles S2 are drawn dotted, and the points p2l and p2r are labeled.
The dashed trajectories have initial condition p2l. The intervals IH = [ql, qr] that are the
images of most branches of H are drawn as thick lines. The points p1u ∈ Wu ∩S1 are labeled,
and the points in Ws ∩ S2 are marked by large dots. The graph of the half-return map H for
(ω, a) = (5, 20) is shown in Figure 4.2. The map H is discontinuous at the points of Ws ∩ S2

and has a local maximum at p2l and a local minimum at p2r.

The topological theory of one-dimensional maps is based upon partitioning the domain
of a map into intervals on which it is continuous and monotone. Here the graph of H can
contain the following types of intervals on which it is continuous and monotone:

• a decreasing branch with domain [p2l, p2r] (this occurs if a > 2 but Ws intersects S2

in a single point),
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Figure 4.2. The graph of H when a = 20 and ω = 5. These are the same parameter values as in
Figure 4.1(a). Note that the discontinuities of H occur at the intersections of Ws with S2, and H has a local
maximum and a local minimum at the θ coordinates of p2l and p2r, respectively.

• a branch containing p2r with a local minimum,
• a branch containing p2l with a local maximum,
• monotone decreasing branches in (p2l, p2r),
• monotone increasing branches in the complement of [p2l, p2r].

We assume for the moment that all intersections of Ws with S2 are transverse. Then Ws must
have an odd number of intersections with S2, and every intersection in [θ2l, θ2r] is preceded
by an intersection in the complement of this interval. Therefore, the number of monotone
increasing branches is one larger than the number of monotone decreasing branches. Moreover,
the image of all branches is contained in IH with the possible exception of the branch with
a local minimum. The branch structure of H will play an important role in defining the
different types of bifurcations in section 5. In particular, saddle-node bifurcations will occur
on the branch with a local minimum, and homoclinic points occur at the endpoints of certain
branches.

The local maximum and minimum of H occur at points where the vector field is tangent
to the circle x = 2. The circles x = ±2 are the images of the fold curves x = ∓1 in
the reduced system. Differentiating the equation x′ = −x + a sin(2πθ), we obtain x′′ =
−x′ + a

2π cos(2πθ)θ
′ = 3aω

2π cos(2πθ) �= 0 since x′ = 0 and | sin(2πθ)| < 1. Therefore, the
curvature of the trajectories is not zero at the tangencies with x = 2, and there are local
extrema for H at these points.

Next we analyze the points of discontinuity for the map H. The end of a branch behaves
quite differently depending upon whether the trajectories of points near the end of the branch
of H lie to the left or right of the stable manifold Ws of the saddle and upon whether there is
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Figure 4.3. The flow of Ψh near a saddle-node. Trajectories in the strong stable manifold are drawn in
blue, trajectories in the interior of the stable manifold are drawn in yellow, and trajectories in the hyperbolic
region are drawn in green.

a folded node or a folded focus. In the case in which the trajectories lie to the left of Ws, they
cross the circle x = 1 immediately to the left of the saddle. We give an asymptotic analysis of
the slope of H at the branch end by approximating the flow near the saddle by a linear flow.
Introducing coordinates for which the linear unstable and stable manifolds of the saddle are
the u and v axes respectively, the linear approximation of the slow flow is

u′ = αu,
v′ = −βv

(4.1)

with 0 < α and β = α+1 since the trace of the Jacobian at the saddle is −1. The function uβvα

is constant along trajectories of system (4.1). In these coordinates, the circle x = 1 becomes
a line of the form v = cu. The flow from any cross-section to the stable manifold along the
v axis to this line will have a derivative that becomes infinite. For example, the intersection
(u1, v1) of the trajectory through (u0, 1) with this line will satisfy |u0|β = |u1|β|v1|α and
|u1| = |c|−α/(α+β)|u0|β/(α+β). Since β/(α+ β) < 1, the slope of this function tends to infinity
as u0 → 0. This argument implies that the slope of H is unbounded for points to the left of
Ws.

In the case in which trajectories at the end of the branch pass to the right of Ws, they
proceed along the unstable manifold Wu before they cross the circle x = 1. If there is a folded
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Table 5.1
A summary of the types of bifurcations and their defining equations.

Type of bifurcation Defining equation

Saddle-node H(x) = x, H ′(x) = 1
Saddle left homoclinic θ2s1 − θ1s − 0.5 = 0 (mod 1)
Saddle right homoclinic 1 θ2s1 − θ1u − 0.5 = 0 (mod 1)
Saddle right homoclinic 2 θ2s2 − θ1u − 0.5 = 0 (mod 1)
Saddle right homoclinic 3 θ2s3 − θ1u − 0.5 = 0 (mod 1)
Nodal homoclinic θ2ss1 − θ1n − 0.5 = 0 (mod 1)
Heteroclinic θ1n − θ2s1 − 0.5 = 0 (mod 1)

focus, they cross x = 1 to the right of Wu. If there is a folded node, these trajectories tend to
the node. In the case of the focus, it is well known that the mapping from a cross-section to Ws

to a cross-section to Wu will behave asymptotically like uβ/α at its endpoint. Since β/α > 1,
the derivative approaches 0 as u tends to 0. We conclude that at points of discontinuity for
H, the slope is unbounded on one side of the discontinuity (the side of trajectories to the left
of Ws), and the slope approaches zero on the opposite side (the side of trajectories to the
right of Ws). In the case of a folded node, the half-return map H is undefined on the interval
of points between Ws and the strong stable manifold of the node. We choose to extend H to
this interval, giving it the constant value that is its limit as points approach the strong stable
manifold of the node from the right. See Figure 4.3.

Our analysis of bifurcations will make substantial use of one additional concept that we
call the circuit number of a trajectory for the reduced system and for H. We lift the slow
flow to the universal cover of R×S1, and consider trajectories that flow from (θ0, 2) to (θ1, 1)
on the universal cover. The integer part of θ1 − θ0 will be called the circuit number of the
trajectory. As ω increases, θ′ increases, and the circuit number of the trajectories increase.
This leads to a repetitive structure in the bifurcation diagram for the reduced system, in which
the same structures reappear in the parameter space, once for each circuit number.

5. Codimension one bifurcations of fixed points.

5.1. Bifurcation types and defining equations. This section characterizes the codimen-
sion one bifurcations of fixed points that we find for the half-return map H. We have found
at most three fixed points for any parameter value. These fixed points are confined to two
branches of H: the branch containing a local minimum and the branch immediately to the
left of the branch containing a local minimum. We have not proved that these are the only
possible locations of fixed points, but this is consistent with the bifurcation diagram described
in section 5.2. Codimension one bifurcations of fixed points for H fall into three classes:

• saddle-node bifurcations,
• homoclinic bifurcations, and
• heteroclinic bifurcations.

For the first two types of bifurcations, we make further distinctions, described in sections 5.1.1
and 5.1.2. Table 5.1 contains a summary of the bifurcations and their defining equations that
will be described in the next sections.
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Figure 5.1. The graph of the half-return map for the given values of a and ω shows a min saddle-node
bifurcation, as can be seen by the tangency of the third branch of H with the dotted line H(θ) = θ at a minimum
of H − I.

5.1.1. Saddle-node bifurcations. The saddle-nodes are distinguished by whether H − I
has a local minimum or maximum at the saddle-node point. We call these min and max
saddle-nodes, respectively. Figure 5.1 is an example of a min saddle-node, and Figure 5.2 is
an example of a max saddle-node. The defining equations for saddle-node bifurcations are
H(x) = x together with H ′(x) = 1.

5.1.2. Homoclinic bifurcations. We distinguish two types of homoclinic orbits—those
with a homoclinic connection to the folded saddle, called saddle homoclinic orbits and those
with a homoclinic connection to the folded node along its strong stable manifold, called nodal
homoclinic orbits. We further classify the saddle homoclinic orbits as left homoclinic or right
homoclinic, depending on whether the orbit is the limit of trajectories lying to the left or to
the right of the stable manifold of the saddle.

The defining equation for a left homoclinic bifurcation is θ2s1 − θ1s − 0.5 = 0 (mod 1),
which guarantees that the first intersection of the stable manifold of the saddle with x = 2,
namely, θ2s1, is the image of θ1s under TJ+ (see Figure 5.3). Thus a saddle left homoclinic
orbit flows from (θ2s1, 2) to the saddle (in infinite time) and then is mapped back to its starting
point by TJ+. Fixed points near a left homoclinic saddle bifurcation leave x = 1 to the left
of the folded saddle point (θ1s, 1) and return to x = 2 near the stable manifold of the folded
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Figure 5.2. The graph of the half-return map for the given values of a and ω shows a max saddle-node
bifurcation, as can be seen by the tangency of the third branch of H with the dotted line H(θ) = θ at a maximum
of H − I.
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Figure 5.3. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a left homoclinic saddle
bifurcation. This bifurcation is apparent in (a) since the right end of the first branch of H corresponds to a fixed
point. (b) shows that the computed orbit satisfies the algebraic condition for a left homoclinic saddle bifurcation
θ2s1 − θ1s − 0.5 = 0 (mod 1).
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Figure 5.4. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 1 homoclinic
saddle bifurcation. This bifurcation is apparent in (a) since the left end of the second branch of H corresponds
to a fixed point. (b) shows that the computed orbit satisfies the algebraic condition for a right 1 homoclinic
saddle bifurcation θ2s1 − θ1u − 0.5 = 0 (mod 1).
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Figure 5.5. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 2 homoclinic saddle
bifurcation. This bifurcation is apparent in (a) since the right end of the second branch of H corresponds to a
fixed point. Figure (b) shows that the computed orbit satisfies the algebraic condition for a right 2 homoclinic
saddle bifurcation θ2s2 − θ1u − 0.5 = 0 (mod 1).
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Figure 5.6. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 3 homoclinic
saddle bifurcation. This bifurcation is apparent in (a) since the left end of the second branch of H corresponds
to a fixed point. (b) shows that the computed orbit satisfies the algebraic condition for a right 3 homoclinic
saddle bifurcation θ2s3 − θ1u − 0.5 = 0 (mod 1), and the inset shows the last two intersections of the stable
manifold Ws with the circle S2.
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Figure 5.7. This figure illustrates a nodal homoclinic bifurcation. Note that the computed solution satisfies
the algebraic condition θ2ss1 − θ1n − 0.5 = 0 (mod 1). The inset shows the connection between the saddle and
the node. We note that it is this same connection that appears in the heteroclinic bifurcations. The plot of the
half-return map H for these parameter values appears in Figure 6.3(b).
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indicate the parameter values where the stable manifold of the saddle is tangent to the circle S2. The red
squares and red diamonds indicate parameter values where there is a homoclinic orbit and for which the stable
manifold of the saddle is also tangent to the circle S2. Additional features of the diagram that appear on a
smaller scale are highlighted in Figures 6.1 and 6.4.
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Figure 5.9. (a) is a plot of H near a T2S1 tangency, and (b) illustrates the phase portrait of the orbit at
the same parameter values. The tangency can be seen in the inset of (b). Note that the tangency occurs at the
first intersection of Ws with x = 2.
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Figure 5.10. (a) is a plot of H near a T2S2 tangency, and (b) illustrates the phase portrait of the orbit at
the same parameter values. The tangency can be seen in the inset of (b). Note that the tangency occurs at the
second intersection of Ws with x = 2.

saddle. Because (θ2s1, 2) is always a point of S2 where x′ < 0, the slope of H is always positive
near left homoclinic points. Moreover, the nearby fixed points are unstable since the slope of
H is unbounded near the branch ends of Ψh orbits that pass to the left of Ws.

Fixed points of H approach a right homoclinic saddle bifurcation if limiting Ψh trajec-
tories lie to the right of the stable manifold Ws of the folded saddle (see Figure 5.4). These
trajectories then follow the unstable manifold Wu of the saddle and jump to the right of
p1u, the intersection of the unstable manifold with x = 1. Thus trajectories that approach a
right homoclinic saddle bifurcation hit x = 1 near θ1u and return to x = 2 near the stable
manifold of the saddle. The stable manifold Ws may intersect x = 2 several times, and the
homoclinic point need not jump to the first intersection point. We classify right homoclinic
saddle bifurcations by the number of times the stable manifold of the saddle crosses x = 2
before returning to the saddle. Thus right homoclinic 1 saddle bifurcations occur when the
trajectory returns to x = 2 near θ2s1, the first crossing of the stable manifold with x = 2.
The defining equation for this bifurcation is θ2s1 − θ1u − 0.5 = 0 (mod 1). Similarly, right
homoclinic 2 saddle bifurcations refer to the trajectories that return near the second crossing
of the stable manifold with x = 2, that is, θ2s2 − θ1u − 0.5 = 0 (mod 1); an example is shown
in Figure 5.5. The only observed right homoclinic saddle bifurcations are of types 1, 2, and 3.
Figure 5.6 shows an example of type 3. The analysis of the previous section establishes that
the fixed points near a right homoclinic orbit are stable.

Defining equations for the nodal homoclinic bifurcations are such that the intersection of
the strong stable manifold of the node with x = 2 should have θ2ss1 = θ1n − 0.5 (mod 1) (see
Figure 5.7). Since these bifurcations occur for a < 2, the strong stable manifold of the node
intersects x = 2 only once. Trajectories that lie to the right of the strong stable manifold
of the node cross the circle S1 before approaching the node. Therefore, they make jumps
before the trajectories reach the node. Trajectories that lie to the left of the strong stable
manifold of the node do not cross the circle S1. The extension of H to the interval between the
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stable manifold of the saddle and the strong stable manifold of the node is constant. For this
extended map, the number of fixed points does not change at the nodal bifurcation points,
but the fixed points cross from a region where H has positive slope to the extended region,
where H is flat.

A qualitative picture of the behavior of H to the right of the strong stable manifold of the
folded node can be found by considering the linear flow near a node with an analysis similar
to that which we used to determine the slope of H near its branch endpoints. Consider the
linear system

u̇ = −αu,
v̇ = −βv,

where β > α > 0. This is a stable node with eigenvectors along the coordinate axes, and the
v axis is the strong stable manifold. To obtain a qualitative picture of the behavior of H, we
consider a map u0 �→ u1 given by the flow from a line segment v = v0 (and, say, 0 < u0 < 1)
to the line v = mu (where m > 0; this line corresponds to the fold line). The function uβv−α

is constant along trajectories; with this we find

u1 = Cu

(
β

β−α
)

0 ,

where C = (mv0 )
( α
β−α )

. Thus the map is given by a power law, and since β > α > 0, the
exponent is greater than one. We conclude that the fixed points of H near a nodal homoclinic
bifurcation are stable.

5.1.3. Heteroclinic bifurcations. Heteroclinic bifurcations describe curves that are unions
of two trajectories that asymptote to both a folded saddle and a folded node. The unstable
manifold of the folded saddle lies in the stable manifold of the folded node, giving rise to
one segment of the heteroclinic orbit. The second trajectory lies in the stable manifold of the
saddle. The defining condition is that the node jumps to the intersection of the stable manifold
with S2. The defining equation is that θ1n − θ2s1 − 0.5 = 0 (mod 1). Thus the heteroclinic
cycle is composed of trajectories lying in the stable and unstable manifolds of the saddle. The
primary difference between these bifurcations and the right homoclinics of the saddle is that
the unstable manifold Wu approaches the node here, while in the right homoclinic it reaches
x = 1 and then jumps.

5.2. Description of the bifurcation diagram. Figure 5.8 shows the (numerically com-
puted) bifurcation diagram for fixed points of H in the region (a, ω) ∈ [0, 4] × [0, 4]. In this
diagram, saddle-node curves are drawn in green, left homoclinic curves in blue, and right ho-
moclinic curves in black. The dotted line separates the region to the right of a = 1 with folded
nodes from the region with folded foci. The region of the bifurcation diagram close to a = 1
will be described in detail in section 6.2 since the bifurcations at a = 1 have codimension two.

For 0 < a < 1, the fixed point bifurcations consist of max and min saddle-node curves,
drawn in green. For each circuit number, the min saddle-nodes are the upper branch that
appear to extend to infinity. For a sufficiently large, these branches appear to be approximately
linear. The lower branch of saddle-nodes in this region are max saddle-nodes. These curves
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extend slightly past a = 1 but do not extend to infinity as with the curve of min saddle-nodes.
We find that these curves end in a cusp that connects to short curves of min saddle-node
bifurcation which follow the black curve of right homoclinics back to a = 1. This region will
be described in more detail in section 6.1.

In the region a > 1 and for each circuit number, there are three bifurcation curves that
appear to extend to infinity: the min saddle-node bifurcations, the left homoclinic bifurcations,
and the right homoclinic bifurcations. Along each right homoclinic curve, two points are
marked where the homoclinic orbit is tangent with the line x = 2. Changes in the number
of intersections of the stable manifold of the saddle with x = 2 occur at these locations. The
red square separates right saddle homoclinics 1 to the left of the red square from right saddle
homoclinics 3 to the right of the red square. See Figure 5.9. The number of crossings switches
from 1 to 3 because the stable manifold Ws has a point of tangency with the circle S2 at the
parameter values marked with the red square. To the right of this point along the right saddle
homoclinic curve, Ws has 3 crossings of S2, the third being the homoclinic point. Similarly,
the red diamond separates the right saddle homoclinics 3 to its left from the right saddle
homoclinics 2 to the right of the red diamond. See Figure 5.10. Here the stable manifold Ws

is tangent to the circle S2 at a local minimum. See Figure 5.10. To the left of the red diamond
along the homoclinic curve, the homoclinic points lie to the left of a local minimum in Ws at
its second crossing with S2. To the right of the red diamond along the homoclinic curve, the
homoclinic points lie to the right of a local minimum in Ws at its second crossing with S2.

The types of bifurcations in the bifurcation diagram can be related to properties of the
graph of H. The first two crossings of Ws with S2 bound an interval containing the point
p2r =

1
2 − 1

2π sin
−1( 2

a , 2), where the trajectories of the slow flow have a tangency with S2 from
below. Thus this interval is the branch of H with a local minimum. We call the branch with
the local minimum the central branch of H. Left homoclinics always occur on the central
branch, at its right endpoint. Right homoclinics 2 and right homoclinics 3 occur on the
branch immediately to the left of the central branch. In the case of right homoclinics 3, this
branch contains the local maximum θ2l =

1
2π sin

−1( 2
a) of H, H has only two branches, and

the homoclinic point is the left endpoint of the branch. In the case of right homoclinics 2,
the branch is monotonically decreasing and the homoclinic point is the right endpoint of the
branch. We also note that, with decreasing ω, new central branches form above the diagonal
and then grow in length. Fixed points first appear on the central branch at a min saddle-node
bifurcation where the graph of H on the central branch becomes tangent to the diagonal.
As ω decreases further, this is quickly followed by a left homoclinic point at which the right
endpoint of the central branch crosses the diagonal.

For values of a at which there are folded nodes, there is another curve in the bifurcation
diagram corresponding to nodal homoclinic orbits that lie in the strong stable manifold of the
folded node. This curve is drawn in magenta on the bifurcation diagram but is sufficiently
short that it is difficult to see. Figure 6.4 gives a blown up picture of the region containing
the strong nodal homoclinic bifurcation curve on the lowest curve with circuit number 0.

6. Codimension two bifurcations. There are several different points in the bifurcation
diagram Figure 5.8 at which bifurcation curves meet or cross. These are codimension two
bifurcations of Ψh. The previous section discussed tangencies of the stable manifold Ws with
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S2 at right homoclinics where there is no singularity of the bifurcation curve, but its type
changes. This section analyzes the remaining codimension two bifurcations of fixed points.
We describe each separately and indicate how these bifurcations fit into the diagram of fixed
point bifurcations described in the previous section.

6.1. Cusps. Cusps are codimension two bifurcations occurring along the curve of max
saddle-node bifurcations. The lower green curve in Figure 6.1 corresponds to the curve of
max saddle-nodes that were discussed in the section 5. These curves start at a = 0 at the
point where the min saddle-node curve meets the max saddle-node curve, and they continue
past a = 1 to a cusp point just beyond the black curve of right saddle homoclinic orbits
(see Figure 6.1). At the cusp, the branch meets a min saddle-node curve that follows the
black right homoclinic curve back to a = 1. As with the green and blue curves discussed in
section 5.2, the location of this curve of saddle-nodes so close to a black curve of homoclinics
indicates that these two features are close together in the graph of H. The proximity of these
two curves is investigated further in section 6.2. Figure 6.2 shows the half-return map H at
a min saddle-node bifurcation on the short branch. Notice that, for nearby parameter values,
a homoclinic bifurcation will appear, as can be seen in Figure 6.2.

From the theoretical perspective of singularity theory, we should establish that the fixed
point of H has nonzero third derivative at the cusp parameter values. We have not attempted
to do this, but the numerical results suggest that this is true.

6.2. Bifurcations at a = 1. When a = 1, the slow flow has a folded saddle-node equilib-
rium. At discrete values of ω (one for each circuit number), there is a homoclinic connection
along the strong stable manifold of the folded saddle-node. These codimension two points
mark the beginning (as a increases) of the more complicated curves of homoclinic points and
saddle-node points of H.

In the region of parameter space between a = 1 and a =
√

1 + 1/(16πω)2, the folded
equilibria are saddles and stable nodes. The basin of attraction of the node includes an
interval in S2, and, on this interval, the flow map P+ is defined to be θ1n, the θ coordinate
of the node. Thus the graph of H on this interval is a horizontal line. The left and right
endpoints of this interval are the intersections of the stable manifold of the saddle and the
strong stable manifold of the node, respectively, with S2. The value of H on this interval is
θ1n − 1

2 . At the left end of the interval, H has a discontinuity: limθ→θ−2s1
H(θ) = θ1s − 1

2 , but

limθ→θ+2s1
H(θ) = θ1n − 1

2 .

For each circuit number, there is a region in parameter space between a = 1 and a =√
1 + 1/(16πω2), where the horizontal segment of the graph of H includes a fixed point. If

the right end of the interval is a fixed point, there is homoclinic connection along the strong
stable manifold of the node. (See Figure 6.3(b).) For circuit number 1, these codimension
one points are plotted as a magenta line in Figure 6.4. In this figure, the magenta line ends
at the curve a =

√
1 + 1/(16πω)2 (the dotted line). Increasing a beyond this point changes

the homoclinic point to a fixed point of H (i.e., a periodic orbit of Ψh).

If the left end of the interval is a fixed point, there is a heteroclinic connection containing
the stable and unstable manifolds of the saddle. (See Figure 6.3(a).) These codimension
one points are plotted as a red line in Figure 6.4. At the transition from folded node to
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Figure 6.1. The branches of min saddle-node bifurcations that begin at a = 0 continue past a = 1 to the
cusp shown in this diagram.

folded spiral, heteroclinic points become right homoclinic points; thus the red curve connects
continuously to the black curve in Figure 6.4.

To summarize, the region in parameter space for which the horizontal segment of the
graph of H contains a fixed point is the region bounded by the red curve (the heteroclinic
points), the magenta curve (the homoclinic points for the strong stable manifold of the node),
and the dotted curve (the transition of the stable folded equilibrium from folded node to
folded spiral). These curves are shown in Figure 6.4. There are four curves that start at the
codimension two point a = 1 and ω ≈ 0.5546 (where the folded saddle-node has a homoclinic
connection). The one upper curve is the blue curve of left saddle homoclinics. There are
three lower curves. The lowest curve is the red curve of heteroclinic connections. The middle
curve is the magenta curve, where there is a homoclinic connection along the strong stable
manifold of the node. Slightly above this curve is the green curve of saddle-node bifurcations.
It can be seen in Figure 6.3(b) that only a very small change in the parameters is necessary
to perturb the system from the situation of having a stable nodal homoclinic bifurcation to
having a saddle-node bifurcation in H. Note that, for values of a smaller than 1, there are no
folded equilibria, and the only bifurcations of H are saddle-nodes.

At a = 1, the stability of the homoclinic cycles is more subtle to analyze than the stability
of the right and left homoclinic cycles because the center manifold of the equilibrium point
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Figure 6.2. The graph of H at a saddle-node bifurcation point. This point is on the curve of min saddle-
node bifurcation shown in Figure 6.1. The inset in the figure shows the tangency of the graph at the point where
H(θ) = θ. It can also be seen that a small change in the parameters can move this to a right homoclinic point,
in which the left end of the branch of the graph shown in the inset becomes a fixed point.

at (0.25, 1) is tangent to the circle S1. The map from the circle S2 to the circle S1 along
trajectories adjacent to the strong stable manifold of the equilibrium needs to be determined.
We begin with an analysis in normal form of coordinates of a saddle-node that gives most of
the information that we need to determine the stability of the map from S2 to S1. Consider
the (truncated) normal form for a saddle-node equilibrium point of a two-dimensional flow:

u̇ = u2,

v̇ = −αv.

The solutions of this system are

u(t) =
u0

1− tu0
,

v(t) = v0e
−αt.

(6.1)

We want to compute the map along trajectories from a cross-section of the strong stable
manifold to a curve tangent to the center manifold. Take the cross-section to the strong
stable manifold to be v = 1 and the curve to be the graph of the function v = h(u) with
h(0) = h′(0) = 0. If the trajectory with initial condition (u0, 1) flows to (u1, v1) with v1 =
h(u1), then we eliminate t from (6.1) to obtain the implicit equation

exp

(
−α

(
1

u0
− 1

u1

))
= h(u1),
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Figure 6.3. (a) shows an example of the graph of H when there is a heteroclinic connection. There is a
fixed point at the left end of the horizontal segment of the graph of H. (b) shows an example when there is
a homoclinic connection along the strong stable manifold of the node. The square inset in (b) has a width of
5 × 10−7; the lower intersection of the graph of H with the diagonal dotted line occurs at θ ≈ 0.754539. It is
clear from this picture that only a very small change in the parameters is required to produce a saddle-node
bifurcation in H.

which can be solved for the inverse of the map along trajectories

u0 =
αu1

α− u1 ln(h(u1))
.

If limu ln(h(u)) = 0 as u → 0, then lim du0
du1

= 1 as u1 → 0. This criterion and the tangency

conditions are satisfied if h(u) is asymptotic to uβ for some β > 1.
Now, the center manifold of (3.1) at its saddle-node equilibrium point has quadratic

tangency with the curve defined by x = 1− 2π2(θ − 1/4)2. This is verified by differentiating
this equation and using (3.1) to see that, along the curve,

(x− 1 + 2π2(θ − 1/4)2)′ = −x+ sin(2πθ) + 4π2ω(θ − 1/4)(x2 − 1)

= −(1− 2π2(θ − 1/4)2) + cos(2π(θ − 1/4)

+ 4π2ω(θ − 1/4)(x2 − 1)

= o((θ − 1/4)2)

since (x2−1) = O((θ−1/4)2). We conclude that the slope of the half-return mapH approaches
a finite slope as θ approaches the strong stable manifold of the saddle-node equilibrium from
the right.

We have computed H in a small neighborhood of this strong stable manifold and found
that the limit slope is large but finite. At the codimension two point (ω, a) = (0.554586, 1)
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Figure 6.4. A detail from the bifurcation diagram. This plot shows the curves that emanate from the
codimension two point, where there is a homoclinic connection to the folded saddle-node. For circuit number 0,
this occurs at a = 1 and ω ≈ 0.5546.

with circuit number 0, the slope is approximately 200. This calculation helps us understand
the structure of the bifurcation diagram near a = 1. It implies that, for values of a slightly
larger than 1, H ′ → 0 as θ approaches the strong stable manifold of the node from the right
but that the slope will increase rapidly and quickly become much larger than one. Thus there
will be a local minimum of H − I near the endpoint. (See, for example, Figure 6.3.) When
this local minimum of H − I is a fixed point of H, we have a min saddle-node bifurcation. In
this regime, there are two intervals in which H has slope smaller than 1 and two intervals in
which H has slope larger than 1. As a increases, the intervals which are not adjacent to the
discontinuity of H shrink in size, disappearing when there is an inflection point with slope 1.
Cusps occur when these inflection points of slope 1 are also fixed points.

6.3. Transversal crossings and the bistable regimes. The simplest codimension two bi-
furcations for the reduced system are points at which two codimension one bifurcations occur
at different places in the phase space. At such points, two codimension one bifurcation curves
intersect in the bifurcation diagram. We expect, and find in our numerical computations,
that these intersection points are transverse. The crossings play a significant role in the phe-
nomenon of bistability that has been an important part of the history of the forced van der Pol
system.
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For each value of a larger than those for which cusps occur, the values of ω for which H
has a stable fixed point with a given circuit number is an interval bounded below by a right
homoclinic curve and bounded above by a point on the curve of min saddle-node bifurcations
that originates at a = 0. For values of a close to 3, we observe that the min saddle-node curve
of circuit number k and the right homoclinic of circuit number k + 1 intersect one another
transversally. To the right of these intersection points, there are sectors in which there are
simultaneously stable fixed points of H with circuit numbers k and k + 1. The parameters
for which Littlewood [20, 21] deduced the existence of chaotic invariant sets for the flow lie
in these regions. To the left of the intersections of min saddle-nodes and right homoclinics,
there are regions with no fixed points for H. To the right of these intersection points, H has
fixed points for all values of ω. In addition to the two stable fixed points of H, there are
also unstable fixed points of H for parameter values just below the min saddle-node curves of
circuit number k. These disappear along left homoclinic curves with decreasing ω. We observe
that the left homoclinic curve of circuit number k also intersects the right homoclinic curve
of circuit number k + 1 transversally. In section 7, we show that there is a rich dynamical
structure near these codimension two bifurcations, including new families of chaotic invariant
sets.

The one additional transversal crossing of bifurcation curves for fixed points that we ob-
serve is in the region near a = 1, where the max saddle-node curves cross the right homoclinic
curves with the same circuit numbers.

7. Period 2 points of H. Thus far, our discussion of the bifurcation diagram of the
forced van der Pol equation has focused on the bifurcations of fixed points of H, the half-
return map. In the parameter region 0 ≤ a < 1, the theory of families of circle diffeomorphisms
gives a qualitative description of bifurcations of all periodic orbits. Following a brief review of
this theory, this section presents a numerical study of periodic orbits of period 2 with circuit
number 1. Period 2 orbits are solutions to H2(x) = x. We display graphs of the second iterate
H2 of the half-return map that give insight into the bifurcations of the period 2 orbits. There
are many common features between the bifurcations of fixed points and periodic orbits of
period 2 for H, but there are significant differences as well. We find new types of codimension
two bifurcations involving homoclinic orbits and identify small parameter regimes in which
there are new classes of chaotic invariant sets.

7.1. The parameter region 0 ≤ a < 1. For 0 < a < 1, the map H is a diffeomorphism
of the circle S2 that varies smoothly with both a and ω. Moreover, the slow flow has a
rotational property with respect to ω. As ω increases, the direction of the slow flow rotates
toward the x axis at a nonzero rate. Since the slow flow is in the sector with decreasing x
and increasing ω, two slow flows with the same parameter a and different parameters ω are
transverse. These two facts imply that the image of H is strictly increasing with ω. We also
conjecture, based upon our numerical computations, that the function H − I appears to have
a single local maximum and a single local minimum. This conjecture is sufficient to determine
the qualitative properties of the bifurcation diagram in the region 0 < a < 1 based on the
theory of circle diffeomorphisms [1]. There is an Arnold tongue of rotation number p

q for each
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Figure 7.1. This bifurcation diagram expands the diagram displayed in Figure 5.8 to include the bifurcations
associated with period 2 orbits. Note that the same line color is used to distinguish the same types of bifurcation,
but the line style indicates whether it is a bifurcation of fixed points or period 2 points.

rational number p
q . This is a strip that begins at1 ω = 2p+q

(3−2 ln 2)q and intersects each line
0 < a = const < 1 in an interval. In the interior of the Arnold tongue, there are two periodic
orbits of period q. On the lower boundary of the Arnold tongue, there is a max saddle-node
of period q, while on the upper boundary of the Arnold tongue, there is a min saddle-node
of period q. For each irrational rotation number ρ and parameter a, there is a single value of
ω for which H has rotation number ρ. The set of parameter values with irrational rotation
numbers forms a set of positive Lebesgue measure on each line 0 < a = const < 1 in the
parameter plane.

7.2. An augmented bifurcation diagram. Figure 7.1 is similar to the bifurcation diagram
displayed in Figure 5.8 but adds new information about bifurcations of period 2 orbits of
H. The bifurcation curves of period 2 orbits are dashed: saddle-node curves are green, left
homoclinic curves are blue, and right homoclinic curves are black. Also drawn as gray solid
curves are parameters where the stable manifold Ws is tangent to S2, and gray dashed curves
represent parameters where H maps one of the points p2l or p2r into Ws. Figure 7.2 shows
the region with period 2 orbits of circuit number 1 in more detail.

1When a = 0, the slow flow is easily integrated, and we find H(θ) = θ + ω
(

3
2
− ln 2

)− 1
2
. This is actually

the function lifted to the universal cover of S1; i.e., for the moment, we do not compute H modulo 1. By
solving Hq(θ) = p for relatively prime integers p (the circuit number) and q (the period), we obtain the given
formula for ω. The saddle-node curves, in particular, begin at ω = 2p+1

3−2 ln 2
.
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Figure 7.2. A closer look at part of the bifurcation diagram shown in Figure 7.1.

Several features of these figures are notable. The gray curves originate at a = 2. From
each endpoint, two curves emerge that correspond to parameters at which p2l lies in or maps to
Ws (lower curves) and parameters at which p2r lies in or maps to Ws (upper curves). “Inside”
the solid gray curve, the half-return map H has three points of discontinuity, while outside
the cusp it has a single discontinuity. Similarly, the number of discontinuities of H2 changes
as parameters cross the dashed gray curves. The curves where Ws is tangent to S2 intersect
the right homoclinic curves of fixed points at the codimension two points where the type of
the right homoclinic curve changes. The intersection at p2l, where the type changes from
right homoclinic 3 to right homoclinic 2, is tangential: the tangency curve remains below the
right homoclinic curve. There are similar points of tangential intersection along the curves of
period 2 right homoclinic bifurcations.

The curve of period 2 min saddle-nodes that begins at a = 0 meets the curve of period 2
left homoclinics at a codimension two bifurcation discussed in section 7.3. The curve of period
2 left homoclinics crosses the curve of fixed point right homoclinics. The curves of period 2
left and right homoclinics end at the codimension two bifurcation, where the circuit number
1 right and circuit number 0 left homoclinic curves cross. The coordinates of this point are
approximately (a, ω) = (3.29725, 1.34783). The sequences of bifurcations for the period 2
orbits appear to undergo similar bifurcations to those of the fixed points in the region close
to a = 1, but we have not explored the bifurcations here thoroughly. Instead, we focus upon
the homoclinic bifurcations.
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Figure 7.3. Graphs of H (green) and H2 (blue) near a point of codimension two bifurcation.

7.3. Period 2 homoclinic bifurcations. The “morphology” of period 2 homoclinics is
substantially more intricate than that of the fixed point homoclinic orbits. In particular, the
number of discontinuities of H2 changes several times along the period 2 homoclinic curves,
and there are codimension two bifurcations at which the branches containing the period 2
orbit change. Here we traverse these period 2 homoclinic curves, analyzing the transitions
that occur and displaying the graphs of H2 in different parameter regions.

The upper left homoclinic curve encounters the min tangency curve where the stable
manifold of the saddle passes through the point p2r of tangency of the vector field with x = 2.
The coordinates of the intersection point are approximately (a, ω) = (2.14190, 1.28447). See
Figure 7.3. The map H has three branches for a to the right of the min tangency curve, and
the homoclinic point is the third intersection of the stable manifold with x = 2. The max
tangency curve where the stable manifold of the saddle passes through the point p2l of tangency
of the vector field with x = 2 crosses the parameter curve where H2 has a min tangency for
2.62 < a < 2.63 (i.e., the point p2r maps to the intersection of W s with x = 2.) This has no
immediate impact upon the bifurcation curves but creates additional discontinuities of H2.
For example, when (a, ω) = (2.63, 1.3084), H2 has eight discontinuities, and its graph has
eight branches (see Figure 7.4). For values of a to the right of the max tangency curve, H
once again has a single discontinuity.

For (a, ω) near (2.66384, 1.30982), the min saddle-node curve appears to end at parame-
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Figure 7.4. Graphs of H (green) and H2 (blue) at a point where H2 has eight branches.

ters where the left homoclinic curve and the max tangency curve have a point of tangential
intersection (see Figure 7.5). Defining equations for this codimension two bifurcation are
based upon the conditions that the stable manifold of the saddle passes through p2l and that
H2(θ2l) = θ2l. The unfolding of the bifurcation depends upon the singularities of H and H2

at the tangency point. These maps can be modeled as the composition of a quadratic folding
map with the power law |u1| = |u0|β/(α+β) as we determined in section 4.2. Thus the compo-
sition is the power law |u1| = |u0|2β/(α+β). Since β = α+1, the exponent is 1+1/(2α+1) > 1,
and the maps H and H2 have zero derivative at the singularity, which is a local maximum.
For values of a smaller than the codimension two point, the homoclinic points lie at the right
endpoint of the branch of H2 to the left of θ2l. This branch has positive slope. For values
of a larger than the codimension two point, the homoclinic points lie at the left endpoint of
the branch of H2 to the right of θ2l. This branch has negative slope, so there can no longer
be a saddle-node bifurcation of these periodic orbits. Instead, there will be a period-doubling
bifurcation curve that lies below (i.e., smaller values of ω) the homoclinic curve. The period-
doubling curve affects the stability of the period 2 orbits and signals the presence of period 4
orbits, but new period 2 orbits are not born at the period-doubling bifurcation.

The next codimension two bifurcation along the period 2 left homoclinic curve is its
crossing of the period 1 right homoclinic curve at a parameter value 2.79 < a < 2.80. Here
there is simultaneously a fixed point at the left end of the branch of H containing θ2l and a
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Figure 7.5. Graphs of H (green) and H2 (blue) near the end of the min saddle-node curve.

homoclinic point of H2 on the branch immediately to the right of the one containing θ2l. For
larger values of a, there is a region of bistability with both a fixed point and a period 2 orbit.

The endpoint of the period 2 left homoclinic curve lies at the codimension two point near
(a, ω) = (3.29725, 1.34782), where the right homoclinic curve of fixed points with circuit num-
ber 1 crosses the left homoclinic curve of fixed points with circuit number 0 (see Figure 7.6).
The period 2 right homoclinic curve also ends at this codimension two point. Apparently,
this codimension two point, defined as a transversal crossing of two codimension one bifurca-
tions, is much more complicated than it seems at first glance. Indeed, we find that there are
perturbations from this parameter value at which the map H has a chaotic invariant set.

7.4. Chaos without canards. The half-return map H appears to have chaotic trajecto-
ries for parameter values (a, ω) ≈ (3.2, 1.34008531). Figure 7.7 shows the graphs of H and
H2, and Figure 7.8 shows detail that illustrates the chaotic invariant set. The parameters
(3.2, 1.34008531) are above the left homoclinic curve of fixed points with circuit number 0 and
below the right homoclinic curve of fixed points with circuit number 1, in the vicinity of the
intersection of these two curves. The branch of H that contains a local minimum has two fixed
points—one stable point and an unstable fixed point θu close to the right end of the branch.
The end of the branch occurs at θ2s1, the first intersection of the stable manifold of the saddle
point p1l with x = 2. The map H is increasing on J = [θu, θ2s1) with H(J) = [θu, θr). Note
that H(J) is bounded on the right by the supremum of H, and on J , H has a single point of



FORCED VAN DER POL EQUATION 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω =  1.3478200000
a =  3.2972500000

θ

H
(H

(θ
))

Second Interate of the Half period map (mod 1)

Figure 7.6. The graphs of H and H2 at the codimension two point of transversal crossing of right and left
homoclinic bifurcations of fixed points.

discontinuity at θ2s1. We follow the interval H(J)− J for two iterates. First, H(H(J)− J) is
an interval whose left endpoint is θl, the infimum of H. For the parameter values that lie on
a right homoclinic curve of fixed points, θl is a homoclinic point of H. For parameter values
below this homoclinic curve, H(θl) lies to the right of the discontinuity point θ2s2, inside the
branch of H with a local minimum. For parameters near (a, ω) = (3.2, 1.34008531), the map
H is decreasing on H(H(J) − J). We find in numerical calculations that there is a value
of ω ∈ (1.34008530, 1.34008531) so that H2(θr) = θu, the unstable fixed point. We observe
that H2(θ+

2s1) ∈ H(J) − J , so H2(H(J) − J) ⊂ H(J). We conclude that the union I of the
two intervals H(J) and H(H(J)− J) is an invariant set for H. Partitioning I into the three
intervals I1 = J , I2 = H(J)−J , and I3 = H(H(J)−J), we have H(I1) = I1∪ I2, H(I2) = I3,
and H(I3) ⊃ I1. This implies that H has a chaotic invariant set that contains a subshift of
finite type [27] with transition matrix 

 1 1 0
0 0 1
1 0 0


 .

It is quite possible that H not only has a chaotic invariant set for the parameters described
above but that I is an attractor. This is true, for example, if the Schwarzian derivative of H
on the interval I is negative. Since the map H can be approximated by functions of the form
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Figure 7.7. The graphs of H and H2 at parameters with an apparent chaotic invariant set.

f(x) = xα and these functions do have negative Schwarzian derivative, we conjecture that
there are parameter values for which H has chaotic attractors. Furthermore, we conjecture
that the set of such parameter values has positive measure.

8. Concluding remarks. This section concludes with remarks about

• the methods we used to compute the values of the half-return map H and the bifur-
cation diagram of the reduced system and

• aspects of the bifurcations of the forced van der Pol equation that are not addressed
by the analysis of the slow flow and the reduced system.

Our computations of the half-return map H were performed by numerical integration
of the slow flow equations (3.1) from initial conditions on S2 to their intersection with the
circle S1. We used variable step size Runge–Kutta methods for these integrations, making the
error tolerances sufficiently stringent that the apparent errors in the calculations were small
enough to produce reliable and robust results. To compute bifurcations of the half-return map
H, these numerical integrations were embedded in algorithms that used Newton’s method to
solve defining equations for each type of bifurcation. For saddle-node bifurcations, the defining
equations were obtained by simultaneously solving the fixed point equation H(θ) = θ and the
equation H ′(θ) = 1. For left homoclinic bifurcations, we computed the intersections (θkl, xkl)
of Ws with the line θ + 0.5 + k = θ1s in the universal cover of the cylinder S1 × R and
then solved the equation xkl = 2 using Newton’s method. For the right homoclinics, we
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Figure 7.8. A closer look at H and H2 for the same parameter values as in Figure 7.7. As in that figure, the
green curves are the graph of H, and the blue curves are the graph of H2. The right interval is H(J) = [θu, θr],
and the left interval is H(H(J) − J) = [θl, H(θr)] (where J = [θu, θ2s1]). The union of these two intervals is
an invariant set. Its return map consists of the branch of H to the left of the discontinuity and the branch of
H2 to the right of the discontinuity. The coordinate values are θu ≈ 0.541589, θ2s1 ≈ 0.542117, θr ≈ 0.550583,
θl ≈ 0.140666, and H(θr) ≈ 0.142859.

computed the intersections (θkr, xkr) of Ws with the line θ + 0.5 + k = θ1u and then solved
the equation xkr = 2. This procedure of integrating the equation to the desired value of
θ and then solving x = 2 gave better results than integrating to x = 2 because the angles
between the vector field and lines of constant θ were much larger than those between the vector
field and the lines of constant x at the bifurcation points. This procedure also avoided the
necessity of distinguishing the type of right homoclinic to be computed. This was determined
after computing the bifurcation point. Similar methods were applied to H2 to compute the
bifurcation curves of period 2 orbits.

The forced van der Pol system is a smooth vector field that does not have discontinuities
of its flow. Asymptotic analysis of the behavior of the flow near the folds of its critical
manifold is needed to interpret what our results say about bifurcations of the forced van der Pol
system. For trajectories that avoid neighborhoods of the folded singularities, classical theory
of singularly perturbed systems [2, 19] can be applied for this purpose. However, the analysis
of trajectories that pass near the folded singularities is complicated. There even remain gaps
in the theory that describes the local geometry of trajectories in the vicinity of the folded
nodes [3, 25, 28]. For the global geometry of the flow, there is another level of phenomena
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that is not touched upon in this paper. In particular, canards are trajectories of the forced
van der Pol system that pass near a folded singularity and then continue along the unstable
sheet of the critical manifold. These trajectories are not approximated by trajectories of the
reduced system as defined here. The canards can be approximated by trajectories of the
slow flow that obey different rules about when they jump from one sheet of the slow flow to
another, and they give rise to a whole new set of geometric structures in the flow of the forced
van der Pol system. The chaotic invariant sets described by Cartwright and Littlewood [8, 9]
consist entirely of trajectories that contain canards. The extension of the half-return map to
include the canard trajectories, the associated bifurcations, and the existence of horseshoes is
addressed in a subsequent paper [4].
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Stability by KAM Confinement of Certain Wild, Nongeneric Relative Equilibria
of Underwater Vehicles with Coincident Centers of Mass and Buoyancy∗
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Abstract. Purely rotational relative equilibria of an ellipsoidal underwater vehicle occur at nongeneric momen-
tum where the symplectic reduced spaces change dimension. The stability of these relative equilibria
under momentum changing perturbations is not accessible by Lyapunov functions obtained from en-
ergy and momentum. A blow-up construction transforms the stability problem to the analysis of
symmetry-breaking perturbations of Hamiltonian relative equilibria. As such, the stability follows
by KAM theory rather than energy-momentum confinement.
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Introduction. The phase space TSE (3) with Lagrangian

L(A, a,Ω, v) ≡ 1

2
ΩtIΩ+

1

2
vtMv(0.1)

approximately models the motion of a neutrally buoyant vehicle submerged in an inviscid
irrotational fluid (see [1] and the references therein) in the case of coincident centers of mass
and buoyancy. Here tangent vectors of SE (3) are represented by left translation, and elements
of SE (3) parameterize the configurations of the vehicle by embedding a reference vehicle into
the fluid. I and M are constant, positive definite, 3× 3 matrices that can be calculated from
the shape and mass distribution of the vehicle. This system admits the SE (3)-symmetry of
the left action of SE (3) on itself.

If the vehicle is an ellipsoid with principal axes of inertia along the axes of the ellipsoid, then
I = diag(I1, I2, I3) and M = diag(M1,M2,M3) (i.e., I and M are diagonal). If M1 =M2 and
I1 = I2 (or, similarly, ifM1 =M3 and I1 = I3, etc.), then there is a further material symmetry
of the system: SO(2) =

{
exp(k∧θ)

}
acts as a subgroup of SE (3) by inverse multiplication

on the right. If I and M are both constants of the identity, then the material symmetry is
SO(3).

Lie–Poisson reduction yields the Poisson phase space se(3)∗ =
{
(π, p)

}
, where π = IΩ and

p = Mv. The equations of motion are

dπ

dt
= π × Ω+ p× v,

dp

dt
= p× Ω,(0.2)
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and by direct substitution, for each αe ∈ R,

pαee : π = αek, p = 0,

is an equilibrium of the Poisson reduced systems and hence a relative equilibrium of the
original system. The generator is

Ωαee ≡ αe
I3

k, vαee ≡ 0,

so the relative equilibrium corresponds to a stationary vehicle rotating about a principal
axis which is aligned with the vertical. This article is concerned with the stability of these
relative equilibria in the case in which I3 is not an intermediate principal axis, i.e., assuming
I1 < I2 < I3 or I3 < I2 < I1.

The symplectic leaves of se(3)∗ are as follows. On the complement of p = 0 lie the generic
symplectic leaves, all diffeomorphic to TS2, and which are the level sets of the two Casimirs
|p| and π · p. Nongeneric leaves occur within the set p = 0 and are the level sets of the
subcasimir |π|. Thus the relative equilibria pαee correspond to Lyapunov stable equilibria on
the (nongeneric) symplectic leaves of se(3)∗ since the energy has a definite critical point when
restricted to those leaves. Were the symmetry group compact, this leafwise stability would
imply stability of the equilibrium modulo the isotropy group of the momentum. SE (3), of
course, is not compact. The question is whether or not pαee are stable under perturbations
from nongeneric leaves into nearby generic leaves.

Leonard and Marsden [2] have identified this question as particularly delicate, and the
theory of [5], the sharpest possible for the problem of establishing the stability of relative
equilibria by energy-momentum confinement in the case of noncompact symmetry, corrob-
orates that opinion. Patrick, Roberts, and Wulff separate generators of relative equilibria
into two complementary classes, tame and wild. The generator of pαee is tame if and only
if αe = 0, corresponding to a stationary, nonrotating vehicle, in which case SE (3)-stability
follows directly since the energy has zero derivative at pαee and has positive definite Hessian
there. However, if αe �= 0, the generator is wild and the theory does not imply stability.

So it is an open question whether the relative equilibria pαee , αe �= 0, are SE (3)-stable or
not, and the problem appears inaccessible by energy-momentum confinement. This is due to
the presence of a noncompact symmetry group and wild generators.

1. The blow-up construction. The stability issue is one of perturbation from a nongeneric
symplectic leaf to nearby, higher dimensional generic leaves. In order to bridge to Hamiltonian
perturbation theory, which is usually cast in a setting of a fixed canonical phase space, it is
natural to begin by normalizing the generic leaves. The leaf corresponding to

|p| = a, π · p = b

for a > 0 is diffeomorphic to

TS2 =
{
(w, ẇ) ∈ R

3 × R
3 : |w| = 1, w · ẇ = 0

}
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by the map

w =
p

|p| , ẇ = π − π · p
|p|2 p,

the inverse map being given by, for fixed a > 0 and b ∈ R,

p = aw, π = ẇ +
b

a
w.(1.1)

Having normalized the symplectic leaves to the constant manifold TS2, one seeks to extend
this to the nongeneric leaves within p = 0, which means extending it to a = 0 since p = aw.
As it stands, (1.1) is poorly defined for a = 0, but for fixed ratios of b/a it is well defined even
for arbitrarily small a, suggesting that the proper way to approach the nongeneric leaves from
generic ones is through constant π · p/|p|. Setting γ ≡ b/a and using the parameters a and γ
instead of a and b code the generic leaves so they fit smoothly into the nongeneric ones, thus
allowing the possibility of an effective perturbation approach. The map p = aw, π = ẇ + γw
for a = 0 is many-to-one, and so the three dimensional set of nongeneric leaves p = 0 is “blown
up” by this map to the five dimensional set of TS2 × R =

{(
(w, ẇ), γ

)}
. Thus one is led to

define the blown-up space of se(3)∗ as

P̂ ≡ TS2 × R≥0 × R ≡ {
(w, ẇ, a, γ) : |w| = 1, w · ẇ = 0, a ≥ 0

}

with blow-down map

p = aw, π = ẇ + γw

and corresponding blow-up map, defined on the generic (p �= 0) leaves only,

w =
p

|p| , ẇ = π − π · p
|p|2 p, a = |p|, γ =

b

a
.

The blow-up map is a diffeomorphism from the (open) set of generic leaves to the (open) set
a > 0 in the blown-up space (the generic sector) such that each generic leaf is sent to the
constant manifold TS2. The evolution of the generic leaves is transformed to an evolution
on TS2 parameterized by the Casimir values a and γ. The blow-down map takes the set
a = 0 in the blown-up space (the nongeneric sector) to the set of nongeneric leaves and is
many-to-one on that sector. Increasing the parameter a from zero corresponds to leaving the
nongeneric leaves and moving to the generic ones, while γ parameterizes the possible avenues
of departure.

The utility of the blow-up to support perturbation arguments depends on whether or not
the dynamics of the generic sector can be continued smoothly to the nongeneric sector. On
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the generic sector, the vector field that generates the dynamics is

dw

dt
=

1

a

dp

dt
=

1

a
p× I−1π = w × I−1(ẇ + γw),

dẇ

dt
=
dπ

dt
− γ

dw

dt

= π × I−1π + p× M−1p− γ
dw

dt
= (ẇ + γw)× I−1(ẇ + γw) + aw × M−1aw − γw × I−1(ẇ + γw)

= ẇ × I−1(ẇ + γw) + a2w × M−1w.

(1.2)

This is smooth in a for all a ≥ 0, as required. Dynamics on a = 0 robust enough to continue
through perturbation to small positive a will have implications for the original system. By
continuity in a, the blown-up vector field is a lift by the smooth blow-down map of the
vector field for the original system, even through the nongeneric sector. Thus the flow on the
nongeneric sector corresponds through the blow-down map to the flow of the original system
on the union of the nongeneric leaves.

The blow-up has a very transparent reformulation since P̂ is diffeomorphic to S2 × R
3 ×

R≥0 =
{
(w, π, a)

}
by the map π = γw + ẇ. Through this diffeomorphism, the blow-down

map is simply p = aw, which is to say that w by itself is enough to desingularize the foliation
by symplectic leaves but not enough to normalize the leaves. The blow-up map is a proper
map since the map (a,w) 	→ aw is proper.

Some exploration of the nongeneric sector of the blown-up space may be helpful for visual-
ization purposes. For fixed π0, the equation γw+ẇ = π0 has a solution w ∈ S2 and γ = π0 ·w.
Consequently, the blow-up of the point (π, p) = (π, 0) is in all cases a two sphere. This sphere
intersects fixed γ such that |γ| < |π0| in a circle, γ = ±|π0| in a point, and |γ| > |π0| not at all.
Thus departure from the point p = 0, π = π0 along γ > |π0| is impossible. The nongeneric
symplectic leaf |π| = r > 0 blows up to γ2 + |ẇ|2 = r2, which is diffeomorphic to S2 × S2 and
which for fixed |γ| < r is a circle bundle and for |γ| = r is a sphere.

The Hamiltonian pulls back through the smooth blow-down map to

Ĥ ≡ 1

2
πtI−1π +

1

2
ptM−1p = Ĥ0 + a2Ĥ1,

Ĥ0 ≡ 1

2
(ẇ + γw)tI−1(ẇ + γw), Ĥ1 ≡ 1

2
wtM−1w;

Ĥ is written this way in anticipation of perturbation arguments from a = 0 to small nonzero
a. The symplectic form ω̂ on the nongeneric sector can be calculated from the formula for the
coadjoint orbit symplectic forms of SE (3) in [3], with the result that

ω̂(w, ẇ)
(
(δw1, δẇ1), (δw2, δẇ2)

)
= −w · (δw1 × δẇ2 − δw2 × δẇ1)− γw · (δw1 × δw2).

By continuity, the relation iXĤ ω̂ = dĤ persists from a = 0 to a > 0, so the vector field (1.2)

is Hamiltonian at a = 0 with symplectic form ω̂ and Hamiltonian Ĥ0. Thus the evolution



40 GEORGE W. PATRICK

on the nongeneric sector is Hamiltonian in a way that smoothly continues the Hamiltonian
structure of the generic sector.

The dynamics on the invariant submanifold p = 0 in the original space P admits the
subcasimir |π|. This conserved quantity (conserved on p = 0 only) pulls back to a conserved
quantity |w + γẇ| for the nongeneric sector of the blow-up space P̂ . Since w · ẇ = 0 and
|w| = 1, this gives the conserved quantity |ẇ|2 and hence the conserved quantity f(|ẇ|), where
f is any function. The Hamiltonian vector field of f(|ẇ|2) is

dw

dt
= −f ′(|ẇ|)

|ẇ| ẇ × w,
dẇ

dt
= −γ f

′(|ẇ|)
|ẇ| w × ẇ.

Note that m̃ ≡ ẇ + γw is conserved by these equations so that

dw

dt
= −f ′(|ẇ|)

|ẇ| m̃× w,
dẇ

dt
= −γ f

′(|ẇ|)
|ẇ| m̃× ẇ,

the solution of which is rotations about m̃. To normalize the period at 2π and the right-hand
sense about m̃, choose

f ′(|ẇ|)
|ẇ| |m̃| = f ′(|ẇ|)

|ẇ|
√
γ2 + |ẇ|2 = −1,

which gives f(|ẇ|) = −√γ2 + |ẇ|2. Thus the nongeneric sector has an additional SO(2)-
symmetry, which acts by

θ · (w, ẇ) ≡ (
exp(m∧θ)w, exp(m∧θ)ẇ

)
, m ≡ ẇ + γw√

γ2 + |ẇ|2 ,

and has momentum

Ĵ ≡ −
√
γ2 + |ẇ|2.

This extra SO(2)-symmetry arises from a subcasimir of the original system. The action and
the corresponding momentum are defined on the nongeneric sector where γ and ẇ are not both
zero. The set where a = γ = 0 and ẇ = 0 exactly corresponds through the blow-down/up to
the set where p = 0 and π = 0, so the relative equilibria pαee are in the domain of definition of
the action and its momentum.

Here are some aspects of the SO(2)-action and its relation to the blow-down/up map.
1. The action is free except on the set ẇ = 0, which is a two sphere of fixed points. This

two sphere is also the level −|γ| of the momentum Ĵ , is a symplectic submanifold of
P̂ , and as such is equal to its own singular reduction.

2. The orbit relation of the action together with the parameter γ exactly absorb the
additional phase space from blowing up the nongeneric leaves. Indeed, for fixed γ,
the blow-down map is a quotient map for the action, and the orbit space is therefore
smooth, irrespective of the fact that the action is not free.

3. The blow-down map restricts to a quotient map for the (singular or nonsingular)
symplectic reduced space associated to the Ĵ = µ̂ level set. As such, this reduced
space is symplectomorphic to the nongeneric leaf p = 0, |π| = −µ̂.
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Only the verification of the third item in the nonsingular (µ̂ < −|γ|) case is troublesome. For
that, it is easily verified that the map π = γw + ẇ is a quotient map for the SO(2)-action
on Ĵ−1(µ̂) which has image the sphere TS2

−µ̂ =
{
π : |π| = −µ̂}. To pull down the symplectic

form ω̂ by that map, first let (π, δπi) ∈ TS2
−µ̂, i = 1, 2, and seek (w, ẇ, δwi, δẇi) such that

|w| = 1, w · ẇ = 0, w · δwi = 0, δwi · ẇ + w · δẇi = 0,

−
√
γ2 + |ẇ|2 = µ̂, δẇi · ẇ = 0, π = γw + ẇ, δπi = γδwi + δẇi.

To solve these equations, choose a w such that w · π̇ = γ, and set ẇ = π − γw. Expanding
δwi and δẇi in the basis w, ẇ, w × ẇ gives

δwi = − w · δπi
µ̂2 − γ2

(π − γw), δẇi = (w · δπi)w +
(w × π) · δπi
µ̂2 − γ2

w × π.

Substitution into ω̂ then gives

ω̂(w, ẇ)
(
(δw1, δẇ1), (δw2, δẇ2)

)

=
1

µ̂2 − γ2

((
δπ1 · w

)(
(π × δπ2) · w

)− (δπ2 · w
)(
(π × δπ1) · w

))

=
1

µ̂2 − γ2

(
w × (w × π)

) · (δπ1 × δπ2)

=
1

µ̂2 − γ2

(
(w · π)w − π

) · (δπ1 × δπ2)

=
1

µ̂2 − γ2

(
(w · π)w · π

|π|2 π − π

)
· (δπ1 × δπ2)

=
1

µ̂2 − γ2

(
γ2

µ̂2
− 1

)
π · (δπ1 × δπ2)

= − 1

|π|2 π · (δπ1 × δπ2).

This last expression is the symplectic form on the nongeneric leaf |π| = −µ̂, as required.
In short, the SO(2)-symmetry arises and exactly absorbs the additional dimensions re-

sulting from the blow-up construction. The symplectic reductions of the nongeneric sector by
this symmetry exactly coincide with the original system restricted to the nongeneric symplectic
leaves of the phase space P .

The pull-back of the relative equilibria pαee by the blow-down map is the set of (w, ẇ, a, γ)
such that

p = aw = 0, π = αek = ẇ + γw.

Since |w| = 1, the first equation is equivalent to a = 0 (the relative equilibria are, of course, in
the nongeneric sector), and dotting the second with w shows that it is equivalent to γ = αek·w
and ẇ = αek − γw. Since γ2 + |ẇ|2 = αe

2 and αe �= 0, all of these solutions are within the
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open set where the SO(2)-action is defined (i.e., where γ and ẇ are not both zero). Thus the
relative equilibria pαee blow up to

p̂αee : |w| = 1, ẇ = αek − αe(k · w)w, a = 0, γ = αek · w.(1.3)

Since w is unconstrained in (1.3) except for the first equation, p̂αee is diffeomorphic to S2.
Since m = k on p̂αee , the SO(2)-action on p̂αee is by rotation of the pair (w, ẇ) about k.
By substitution of p̂αee into (1.2), each point of p̂αee is a relative equilibrium for the SO(2)-
symmetry, except for the two points w = ±k, ẇ = 0, a = 0, γ = ±αe, which are equilibria
that reside at singular points of the action. Each relative equilibrium in p̂αee has the same
generator, namely,

ξ̂αee ≡ −αe
I3
,(1.4)

and, by substitution into Ĵ , the same momentum, namely,

µ̂αee ≡ −αe.

Fixing γ, which means fixing a parameter, αe = γ/ cosφ, where φ is the angle between k
and w. Thus, for fixed γ, there are two-dimensional submanifolds of relative equilibria, as αe
is varied, as expected for an SO(2)-symmetric Hamiltonian system. Along those submanifolds
there is the momentum-generator relation

ξ̂αee =
1

I3
µ̂αee ,(1.5)

which will give a crucial component in the KAM twist condition to follow.

2. Normal forms in the blown-up system. The stability of the relative equilibrium pαee
follows from the stability of its blow-up p̂αee .

Proposition 2.1. Suppose that, for some fixed αe, p̂
αe
e is stable for the flow F̂t on P̂ in the

sense that, for all neighborhoods Û of p̂αee , there is a neighborhood V̂ of p̂αee such that F̂t(p̂) ∈ Û
for all p̂ ∈ V̂ . Then pαee is a stable relative equilibrium.

Proof. Suppose U is a neighborhood of pαee . U pulls back by the blow-down map to an
open neighborhood Û of p̂αee . Let V̂ be a neighborhood as in the statement of the proposition.
Then it suffices to show that V̂ pushes forward by the blow-down map to a neighborhood of
pαee . However, this follows since the blow-down map is proper.

In particular, if all of the relative equilibria and both equilibria in p̂αee are stable under
perturbation both within the phase space TS2 and in the parameters a and γ, then the
original relative equilibrium pαee is stable. When a is perturbed away from 0, this is an
SO(2)-symmetry breaking perturbation. As dimTS2 = 4, the blown-up system is integrable
when a = 0, and hence the stability issue is one of the stability of periodic orbits of a nearly
integrable Hamiltonian system.

Assume, without loss of generality, that αe > 0. Since the SO(2)-symmetry on p̂αee is by
rotation about k, it suffices to consider the stability of orbits in p̂αee emanating from points
p̂αe,θe obtained by substituting w = sin θi+ cos θk into (1.3) for θ ∈ [0, π].
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2.1. Normal form for the relative equilibria. Consider first the relative equilibria in
p̂αe,θe ; i.e., exclude the equilibria corresponding to θ = 0 and θ = π. The argument proceeds
by adapting and incrementally refining, to the order required for the stability analysis, the
normal form for relative equilibria developed in [6].

Below O(x; y)k, x ∈ R
n, y ∈ R

m will denote the set of smooth y-dependent functions such
that O(x; y)/|x|k is bounded near 0. The product O(x; y)kO(x′; y′)k′ denotes the set of finite
sums of products of elements of O(x; y)k and O(x′; y′)k′ .

2.1.1. Initial normal form. This is constructed from the linearization of the relative equi-
librium, which means the linearization at p̂αe,θe of Hamiltonian vector field XĤξαee

, where

Ĥ0
ξαee

≡ Ĥ0 − ξ̂eĴ .

The characteristic polynomial of the linearization is x 	→ x2(x2 + ωe
2), where

ωe ≡ ±αe
√(

1

I3
− 1

I1

)(
1

I3
− 1

I2

)
.(2.1)

For later convenience, define ωe to be positive if I3 > I1 and I3 > I2 and negative if I3 < I1
and I3 < I2. The linearization has a 0 and ±iωe generalized eigenspaces, both of dimension 2.
Introducing the parameter

D ≡ I2(I3 − I1)

I1(I3 − I2)
,

the vectors

v1 ≡ D
1
4√
αe

[
0 cos θ 0 0 αe sin

2 θ 0
]
,

v2 ≡ D− 1
4√

αe

[
cos θ 0 − sin θ αe sin

2 θ 0 αe sin θ cos θ
]
,

v3 ≡ sin θ
[
0 1 0 0 −αe cos θ 0

]
,

v4 ≡ 1

αe sin θ

[
− cos2 θ 0 cos θ sin θ αe cos

3 θ 0 −αe sin θ(1 + cos2 θ)
]

form a basis of T
p̂αe,θe

S2 which satisfies the following:
1. the basis is symplectically canonical so that the symplectic form with respect to it is

ω(p̂αe,θe ) =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 ;

2. with respect to the basis, the derivative of the momentum is

dĴ
(
p̂αe,θe

)
=
[
0 0 0 1

]
;
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3. the third basis vector v3 is the infinitesimal generator action corresponding to 1 ∈
so(2);

4. the first two vectors v1, v2 span the ωe generalized eigenspace, and the last two v3, v4

span the 0 generalized eigenspace of the linearization;
5. the linearization of the relative equilibrium is

dXĤ0
ξ
αe
e

(p̂αe,θe ) =




0 ωe 0 0
−ωe 0 0 0
0 0 0 κe
0 0 0 0


 ,(2.2)

where

κe ≡ 1/I3.(2.3)

Consequently, the basis effects a Witt–Moncrief decomposition

T
p̂αe,θe

P̂ = N1 ⊕ so(2)⊕ so(2)∗ ≡ span(v1, v2)⊕ Rv3 ⊕ Rv4.

Here N1, the symplectic normal, may be identified with the tangent space to the symplectic
reduced space at p̂αe,θe for the SO(2)-action. The appearance of the nilpotent part of the
linearization is the foundational element of [6]. The value of κe coincides with the derivative
dξ̂αee /dµ̂αee from (1.5), as predicted by the general theory.

The initial normal form can now be transcribed from the data above and is

Ĥ =
ωe
2
(q2 + p2) + ξ̂αee ν +

1

2
κeν

2 +R(q, p, ν) +
a2

2
Ĥ1(q, p, ϕ, ν),

R = O(q, p, ν)3
(2.4)

on the product of R
2 ×T ∗SO(2) =

{
(q, p), (ϕ, ν)

}
with the product symplectic form dq∧dp+

dϕ ∧ dν, with SO(2) acting by lifts of its left action on itself, and with the momentum map
ν − αe. The transcription is that there is an SO(2) intertwining symplectic diffeomorphism
from a neighborhood of the SO(2)-orbit of p̂αee to a neighborhood of 0 times the zero section
of T ∗SO(2) which

1. sends the relative equilibrium p̂αe,θe to p = q = ν = ϕ = 0;
2. has derivative at p̂αee , the identity map with respect to the basis vi and the standard

basis of R
2 × T ∗SO(2);

3. intertwines the momentum maps Ĵ and ν − αe.
Thus the transcription is structure-preserving in that it is symplectic and it preserves the
SO(2)-symmetry and momentum, so the blown-up system near the group orbit of the relative
equilibrium p̂αe,θe can be replaced by the entirely equivalent system (2.4) near q = p = ν = 0.

2.1.2. Elimination of qO(ν)2, pO(ν)2, and (q2 − p2)ν. The remainder term of (2.4)
can be expanded as

R =c1(ν)q + c2(ν)p+ c3ν(q
2 − p2) + c4ν(q

2 + p2)

+O(q, p)3 +O(ν)3 +O(q, p)2O(q, p, ν)2,
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where c1(ν) = O(ν)2, c2(ν) = O(ν)2, and c3, c4 are constants. The transformation

q̃ = q +
c1
ωe
, ϕ̃ = ϕ+

pν

ωe

dc1
dν

,

suggested by completing the square in 1
2ωeq

2 + c1qν
2, is structure-preserving and changes the

Hamiltonian to the same form but without terms of the form qO(ν)2. Similarly, one eliminates
pO(ν)2. The transformation

q̃ =
q

f(ν)
, p̃ = f(ν)p, f(ν) =

(
1− 2c3

ωe
ν

1 + 2c3
ωe
ν

) 1
4

,(2.5)

takes the fragment ωe
2 (q

2 + p2) + c3(q
2 − p2)ν to

(
ωe
2
+ c3

)
q2 +

(
ωe
2

− c3

)
p2 =

ωe
2
(q̃2 + p̃2) + q̃2O(ν)2 + p̃2O(ν)2,

while the symplectic form becomes

dq ∧ dp+ dϕ ∧ dν = dq̃ ∧ dp+ dϕ ∧ dν +
f ′

f
(qdp+ pdq) ∧ dν

= dq̃ ∧ dp+ d

(
ϕ+

f ′

f
qp

)
∧ dν.

Adjoining ϕ̃ = ϕ + (f ′/f)qp to (2.5) gives a structure-preserving symplectic transformation
that eliminates the term c3(q

2 − p2). Thus, without loss of generality,

R = c4(q
2 + p2) +O(q, p)3 +O(ν)3 +O(q, p)2O(q, p, ν)2.(2.6)

2.1.3. Normal form for the rigid body. We will require the first two terms of the normal
form corresponding to the equilibrium π = αek of the blown-up system reduced by its SO(2)-
symmetry, i.e., the symplectic reduced spaces of the rigid body 1

2πI
−1π. The map

π =

((
αe − 1

4
(Q2 + P 2)

) 1
2

P,

(
αe − 1

4
(Q2 + P 2)

) 1
2

Q,αe−1

2
(Q2 + P 2)

)

is a symplectic chart on the reduced space |π| = αe, and in these coordinates, the Hamiltonian
becomes, up to a constant,

1

2
πtI−1π =

1

2

(
αe − 1

4
(Q2 + P 2)

)((
1

I1
− 1

I3

)
P 2 +

(
1

I2
− 1

I3

)
Q2
)
.

Action-angle variables for the linearized flow are

Q =
√
2ID

1
4 sinψ, P =

√
2ID− 1

4 cosψ,

and the Hamiltonian is then

1

2
πtI−1π = ωeI − ωe

2αe
(D

1
2 sin2 ψ +D− 1

2 cos2 ψ)I2.
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By averaging over ψ,

1

2
πtIπ = ωeI +

1

2
υeI

2 +O(Q,P )5,(2.7)

where

υe = − ωe
2αe

(D
1
2 +D− 1

2 ) =
1

2

(
2

I3
− 1

I1
− 1

I2

)
.(2.8)

2.1.4. Matching and normalizing the reduced spaces at p̂αe,θ
e . For a = 0, the symplectic

reduced space through p̂αe,θe of the blown-up system is the |π| = αe symplectic reduced space of
the rigid body 1

2π
tIπ. For a = 0, the symplectic reduced space of the normal form (2.4) through

q = p = ϕ = ν = 0 is R
2 with symplectic form dq ∧ dp and Hamiltonian Ĥ|ν=0. Since the

intertwining map between the blown-up system and the normal form is structure-preserving,
it descends to symplectomorphisms of reductions of these two systems. Consequently, by
symplectomorphism on (q, p) only, the normal-form Hamiltonian (2.4) at q = p = ν = 0 can
be equated to the rigid body normal form (2.7), after which the normal form is correct to
fourth order in pure q and p and

R = O(q, p)5 + νO(q, p)2O(q, p, ν).

2.1.5. Refinement by matching the normal forms and generators along the relative
equilibria near p̂αe,θ

e . An advantage may be obtained by comparing the reduced normal along
the relative equilibria p̂αe+z,θe as z varies. These relative equilibria occur (for both systems)
at momentum −(αe + z). For the rigid body, the only z-dependent adjustment is in the αe
dependence of the linearized frequency, which becomes ωe(αe + z)/αe, so the normal form is(

ωe +
ωe
αe
z

)
I +

1

2
υeI

2 +O(q, p; z)5.(2.9)

For (2.4), it is the normal form of the reduction at ν = −z, so it is the normal form of the
Hamiltonian

ωeI +
1

2
υeI

2 − 2c4Iz +O(q, p)2O(q, p, z)2,

which is
(
ωe − 2c4z +O(z)2

)
I +O(q, p; z)3.(2.10)

Comparing (2.9) and (2.10) at first order in I gives a crucial fact:

c4 = − ωe
2αe

.

Also, the SO(2)-generator of the blown-up system at p̂αe+z,θe , which is −(αe + z)/I3, and
the SO(2)-generator of system (2.4) at the relative equilibrium q = p = 0 are the same.
Equating these gives

ξ̂αee + κeν +
∂R

∂ν

∣∣∣∣q=p=0
ν=−z

= − 1

I3
(αe + z) = ξ̂αee − κez,

which means that R has no pure ν terms. Particularly, the O(ν)3 term in (2.6) is zero.
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2.1.6. Symmetry-breaking term. The transcription to the initial normal form is known
to first order since the derivative of the transcription is the identity map along the SO(2)-orbit
of p̂αe,θe . Consequently, Ĥ1 can be calculated to first order by substitution of

w = exp(ϕk)Pw
(
p̂αe,θe + (qv1 + pv2 + νv4)

)
into wtM−1w, where Pw(w, ẇ) = w.

2.1.7. Altogether. Putting all the foregoing together, the normal form is

Ĥ = ωeI +
1

2
υeI

2 + ξ̂αee ν +
1

2
κeν

2 − ωe
αe
Iν

+ O(q, p)5 + νO(q, p)2O(q, p, ν)(2.11)

+ a2Ĥ1,0(q, p, ϕ, ν) + a2Ĥ1,1(q, p, ϕ, ν) + a2O(q, p, ν;ϕ)2,

where

Ĥ1,0 ≡ M2 −M1

2M1M2
sin2 θ cos2 ϕ(2.12)

and

Ĥ1,1 ≡ (M2 −M1) sin 2θ

4M1M2
√
αe

(−D
1
4 q sin 2ϕ+D− 1

4 p cos 2ϕ
)

− cos2 θ

αe

(
1

M1
cos2 ϕ+

1

M2
sin2 ϕ− 1

M3

)
ν

− sin 2θ

4D
1
4
√
αe

(
2

M3
− 1

M1
− 1

M2

)
p.

The details of the symmetry-breaking term Ĥ1 are not required for the stability analysis and
are displayed here for the sake of completeness. The functional form of Ĥ1,1 depends on
the choice of the basis vi, and further normalization or analysis would be required to extract
information from it.

2.2. Normal form for the equilibria. The two equilibria p̂αe,0e and p̂αe,πe corresponding to
w = k and w = −k, respectively, remain to be considered. These equilibria are fixed points
of the action of SO(2), and the analysis requires a transparent extension of the normal form
in [6] to equilibria which have SO(2)-isotropy.

It suffices to consider p̂αe,0e ; the case of p̂αe,πe is similar. There is a one-parameter family of
possible linearizations of the equilibrium, namely, the linearizations at p̂αe,0e of the Hamiltonian
vector fields XĤ0

λ
, where Ĥ0

λ − λĴ . These linearizations have characteristic polynomials

x 	→ (
x2 + (αe + λI3)

2)(x2 + ωe
2).

Choosing λ = −αe/I3 gives the largest possible null space and therefore the largest number
of intrinsically defined higher order terms. The vectors

v1,0 ≡ D
1
4√
αe

[
0 1 0 0 0

]
, v2,0 ≡ D− 1

4√
αe

[
1 0 0 0 0 0

]
,

v3,0 ≡ 1√
αe

[
0 1 0 0 −αe 0

]
, v4,0 ≡ 1√

αe

[
−1 0 0 αe 0 0

]
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form a basis of T
p̂αe,0e

S2 which is symplectically canonical and such that the linearization

dXH0
λ
(p̂αe,0e ) is the linearization (2.2) with κe replaced by zero. The first two vectors span the

tangent space to the (singular) reduced space through pαe,0e , which is the |π| = αe symplectic
reduced space of the rigid body 1

2π
tI−1π.

Higher order terms of the Taylor expansion of XH0
λ
are intrinsically polynomials on

ker dXH0
λ
(p̂αe,0e ). Alternately, one can compute the higher order terms of the Taylor expansion

of the Hamiltonian on the null space. Letting (x, y) be the coordinates on ker dXH0
λ
(p̂αe,0e )

indicated by the last of the two basis vectors above, the Hamiltonian on the null space is easily
computed to be

1

8I3
(x2 + y2)2 +O(x, y)5 =

κe
8
(x2 + y2)2 +O(x, y)5.

The initial normal form, obtained by the equivariant Darboux theorem, is the Hamiltonian

Ĥ =
ωe
2
(q2 + p2)− αe

2I3
(x2 + y2) +

κe
8
(x2 + y2)2

+ O(q, p)O(q, p, x, y)2 +O(x, y)5 + a2Ĥ1(q, p, x, y)

on the phase space R
2×R

2 =
{
(q, p), (x, y)

}
, with symplectic form dq∧dp+dx∧dy, with SO(2)

acting by counterclockwise rotation on (x, y), and with the momentum mapping −1
2(x

2+ y2).
The transcription is by local symplectic diffeomorphism with analogous properties to those
stated in section 2.1.1.

Manipulations similar to those in section 2.1 are required, as follows:
1. Linear terms in q of the form qO(x, y)2 can be removed as in section 2.1.2, and so can

linear terms in p, x, and y. Quartic terms of the form O(q, p)2O(x, y)2 must by SO(2)-
invariance be in (x2 + y2)O(q, p) and so can be written as sums of (q2 + p2)(x2 + y2)
and (q2 − p2)(x2 + y2), and the latter kind can be removed, as in section 2.1.2.

2. Pure q and p terms up to order 4 can be found by matching the reduced system of the
initial normal form to rigid body reduced spaces.

3. By items 1 and 2, all terms up to and including order 4 are removed or calculated,
except for the coefficient of the term (q2+p2)(x2+y2). This can be found by matching
normal forms along the equilibria q = p = 0 (which are fixed points of the action of
SO(2)), and the resulting term is − ωe

4αe
(q2 + p2)(x2 + y2).

4. The remainder after all of that, having no terms linear in any variable, and being of
degree at least 5, is of the form O(q, p, x, y)2O(q, p, x, y)3 and is SO(2)-invariant.

5. The symmetry-breaking term Ĥ1 can be calculated as in section 2.1.6 by substituting

w = Pw(p̂
αe,0
e + qv1,0 + pv2,0 + xv3,0 + yv4,0)

into wtM−1w and keeping the leading terms, which are of order 2.
Altogether, the normal form is

Ĥ =ωeI +
1

2
υeI

2 + ξαee ν +
1

2
κeν

2 − ωe
αe
Iν +O(q, p, x, y)2O(q, p, x, y)3

+
a2

2
Ĥ1,1(q, p, x, y) + a2O(q, p, x, y)3,

(2.13)
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where I = 1
2(q

2 + p2) and ν = 1
2(x

2 + y2), and

Ĥ1,1 ≡ (M3 −M1)(D
− 1

4 p− y)2

αeM1M3
+
(M3 −M2)(D

1
4 q + x)2

αeM2M3
.

3. Stability. The rescaling

I = a2cĨ , ν = a2cν̃

is symplectic with multiplier a2c. Substituting into (2.11) and dropping the tildes give

1

a2c
Ĥ = ωeI +

1

2
υeI

2a2c + ξ̂αee ν +
1

2
κeν

2a2c − ωeIνa
2c +O(a; q, p, ϕ, ν)3c

+ a2−2cĤ1,0 +O(a; q, p, ϕ, ν)2−c.

Matching the exponents of a in the first nontrivial terms of the integrable part, i.e., 1
2κeν

2a2c

and 1
2υeI

2a2c, with the first term of the nonintegrable part, gives 2c = 2− 2c or c = 1
2 . After

putting ε =
√
a, and disposing of the factor 1/a2c of Ĥ, which merely reparameterizes time,

one has

Ĥ = ωeI + ξ̂αee ν +

(
1

2
κeν

2 − ωe
αe
Iν +

1

2
υeI

2 + Ĥ1,0
)
ε2 +O(ε)3,(3.1)

where the dependence of O(ε)3 on all of q, p, ϕ, and ν has been notationally suppressed. For
ε = 0, the Hamiltonian (3.1) has a periodic orbit cylinder by varying ϕ and ν with I = 0. The
orbit I = ν = 0 corresponds to the relative equilibrium p̂αe,θe .

For determining stability, it suffices to approximate the Poincaré map for the orbit corre-
sponding to ν = 0 in the zero energy level. Solving (3.1) for ν when H = 0 gives

ν = −ωeI

ξ̂αee
+O(ε)2,

and the equations of motion for (3.1) are

dψ

dt
= ωe +

(
υeI − ωe

αe
ν

)
ε2 +O(ε)3,

dI

dt
= O(ε)3,

dϕ

dt
= ξ̂αee +

(
κeν − ωe

αe
I

)
ε2 +O(ε)3,

dν

dt
= −∂Ĥ1,0

∂ϕ
ε2 +O(ε)3.

(3.2)

On the zero energy level, the equation for the evolution of ϕ is

dϕ

dt
= ξ̂αee − ωe(κeαe + ξ̂αee )

αeξ̂
αe
e

Iε2 +O(ε)3.(3.3)

With an initial condition I = I0, the second equation of (3.2) gives I = I0 + O(ε)3, so the
return time of the Poincaré map is, from (3.3),

T ≡ − 2π

ξ̂αee

(
1 +

(αeκe + ξ̂αee )ωeI0

αe(ξ̂
αe
e )2

ε2
)
+O(ε)3.
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Solving the first two equations of (3.2) over this period, dropping the subscript 0 for the initial
conditions, and using the relation ξ̂αee = −κeαe to eliminate αe give

I ′ = I +O(ε)3,

ψ′ = ψ − 2πωe

ξ̂αee
− ε2

2π

(ξ̂αee )3

(
υe(ξ̂

αe
e )2 − κeωe

2)I +O(ε)3.
(3.4)

This is of the form [4, Theorem 2, p. 231], namely, (I, ψ) 	→ (I ′, ψ′) by

I ′ = I + εr+sc(I, ψ, ε),

ψ′ = ψ + ω + εsh(I) + εs+rd(I, ψ, ε),

with r = 1, s = 2, and

h(I) ≡ − 2π

(ξ̂αee )3

(
υe(ξ̂

αe
e )2 − κeωe

2)I.

The twist condition dh/dI �= 0 is

υe(ξ̂
αe
e )2 − κeωe

2 �= 0,(3.5)

which, after substituting (1.4), (2.1), (2.3), and (2.8), is

− 1

2

(
2

I3
− 1

I1
− 1

I2

)
+ I3

(
1

I3
− 1

I1

)(
1

I3
− 1

I2

)

=
1

I1I2

(
I3 − 1

2
(I1 + I2)

)
�= 0.

This is certainly true if I3 is not between I1 and I2.
As for the equilibria p̂αe,0e of section 2.2, Arnold’s stability theorem [4, Theorem 1, p. 235]

together with the normal form (2.13) imply that the equilibrium is stable when a = 0 if

ωeI +
1

2
υeI

2 + ξ̂αee ν +
1

2
κeν

2 − ωe
αe
Iν

∣∣∣∣
I=ξ̂αee
ν=−ωe

=
1

2

(
υe(ξ̂

αe
e )2 − κeωe

2) �= 0,

which is the same as the twist condition (3.5). Stability follows for sufficiently small nonzero a
since a contributes continuously.

Thus pαee are stable as equilibria on the Poisson reduced space
{
(π, p)

}
, corresponding to

SE (3)-stability on the full phase space. As shown by [5], depending on the isotropy group of
the momentum, SE (3)-stability can be sharpened, irrespective of whether it arises from KAM
theory or energy-momentum confinement. The momentum at pαee has zero translational part
and rotational part parallel to k, and, in this case, one has Aε0,ε1(k)-stability for any ε0 > 0
and ε1 > 0, where

Aε0,ε1(k) ≡
{
(A, a) ∈ SE (3) : | sin θA,k| < ε1|a|+ ε0

}
,

θA,k being the angle between Ak and k. Aε0,ε1 contains (A, a), where A is arbitrary for
arbitrarily small ε0, ε1 as long as a is large enough, implying an absence of orientation stability
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Figure 1. Absence of orientation stability as shown by simulations of a perturbation of the relative equilib-
rium corresponding to αe = 1. The perturbation is such that the rotational energy and the translational energy
are changed by −.16% and 1.1% of the energy of the relative equilibrium, respectively. At left is the position of
the rigid body projected to a plane orthogonal to k. Second from the left is the corresponding plot of Ak against
time; were the orientation stable, then Ak would remain near 1, but the rotation axis flips over as evidenced
by Ak reaching −1. The vehicle rotates 20, 000 times over the course of the simulation. The two plots at right
correspond to the two plots at left but over a shorter simulation corresponding to the first 250 rotations of the
vehicle. All the plots are time-sampled and show envelopes over which the vehicle oscillates many times.

when translation is unconfined. This is consistent with simulations of perturbations of pαee ,
one of which is shown in Figure 1, where orientation stability is seen to be ruined by a slow
motion of the direction of rotation of the relative equilibrium. There is also a corresponding
slow dynamics in translation. The explanation of these slow motions presumably awaits
extensions of the drift analysis in [6] and [7] to the context of noncompact symmetry.

The foregoing sort of analysis will always lead to some stability condition, irrespective
of possible errors in the derivation, so it is necessary to check (3.4) by comparing it with
numerically generated Poincaré maps. Substitution of ε = 1 after truncation of O(ε)3 into
(3.4) gives the leading behavior of the Poincaré map when a, ν, and I are of comparable
order. (They are all of order ε2.) The Poincaré map is determined to leading order in I by
the first order twist term h(I) when the zero order term 2πωe/ξ̂

αe
e has a vanishing effect (i.e.,

is a multiple of 2π). This happens to occur when I1 + I2 = I3, as is easily verified. After
substitution of I2 = I3 − I1, the first order twist is

h(I) = − πI3
2

I1(I3 − I1)
I,

whereupon

I

h(I)
= − 1

πI3
2 I1(I3 − I1),

which is a parabola in I1/I3. As can be seen in Figure 2, this compares well with numerical
integrations of the original (as opposed to the blown-up) system.

Summary. The following theorem has been proved.
Theorem 3.1.Within the context of the Lagrangian system (0.1), the motion of an under-

water ellipsoid rotating about an axis n is Aε0,ε1(n)-stable if n is a long or short principal axis
of inertia.

This theorem follows from KAM confinement after a blow-up construction and normal-
form analysis rather than confinement by Lyapunov functions derived from energy and mo-
mentum.
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Figure 2. Numerical verification of the twist predicted by (3.4). Leftmost: The curved leading edge of the
numerically computed Poincaré map indicates a twist map by visibly showing faster rotation as I increases.
The twist overlays a constant rotation (in I) which is caused by high order terms in a and decreases as a
decreases. Center: The rotation angle per iteration of the Poincaré map on the right as a function of I. The
slope corresponds to the twist predicted by (3.4). Right: Reciprocal of the twist for I3 = 1, I2 = I3 − I1 as I1
ranges from 0 to 1 compared to the parabola predicted by (3.4).
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Abstract. Pulse-pulse interactions play central roles in a variety of pattern formation phenomena, including
self-replication. In this article, we develop a theory for the semistrong interaction of pulses in a class
of singularly perturbed coupled reaction-diffusion equations that includes the (generalized) Gierer–
Meinhardt, Gray–Scott, Schnakenberg, and Thomas models, among others. Geometric conditions
are determined on the reaction kinetics for whether the pulses in a two-pulse solution attract or
repel, and ODEs are derived for the time-dependent separation distance between their centers and
for their wave speeds. In addition, conditions for the existence of stationary two-pulse solutions
are identified, and the interactions between stationary and dynamically evolving two-pulse solutions
are studied. The theoretical results are illustrated in a series of examples. In two of these, which
are related to the classical Gierer–Meinhardt equation, we find that the pulse amplitudes blow up
in finite time. Moreover, the blowup of stationary one-pulse solutions and of dynamically varying
two-pulse solutions occurs precisely at the parameter values for which the theory we develop predicts
that these solutions should cease to exist as bounded solutions. Finally, generalizations to N -pulse
solutions are presented.
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1. Introduction. In this article, we study the semistrong interaction of pulses in a general
class of coupled reaction-diffusion equations in one spatial dimension. The focus is on pattern
formation in far-from-equilibrium systems in which the pulses are localized large-amplitude
perturbations of a linearly stable, homogeneous, background state. The label semistrong
signifies that the concentration of one of the species is far from equilibrium on the domain
between the pulse centers, and hence the pulse interaction is governed to leading order through
the slow spatial variation of that species.

Semistrong pulse interactions play central roles in a series of pattern formation phenomena,
including repelling pulse pairs and self-replication. Repelling pulse pairs in the Gray–Scott
model were studied in [3, 4], and this work may be viewed as a continuation of the program
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begun there to a broader class of equations. For the Gray–Scott model, ODEs were derived
for the time-dependent separation distance between the pulse centers and for their wave
speeds. Quantification of the slow spatial variation of the inhibitor concentration in the
domain between the pulses was shown to be essential for determining the pulse dynamics.

Self-replication of pulses, discovered and analyzed in the Gray–Scott model [22], is a
phenomenon in which a localized pulse splits into two pulses, and as these two pulses move
apart from one another, they each split into a pair of pulses so that there are four; see
[3, 4, 5, 9, 30, 35, 34, 40, 43, 44]. This process continues, depending on the parameter values
and the domain size, until a stationary, spatially periodic pattern is attained. During the
entire self-replication process, except near the instants of splitting when the pulse interaction
is truly strong, the pulse interactions are semistrong. While the activator concentration is
exponentially close to the background state between the pulses due to the singularly perturbed
nature of the reaction-diffusion equations, the inhibitor concentration there is not near the
value corresponding to the homogeneous steady state and in fact varies on a long spatial-
length scale. For instance, in the Gray–Scott model, the pulse interactions are determined
largely by the slow spatial variation of the inhibitor concentration on the domain between the
pulses, with the local maximum of the inhibitor concentration there increasing slowly in time
and in turn causing the pulses to repel each other. We showed in [4] that the time scale of the
evolution of this local maximum corresponds to the time scale of pulse-splitting. In addition,
recent investigations have shown that self-replication is a rather generic phenomenon that
occurs in many reaction-diffusion equations, including the Gierer–Meinhardt equation [21], as
has been shown in [10]. Again, the semistrong interaction of pulses plays an essential role.

For a general pair of pulses whose interaction is semistrong, the shapes and amplitudes of
the localized pulse-components generally change significantly in time. They are far from being
copies of a solitary homoclinic pulse. In fact, there are explicit examples (including the Gray–
Scott model and others introduced below) in which pairs of semistrong interacting pulses exist
in regions in parameter space where there are no single-pulse homoclinic solutions. In these
and other respects, the case of semistrong pulse interaction differs from the weak interaction
case (see [12, 14, 42]), where the pulses are to leading order exact, asymptotically stable,
single-pulse, homoclinic solutions of the associated reaction-diffusion equation. There, the
pulses are assumed to be so far apart that the composition of two pulses is also close to being
a solution of the system, and hence the pulses interact through exponentially small tails, they
do not change shape to leading order, and they move exponentially slowly away from (or
toward) each other in the weak interaction limit. Nevertheless, it is important to note that
weak interaction theory applies to a wider range of diffusivities than is considered here; in
particular, the diffusivities of both species may be O(1).

Our study of semistrong pulse interactions is primarily carried out for the following class
of coupled reaction-diffusion equations:

{
ε2Ut = Uxx − ε2µU + f(U)V 2,
Vt = ε2Vxx − V + g(U)V 2,

(1.1)

where U and V are positive functions defined for (x, t) ∈ R × R
+, µ > 0 is a parameter,

0 < ε � 1, and f and g are smooth positive functions on U > 0 which may have mild
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singularities (poles) at U = 0. Many named systems, including the Gierer–Meinhardt, Gray–
Scott, Schnakenberg, and Thomas equations (see, for example, [16, 32, 47]) are brought into
this specific form (1.1) by scalings that express the asymptotic character of the pulse solutions
of singularly perturbed reaction-diffusion equations. See the appendix and Remark 1.1 below.
Although ε appears at three places in (1.1), there is, in general, only one small parameter in
the original unscaled equation. (ε corresponds to the ratio of the diffusion constants in the
Gierer–Meinhardt model, while ε is in essence a certain ratio between constants describing
the linear feed terms in the Gray–Scott model; see the appendix and [3, 4, 7].)

The choice of a relatively general system (1.1) was motivated by the following types of
questions. In the Gray–Scott model [3, 4] and in the Gierer–Meinhardt equation (section 5),
the pulses in a two-pulse solution repel. What mechanism(s) causes the pulses to repel, and is
it possible to find systems for which pulses attract? Next, two repelling pulses might eventually
be so far apart that their interaction can be studied by the theory of weak interactions. So,
we ask, Will a pair of pulses necessarily enter the domain in which the interactions can be
considered as weak? We will see in sections 5 and 6 that this is not the case and that several
interesting things may happen depending on parameters and the nonlinearities. In addition,
we focus on the edge of the parameter domains in which two-pulse solutions exist. A hierarchy
of saddle-node points at which stable N -pulse solutions, N = 1, 2, . . . , disappear has been
found for the Gray–Scott and Gierer–Meinhardt equations, and this hierarchy governs the
self-replication process; see [3, 4, 5, 10, 34, 35]. Are there new phenomena, in addition to
self-replication, that occur at the edge of the parameter domains in which the pulse solutions
exist? Here, we will see that the answer is yes, and we will determine their relation to self-
replication. Finally, we have formally determined the stability of two-pulse solutions for the
Gray–Scott model in [3]. Hence we also briefly ask about the stability of the pulse solutions
for the general class of systems and about the related issue of the validity of the asymptotic
constructions.

Based on the analysis presented in this article, we find that the essential properties of the
reaction terms in (1.1) are

(i) the number and location of the zeros of g′(U) and the sign of g′(U) for values of U
that are not zeros; and

(ii) the number and location of the zeros of the function H(U) ≡ (3f(U)/g2(U)
)−√µU .

Properties (i) and (ii), which emerge naturally from the system geometry, determine the
salient features of the pulse dynamics. First, the number of zeros of H in (ii) is the number
of different stationary, homoclinic, one-pulse solutions the equation has. Second, the zeros
of H also determine the allowable locations (in the U − V plane) of the pulses in multipulse
solutions. Specifically, each zero corresponds to an allowable pair of jump off and jump on
points, which mark the left and right “edges” of the pulses, on a certain invariant manifold.
Third, the information in property (i) determines whether adjacent pulses attract or repel
each other, as well as whether asymmetric two- and N -pulse solutions can be constructed in
addition to symmetric ones.

Our first set of results concerns slowly varying two-pulse solutions, i.e., two-pulse solutions
in which the pulse centers move with slowly varying speeds c1(t) and c2(t) and the pulse shapes
(amplitudes and widths) vary slowly in time for systems of the form (1.1), in which (i) g′(U)
has no zeros on U > 0 and (ii) the function H(U) =

(
3f(U)/g2(U)

)−√µU has one positive
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simple zero. We derive the ODE for the pulse separation distance, denoted ∆Γ(t), as well
as the extremal values of the pulse speeds. We find that ∆Γ(t) decreases (and the pulses
attract) for configurations in which g′(U) > 0, whereas ∆Γ(t) increases (and the pulses repel
each other) in those cases for which g′(U) < 0. The different signs of g′(U) also appear to be
directly connected to the stability of these solutions.

The second set of results concerns system (1.1) for which (i) g′(U) has one positive simple
zero and (ii) the function H(U) again has one positive simple zero. For these systems, both
stationary and slowly varying two-pulse solutions can exist. Moreover, for the slowly varying
solutions, the pulses can either attract or repel each other, and the rates of approach or
repulsion can be increasing or decreasing or can even change dynamically in time from being
increasing to decreasing or vice versa. The particulars of whether a stationary two-pulse
solution exists or of what dynamics a slowly varying two-pulse solution exhibits are determined
by where the zero of g′(U) lies with respect to the U value that corresponds to the maximum
of a stationary one-pulse solution and to the local maximum of U for the pulse solutions with
extremal speed. Here, we see that a pair of repelling pulses may limit, in time, on a stationary
two-pulse solution. Such a pair, therefore, will not reach the weak interaction limit.

We also present extensions of the above two principal sets of results. The first extension
is to a more general class of systems,

{
ε2+σUt = Uxx + ε2F1(U) + V F2(U, V ),

Vt = ε2Vxx +G(U, V ).
(1.2)

Here, σ ≥ 0, 0 < ε � 1, and the functions F1, F2, and G are smooth for U > 0 and V ≥ 0
and admit at most poles at U = 0. They must also satisfy additional assumptions, which we
state in section 7.

The second extension is to N -pulse solutions of (1.1) for N ≥ 2, including stationary
solutions, classical traveling wave solutions, in which the entire N -pulse solutions moves with
constant wave speed, and slowly varying solutions. The slowly varying N -pulse solutions are
useful for understanding more about self-replication. At the stage of self-replication in which
the data has N pulses, one can use the ODEs for the positions of the N -pulse centers and
knowledge of the parameter regimes in which they exist and are stable to determine if the
pulses (some or all) will split again or if instead the self-replication process ends and the
asymptotic state is an N -pulse solution.

The classical Gierer–Meinhardt model is of the form (1.1) with f(U) ≡ 1 and g(U) = 1/U ,
and the generalized Gierer–Meinhardt model [7, 33] is of the form (1.2). The ODEs we derive
for the pulse separation distances and for the pulse speeds show that the pulses of a slowly
varying two-pulse solution repel each other; see also Figure 1.1. Moreover, these results
can be used to further understand the self-replication recently discovered [10] in the Gierer–
Meinhardt model in the same way as the ODEs for the pulse separation distances were used
for the Gray–Scott model in [4].

In addition to obtaining the above results, we have the overarching goal of determining
the boundaries of the existence domains in parameter space for the various two-pulse solutions
and N -pulse solutions in the semistrong interaction regime. These boundaries have already
been shown to be important for self-replication (see the discussion below). Here, we show that



SEMISTRONG PULSE INTERACTIONS 57

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

X

U
,V

50 55 60 65 70 75
0

0.5

1

1.5

X

U
,V

Figure 1.1. A symmetric, slowly varying, two-pulse solution obtained from direct numerical simulations
of the classical Gierer–Meinhardt equation for ε2 = 0.01 and µ = 5 shown at two instants of time. The pulses
repel each other, as is shown in section 5, and the ODE (5.6) governs the time-dependent separation distance
between the pulses. In the left frame, the slowly varying two-pulse solution is shown at two instants of time; in
the first instant, the two pulses are the inner pair with smaller maxima, while in the second instant, the pulses
are further separated and have larger maxima. The right frame is a magnification of part of the right half of the
domain in the left frame, shown so that the pulse structure is more clearly visible. The V (activator) component
has the narrow needle-like pulses and is vanishingly small on the intervals in between the pulses, while the U
(inhibitor) component has pulses with lower maxima and varies over a much longer length scale. The inhibitor
concentration U in between the two pulses is not near zero, the value of the homogeneous steady state, and its
local minimum in between the pulses slowly decreases. The numerically observed values of the maxima of U and
V at the pulse peaks agree well with the theory presented here. Homogeneous Neumann boundary conditions and
N = 201 moving grid points were used on the scaled interval [0, 1]. This and all other numerical simulations
in this article have been performed using the code presented in [2].

the boundaries of the existence domains can also correspond to bifurcation curves associated
to the blowup in finite time of localized pulse solutions. On one side of these curves, blowup
is observed, but none is observed on the other side. Moreover, we have found an example
in which there is a self-replication bifurcation curve that meets a blowup bifurcation curve
in a new type of codimension two point, which we label a self-replication/blowup bifurcation
point.

The blowup phenomenon was discovered in two examples introduced here to illustrate
the theory of semistrong pulse interaction. The first example is (1.1) with f(U) ≡ 1 and
g(U) = (1/U)+α, and the second example is (1.1) with f(U) ≡ 1 and g(U) = (1/U)+(β/

√
U).

The classical Gierer–Meinhardt equation is a special case of both examples, with α = 0 and
β = 0, respectively, although the blowup we find in both problems occurs for nonzero values
of these parameters.

For the first example, slowly varying two-pulse solutions can exist in parameter regimes
in which there is no stationary, homoclinic, one-pulse solution. Since g′(U) < 0 for all U > 0
and for all α ≥ 0, the pulses in a slowly varying two-pulse solution repel each other. As a
consequence, (to leading order) both pulses necessarily evolve toward a copy of the nonexisting
stationary one-pulse solution. It follows from the theory developed in this article that there
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is a critical separation distance, ∆Γbu, beyond which the two-pulse solution can no longer be
constructed. Numerical simulations show that at t = tbu, the time when a solution reaches the
critical separation distance, which of course depends on initial conditions, one of the pulses
starts to grow extremely rapidly, without bound.

In the second modified Gierer–Meinhardt example, the two interacting pulses can also
exist in parameter regimes in which there is no stationary, homoclinic, one-pulse solution, and
they also repel (again g′(U) < 0 for all U > 0 and for all β ≥ 0). Most significantly, they
can develop asymptotically large amplitudes as a result of the semistrong interaction. This
finite-time blowup can be understood in full analytical detail, with explicit formulae for how
both components grow and for the time of the blowup. It differs in some important respects
from that observed in the first example.

There are many important characteristics of the Gray–Scott and Gierer–Meinhardt equa-
tions (see [4, 10]) that are shared by the two new examples introduced here. As just stated, one
of the more interesting of these characteristics is that the slowly varying two-pulse solutions
not only exist in the parameter regions where the stationary, homoclinic, one-pulse solutions
exist, but they can also exist outside of those regions. Then, for parameter values outside of
those regions, the individual pulses of a two-pulse solution tend to copies of the one-pulse,
leaving one with the question of what should happen to them since the one-pulse solutions do
not exist there. This question was addressed in the context of the self-replication process in
the Gray–Scott model in [4] by introducing the notion of an effective small parameter whose
size depends on the slowly changing magnitude of the U - (inhibitor) component at the local
maximum in between the pulses. For two-pulse solutions in which the pulses are still close
together, that magnitude is sufficiently small, and the effective small parameter is such that
one is still back in the regime where the one-pulse exists (and is stable; see [5, 6]). However, as
that magnitude increases slowly in time, the effective small parameter eventually crosses the
self-replication threshold so that the pulses, which could not continue to exist as copies of the
nonexistent one-pulse solutions, split just as the initial one-pulse data did. Correspondingly,
there is a hierarchy of disappearance (or saddle-node) bifurcations that governs the boundary
of the self-replication domain in parameter space, as reported in [5, 4, 34, 35], and a similar
analysis can be carried out for splitting in the Gierer–Meinhardt model; see [10].

The analysis presented here shows that this same question arises for the two modified
Gierer–Meinhardt examples and has a similar type of answer; only here, the slowly varying
two-pulse solutions and the stationary, homoclinic, one-pulse solutions can exhibit finite-time
blowup, as well as splitting, depending on parameters.

This article is organized as follows. Section 2 contains the essential geometric information
about the invariant manifolds. The basic construction of slowly varying two-pulse solutions is
presented in section 3. Section 4 contains the study of symmetric, slowly varying, two-pulse
solutions and the presentation of the first set of results. Three examples, including the two
that exhibit finite-time blowup, are introduced and analyzed in section 5. Section 6 contains
the second set of main results for stationary and slowly varying two-pulse solutions in systems
that support more than a single stationary, homoclinic, one-pulse solution. Finally, in section
7, we discuss the extensions of the above results, including extensions to N -pulse solutions and
generalizations to the broader class of coupled reaction-diffusion equations given by (1.2). We
also discuss the stability of the solutions constructed here and the validity of the asymptotic
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constructions.
Remark 1.1. For the PDEs (1.1) and (1.2), one may assume without loss of generality that

the state (U0, V0) = (0, 0) is a homogeneous steady state. Moreover, we assume that (0, 0) is
a linearly stable solution of the PDEs with µ > 0. As shown in the appendix, this may entail
a change of dependent variables such as is the case, for example, in the Gray–Scott model,
which has (1, 0) as a linearly stable homogeneous state. It may also entail ensuring that
the solution components vanish at certain rates (see [7]), as is necessary for the generalized
Gierer–Meinhardt equations, where g(U) = 1/U as stated above, so that one needs V 2 to
vanish more rapidly than U along solutions in order for the quotient to vanish.

Remark 1.2. Pulse interactions have also been analyzed in other contexts, and we mention
some recent references without being exhaustive. In [38], one-dimensional (particle-like) pulses
in the excitable regime of a coupled reaction-diffusion system of FitzHugh–Nagumo type are
studied. The dispersion relation c(d) for the speed of pulse-trains as a function of their
wavelengths is presented, and a transition from long range dispersion (common in excitable
systems) to anomalous dispersion, for large d, is found that is shown to be responsible for
a long range attractive force between pulses. They also demonstrate the existence of stable
bound states. [36] examines the dynamics of sharp interfaces in an activator-inhibitor model
with global coupling in one and two spatial dimensions. It is shown that a pair of fronts that
initially approach can reflect off of one another and then repel each other. Next, [13] reports
on the discovery of pulse reflection in a two-component excitable system. Moreover, it is shown
that reflections also occur for spirals and rings in two space dimensions, and the bifurcations
are analyzed using center manifold theory for sufficiently small pulse velocities. Finally, two-
dimensional pulses are also analyzed in an activator-inhibitor system with global coupling in
[26]. The bifurcation of a stationary pulse to a traveling pulse is examined using interface
dynamics, and the collision of two pulses is also observed in the presence of sufficiently strong
global coupling.

2. Geometry of the invariant manifolds. In this section, we present the phase space
geometry associated to the pulse solutions studied in this article. Let c(t) denote the time-
dependent velocity of a pulse, and let x = Γ(t) denote the time-dependent position of the
pulse’s center, where

Γ(t) =

∫ t

t0
c(s)ds.(2.1)

It is also useful to introduce the moving coordinate, x̄ = x−Γ(t), as well as a stretched moving
coordinate, ξ ≡ x̄/ε.

Looking ahead just a bit, we can also take advantage of the following two observations.
First, the distinguished wave speed is small,

c(t) ≡ ε3ĉ(t),(2.2)

where ĉ(t) is O(1), and |dĉ/dt| � 1. This agrees with the earlier analysis [3, 4] of self-
replication and semistrong pulse interactions in the Gray–Scott model and will be shown to
be a distinguished speed also for the general systems (1.1). See Remark 2.2 below. Second,
it turns out that, for the solutions we study, the explicit time variation of U and V is also
slow, i.e., |∂U/∂t|, |∂V /∂t| � 1. Therefore, we use a quasi-stationary approximation, which
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entails treating ĉ(t) as a slowly varying parameter that lies within a certain allowable range
and ignoring the explicit partial derivatives with respect to t to leading order. Hence, to
leading order, the solutions (U(ξ(t), t), V (ξ(t), t)) depend only on t through ξ(t). (See also
Remark 3.1 for a brief discussion of higher order terms and the validity of this quasi-stationary
approximation.)

Within the context of this quasi-stationary approximation, the quasi-stationary solutions
of the PDE (1.1) are described by the following system of four first order ODEs:




u̇ = εp,
ṗ = ε

[−ε5ĉp+ ε2µu− f(u)v2
]
,

v̇ = q,
q̇ = −ε2ĉq + v − g(u)v2.

(2.3)

Here, u(ξ) and v(ξ) are the leading order terms in the asymptotic expansions of the solutions
(U(ξ(t), t), V (ξ(t), t)) of the PDE (1.1), and the overdot denotes derivatives with respect to
ξ. Also, ĉ = ĉ(t) is a parameter.

2.1. A normally hyperbolic invariant manifold for (2.3). One natural approach to de-
termining the relevant geometrical features of the phase space of the ODE (2.3) is to identify
the structures that exist when ε = 0 and then to ask which of these persist for 0 < ε� 1.

For ε = 0, the half-plane

M = {(u, p, v, q)|v = 0, q = 0, u > 0}(2.4)

is a set of equilibrium points of (2.3). Off of M, the system exhibits fast dynamics governed
by the fast system {

v̇ = q,
q̇ = v − g(u)v2,

(2.5)

where u is a fixed parameter. This fast system has the conserved quantity (energy)

K(v, q;u) =
q2

2
− v2

2
+
g(u)

3
v3.(2.6)

Moreover, each fixed point (u, p, 0, 0) on M is a saddle point under the flow (2.5). Hence the
two-dimensional invariant plane M is normally hyperbolic. Finally, since g(u) > 0 for u > 0,
each fixed point on M is connected to itself by a homoclinic orbit (v0(ξ), q0(ξ)), where

v0(ξ) =
3

2g(u)
sech2

(
ξ

2

)
,(2.7)

of the fast system (2.5). Therefore, the three-dimensional stable and unstable manifolds of
M, denoted WS(M) and WU (M), coincide.

For 0 < ε � 1, the plane M is still an invariant set under the dynamics of (2.3), and it
still has three-dimensional stable and unstable manifolds by the Fenichel theory of geometric
singular perturbations; see [18] and [24]. On M, the system (2.3) reduces to

{
u̇ = εp,
ṗ = ε3(µu− ε3ĉp).

(2.8)
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The equilibrium point S, (u, p) = (0, 0), of (2.8) on the boundary of M corresponds to the
homogeneous state (U0, V0) = (0, 0) of (1.1), and it is a saddle equilibrium in the phase space
of (2.8). Moreover, the stable and unstable manifolds of S restricted toM, labeled !s and !u,
are given to leading order by the lines

!s, !u : p = ∓ε√µu.(2.9)

We are interested in that portion of M that lies in the wedge between (or on) !u and !s.
In this wedge, the p-coordinates of all points are at most O(ε), and so it is useful to explicitly
introduce p = εp̂, where p̂ = O(1).

Remark 2.1. For general g(u), the boundary u = 0 is excluded from the definition of M,
since g(u) may have a pole there. In that case, one can still obtain results for those solutions
along which v vanishes sufficiently rapidly so that the product g(u)v2 vanishes. The method
employed in [7] (see the end of section 2.4 there) to analyze semistrong pulses in the generalized
Gierer–Meinhardt equation extends to system (1.1). Of course, if g is also smooth at u = 0,
such as in the Gray–Scott model (transformed as in the appendix), then one can include the
boundary as part of the manifold.

2.2. Persistent orbits homoclinic to M. For 0 < ε � 1, the stable and unstable man-
ifolds of M no longer coincide. Instead, they are expected to intersect transversely in a
two-dimensional surface, in which all orbits that are biasymptotic (ξ → ±∞) to M lie. We
find this surface in this section.

For points on M, K = 0. Hence orbits that are biasymptotic to M satisfy

∆K ≡
∫ ∞

−∞
K̇(v(ξ), q(ξ);u(ξ))dξ = 0(2.10)

so that their α and ω limit sets are both on M. By adiabatic Melnikov function theory [45],
simple zeros of ∆K imply the existence of nearby transverse intersections of the manifolds
WS(M) and WU (M).

Let (u(ξ), p(ξ), v(ξ), q(ξ)) denote any solution of (2.3) that, at ξ = 0, passes through the
hyperplane {q ≡ 0} with u, v > 0 and with p in the desired wedge. Denote such a point on
{q ≡ 0} by (u, εp̂, v(0), 0). A straightforward calculation of K̇ along these solutions of (2.3)
yields

K̇ = ε2
(
−ĉq2 +

p̂

3
g′(u)v3

)
.(2.11)

Thus a solution (u(ξ), p(ξ), v(ξ), q(ξ)) of the type under consideration here is a persistent
homoclinic orbit to M if

ε2
∫ ∞

−∞

(
−ĉq2(ξ) +

p̂(ξ)

3
g′(u(ξ))v3(ξ)

)
dξ = 0.(2.12)

For 0 < ε� 1, the persistent homoclinic orbits in the transverse intersection of WU (M)
and WS(M) lie close to their ε = 0 counterparts. Specifically, persistence theory for invariant
manifolds [18] establishes that solutions onWU (M) andWS(M) are close to the unperturbed
homoclinic orbit (v0(ξ), q0(ξ) = v̇0(ξ), u, 0) on appropriate time intervals, (−Ξ, ξ0) and (ξ0,Ξ),
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respectively, where Ξ may be taken arbitrarily large (but O(1)) as long as ε is sufficiently
small.

Therefore, asymptotically, we may approximate u(ξ) by the constant u, v(ξ) by v0(ξ) as
given by (2.7), and q(ξ) by q0(ξ). Hence, to leading order, condition (2.12) implies that either
ĉ = 0 (which is the case when g′(u) = 0) or

p̂ = 2ĉ
g(u)

g′(u)
(2.13)

(which is the case when g′(u) �= 0 for all u > 0). Here, we used the intermediate results∫∞
−∞ q2

0dξ = 6/(5g2(u)) and
∫∞
−∞ v3

0dξ = 36/(5g3(u)).

Geometrically, this result may be understood as follows. In the first case, there is a one-
parameter family of orbits biasymptotic to M, and these have the symmetry (u, p, v, q) →
(u,−p, v,−q) about ξ = 0. In the second case, there is also a one-parameter family of orbits bi-
asymptotic toM. However, they are not symmetric. Instead, those orbits (u(ξ), p(ξ), v(ξ), q(ξ))
with (u, εp̂, v(0), 0) at ξ = 0 and v(0) near v0(0) = 3/(2g(u)) that are biasymptotic to M
satisfy the property that their u- and p-coordinates are related by (2.13) to leading order.
Therefore, since g(u) > 0 by assumption, the sign of p̂ is determined by the signs of ĉ and
g′(u). This property will be essential throughout the analysis.

Finally, during the “time” interval when the homoclinic orbits in the transverse intersection
ofWU (M) andWS(M) make their excursion through the fast field, i.e., when they lie outside
of a fixed neighborhood of M, their slow coordinates u and p undergo changes that are given
to leading order by

∆u ≡
∫ ∞

−∞
u̇(ξ)dξ and ∆p ≡

∫ ∞

−∞
ṗ(ξ)dξ.(2.14)

Now, since p = εp̂ and p̂ = O(1) for these orbits, we immediately see from (2.3) that

∆u = O(ε2).(2.15)

Hence u is actually constant to a higher degree of approximation than originally stated.
Moreover, with u ∼ constant, we find

∆p(u, ĉ) = −ε
∫ ∞

−∞
f(u)v2dξ + h.o.t.

= −εf(u)
∫ ∞

−∞
v2
0dξ + h.o.t.

= −6ε f(u)
g2(u)

+ h.o.t.(2.16)

This change in p during the fast jump plays a central role in much of the geometry of the
pulses and hence also in much of the analysis in this article.

Remark 2.2. That c(t) = ε3ĉ(t) is a distinguished wave speed as introduced in (2.2) above
can be seen directly from the adiabatic Melnikov condition (2.12). One wants to balance the
first and second terms in order that ∆K can have zeros. The second term is O(ε2), and hence
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if one scales c = O(ε3), then also the first term is O(ε2). This is a distinguished limit; see
[11].

Remark 2.3. In the special case in which g(u) = h2u
α2 with h2 > 0 and α2 < 0, such as, for

example, in the Gierer–Meinhardt equation and in its generalizations, we have g(u)/g′(u) =
u/α2. Hence p̂ = p̂(u) = (2ĉ/α2)u, a linear function.

Remark 2.4. We have focused exclusively on the geometry used to construct one-pulse
solutions in this section. Multiple-pulse solutions that consist of two slow segments and one
fast segment in which all of the pulses occur in rapid succession (i.e., they remain bounded
away from M in between pulses) can also be constructed, but such stationary solutions are
unstable solutions of the PDE; see [7].

2.3. The takeoff and touchdown curves for persistent homoclinic orbits. There are
takeoff and touchdown curves on M that play a crucial role in the geometry of the pulse
solutions. These are determined by the two-dimensional manifold that is the transverse in-
tersection of WU (M) and WS(M) identified in the previous section. The first intersection
of WS(M) and WU (M) in the hyperplane {q = 0} is a one-dimensional curve of points
(u, εp̂, v(0), 0), where u and p̂ are related to leading order via (2.13) in this two-dimensional
manifold. Moreover, through any such point there is an orbit γ(ξ; γ0) with phase γ0 that
approachesM as ξ → ±∞. Fenichel theory [18] implies that for any γ(ξ; γ0) there are two or-
bits γ+

M = γ+
M(ξ; γ+

0 ) ⊂M and γ−M(ξ; γ−0 ) ⊂M, respectively (where γ±M(0, γ±0 ) = γ±0 ∈ M),
such that ‖γ(ξ; γ0) − γ+

M(ξ; γ+
0 )‖ is exponentially small for positive values of ξ that satisfy

ξ ≥ O(1
ε ) and ‖γ(ξ; γ0) − γ−M(ξ; γ−0 )‖ is exponentially small for ξ < 0 satisfying −ξ ≥ O(1

ε ).
As a consequence,

d(γ(ξ; γ0),M) = O
(
e−

k
ε

)
for |ξ| ≥ O

(
1

ε

)
and some k > 0,

and the orbits γ±M(ξ; γ±0 ) on M determine the behavior of γ(ξ; γ0) near M.
We define the curves To(ĉ) ⊂M (takeoff) and Td(ĉ) ⊂M (touchdown) as

To(ĉ) = ∪γ0{γ−0 = γ−M(0; γ−0 )},
Td(ĉ) = ∪γ0{γ+

0 = γ+
M(0; γ+

0 )},(2.17)

where the unions are over all γ0 in W
S(M)∩WU (M)∩ {q = 0}. Therefore, the curves To(ĉ)

and Td(ĉ) are the collections of the basepoints of all of the fibers in WU (M) and WS(M)
(respectively) that lie in the transverse intersection of these two manifolds. See Figure 2.1.

Asymptotic formulas for the locations of To(ĉ) and Td(ĉ) can be obtained as follows. The
accumulated changes in the p-component of γ(ξ) during two successive half-circuit excursions
through the fast field are measured by

∫ 0

−∞
ṗdξ and

∫ ∞

0
ṗdξ,

respectively, and these integrals may be calculated by the same method used to obtain (2.16).
Moreover, at ξ = 0, the orbits have p̂ given by (2.13). Hence we find

To(ĉ), Td(ĉ) : p̂ = 2ĉ
g(u)

g′(u)
± 3f(u)

g2(u)
.(2.18)
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Figure 2.1. A qualitative sketch of the curves To(ĉ), Td(ĉ), F(
u), and F−1(
s) onM, as defined in section
2, as well as of a singular, slowly varying, two-pulse solution, whose construction is outlined in section 3. The
sketch is for the symmetric case ĉ2 = −ĉ1. The successive slow, fast, and slow segments of the left pulse are from
(0, 0) to O1, O1 to D1, and D1 to (umin, 0), respectively. We remark that the line segments O1D1 and O2D2

are projections onto M of the fast near-homoclinic excursions in the v−vξ directions. Also, we emphasize that
To(ĉ) is a one-dimensional curve for each fixed value of ĉ = ĉ1, and similarly for Td(ĉ). By contrast, F(
u) is
a one-dimensional curve because it is the union over a certain range of ĉ values of touchdown points—one for
each value of ĉ. Similarly, F−1(
s) is a one-dimensional curve because it is the union of takeoff points—again
one point for each ĉ in a certain range. See the definitions in section 2.4.

2.4. The images of the intersection points �u ∩ To(ĉ) and �s ∩ Td(ĉ) under the fast
jump. As a final preparatory step, we identify two other curves on M that will be useful
throughout the analysis. In particular, for those values of ĉ for which the intersections !u∩To(ĉ)
and !s∩Td(ĉ) exist, we are interested in the image of !u∩To(ĉ) and in the preimage of !s∩Td(ĉ).

We showed in section 2.2 that, for fixed ĉ, a persistent homoclinic orbit to M that takes
off from a point on To(ĉ) touches down on M at a point that has the same u-coordinate to
leading order and whose p-coordinate is shifted by ∆p(u, ĉ). This same conclusion holds, of
course, for points that take off at the intersection point !u ∩ To(ĉ), if this intersection exists.
The union over ĉ of all of these touchdown points is denoted by F(!u). See Figure 2.1. To
leading order, F(!u) is given by

F(!u) : p̂ =
√
µu− 6f(u)

g2(u)
.(2.19)

Similarly, let F−1(!s) denote the set of points that are the preimages (takeoff points) under
the fast jump of the touchdown points in !s ∩ Td(ĉ) over all ĉ, when this intersection exists.
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To leading order,

F−1(!s) : p̂ = −√µu+ 6f(u)

g2(u)
.(2.20)

These curves play a central role in the definition of the function H introduced above.

3. The basic construction of slowly varying two-pulse solutions. In this section, we
present a brief introduction to slowly varying two-pulse solutions, focusing on the basic idea
of how the geometry of the invariant manifolds described in the previous section is used to
construct them. Specifically, we consider slowly varying two-pulse solutions with one pulse on
x ≤ x0 for some x0 ∈ R that travels with speed c1(t) and the other on x ≥ x0 that travels
with speed c2(t).

The moving coordinate x̄ = x − Γ1(t), with Γ1(t) =
∫ t
t0
c1(s)ds, is used to analyze the

left pulse, and hence the governing ODE is (2.3) with ĉ = ĉ1 slowly changing in time. The
results for the right pulse are obtained from the same ODE but with ĉ = ĉ2 instead changing
slowly in time, and the geometry for it is usually shown superimposed in the same phase
space as for the left pulse. We refer the reader to Remark 3.1 and section 7 for a discussion of
how these two components are hooked up smoothly and of the justification of this asymptotic
construction.

The ĉ1 values for which the two-pulse solutions can be constructed depend on the quantities
in (i) and (ii), as we show in the next sections.

3.1. Constructing singular two-pulse solutions. The left pulse, centered at x = Γ1(t),
is asymptotic to (U, V ) = (0, 0) as x → −∞ and satisfies a Neumann boundary condition
(Ux, Vx = 0) at x = x0. In fact, the singular (ε → 0) limit of the left pulse consists of the
following three pieces (see Figure 2.1), two slow (outer) segments on M interspersed with a
fast (inner) homoclinic orbit of the reduced fast system (2.5):

• The left slow segment corresponds to the interval (−∞,Γ1(t)) and is that portion of !
u

onM from (0, 0) to the point, labeled O1, at which To(ĉ1) and !
u intersect transversely.

• The fast pulse is centered at x = Γ1(t) and is described in the stretched coordinate
ξ introduced above. To leading order, it is given by (v0(ξ), q0(ξ)), see (2.7), with u
constant. Over the fast pulse, the p-component makes a jump ∆p(u; ĉ) of size O(ε)
(see (2.16)). Therefore, the projection of this fast jump onto the u−p plane is precisely
the vertical line segment from O1 to the point labeled D1 on F(!u).

• The right slow segment, which corresponds to x ∈ (Γ1(t), x0], is that segment of the
hyperbolic cosine orbit on M from D1 to a point on p = 0 labeled (umin, p = 0), so
that the homogeneous Neumann boundary condition is satisfied.

The singular right pulse is now constructed in a similar manner on x > x0. It has a left
slow segment, which corresponds to x ∈ [x0,Γ2(t)), that is the continuation of the hyperbolic
cosine solution onM (but for the ODE with ĉ = ĉ2 now) from (umin, 0) to a point on F−1(!s)
labeled O2. Note that the difference between ĉ = ĉ1 and ĉ = ĉ2 is a higher order effect in
(2.3); see also Remark 3.1. The projection of the fast homoclinic orbit on M is the vertical
line segment from O2 to D2, where D2 ∈ Td(ĉ2) ∩ !s. Finally, the right slow segment, which
corresponds to x ∈ (Γ2(t),∞), is that portion of !s from D2 to S; see Figure 2.1.
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3.2. Slowly varying two-pulse solutions for 0 < ε � 1 lie close to the singular two-
pulse solutions. For 0 < ε � 1 and x < Γ1(t) − δ with δ > 0 small but O(1), the left pulse
lies exponentially close to !u onM and approaches the fixed point (0, 0) on ∂M as x→ −∞.
Moreover, as x → Γ1(t)

−, the left pulse solution leaves a fixed neighborhood of M near O1.
We recall from the above discussion that the point O1 on To(ĉ1) corresponds precisely to the
ξ → −∞ limit of the leading order fast (inner) solution v0. Geometrically, it is the basepoint
of a fast unstable fiber that lies in the transverse intersection of WU (M) and WS(M), as was
shown in section 2.3.

The ξ →∞ limit of the fast (inner) solution is the point on Td(ĉ1) labeled D1 above, and
it is the basepoint of the fast stable fiber that lies in the transverse intersection of WU (M)
and WS(M). On all compact intervals in ξ, the left pulse of the slowly varying two-pulse
solution lies close to (though not in) this transverse intersection.

The left and right pulses move when ĉ1(t) and ĉ2(t) are not identically zero, and hence
their separation distance, Γ2(t)− Γ1(t), changes in time. In particular, the given wave speed
ĉ1 determines the location of the point O1, which in turn determines the points D1, O2, and
O2 sequentially, where

O1 : !
u ∩ To(ĉ1),

D1 : F(!u) ∩ Td(ĉ1),
O2 : F−1(!s) ∩ To(ĉ2),
D2 : !

s ∩ Td(ĉ2).(3.1)

The ODE governing Γ2(t) − Γ1(t) is then naturally obtained by imposing the leading order
consistency condition that, at every instant of time, the difference Γ2(t) − Γ1(t) equals the
time of flight along the hyperbolic cosine orbit segment between the points D1 and O2 onM.

3.3. Summary of the construction. In summary, the essential step of the analysis of the
given reaction terms in (1.1) is to determine the geometry of To(ĉ), Td(ĉ), !

u, !s, F(!u), and
F−1(!s) on M. With this in hand, one can then readily determine how many different types
of pulses are possible and whether or not it is possible to construct repelling or attracting
two-pulse solutions. We do this for various f and g in (1.1) in the next sections. Moreover,
this method readily generalizes to asymmetric two-pulse solutions and to N -pulse solutions
with (N − 1) segments near hyperbolic cosine solutions on M, as is shown toward the end of
this article.

Remark 3.1. A hard look at the leading order quasi-stationary solution constructed in this
section reveals that it is not sufficiently smooth at x = x0 due to the change in ĉ at x0 in (2.3).
In particular, just as was observed in the construction of symmetric, slowly varying two-pulse
solutions in the Gray–Scott model in [4], the third order (and higher order) derivatives of U
do not vanish at x = x0 as they should so that the full solution is symmetric. For example,
the jump in Uxxx is O(ε4) and hence truly of higher order. A similar smoothness problem
is encountered for nonsymmetric two-pulse and N -pulse solutions at the points where the
adjacent pulses are hooked up. However, we showed for the Gray–Scott model in section
3.4 of [4] that inclusion of the higher order terms beyond the leading order quasi-stationary
approximation restores the smoothness in the third order derivatives and in all higher order
odd derivatives. The lack of smoothness of the leading order quasi-stationary approximation
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for the solutions studied here can be similarly ameliorated by inclusion of the higher order
terms. We do not go into the details.

4. Symmetric, attracting, or repelling two-pulse solutions. In this section, we study
symmetric, attracting, or repelling two-pulse solutions in systems of the form (1.1) for which

(i) g′(u) �= 0 for all u > 0 and
(ii) the function H(u) = 3f(u)/g2(u)−√µu has one simple zero.

Under these conditions, the intersection of !u and To(0) is transverse and consists of a single
point; see (2.9) and (2.18). As a consequence, the PDE (1.1) possesses a stationary (ĉ = 0)
one-pulse solution. See also section 7.1.

We construct slowly varying two-pulse solutions for which the slowly changing pulse ve-
locities are equal in magnitude but opposite in sign at each instant of time t and for which the
pulses either attract (g′(u) > 0) or repel (g′(u) < 0). In addition, we will see that there is an
extremal allowable pulse speed (a minimum in the case of attracting pulses and a maximum
in the case of repelling pulses) that arises naturally from the system geometry.

Conditions (i) and (ii) are formulated here mostly to facilitate the presentation of the
geometric method. In the following sections, we will see that two-pulse solutions can also be
constructed when g′(u) has zeros, or when the function H(u) has either no zeros or two (or
more) zeros.

4.1. Singular two-pulse solutions. The singular two-pulse solutions are constructed fol-
lowing the blueprint developed in section 3.1. Consider the left pulse with peak at x = Γ1 < 0
(where we have taken x0 = 0 without loss of generality), and assume that the local maximum
of u at the center of the pulse, denoted u+, is given by some value satisfying

−√µu+ <
√
µu+ − 6f(u+)

g2(u+)
< 0.(4.1)

We note that Remark 4.1 provides the geometric reasons for the restriction (4.1).
The left pulse is backward asymptotic to S = (0, 0, 0, 0). It has the following slow and

fast segments (see also Figure 2.1):
• The left slow segment, which corresponds to the interval (−∞,Γ1), is that portion of
!u between S and the point O1, which is the point in !u ∩ To(ĉ1) whose u-coordinate
is given by the unique solution u+ of

√
µu = 2ĉ1

g(u)

g′(u)
+
3f(u)

g2(u)
.(4.2)

Note that ĉ1 is undetermined, as yet.
• The fast, homoclinic jump occurs at x = Γ1, instantaneously on the outer scale x, and
it is of infinite duration on the stretched ξ scale, with ξ ∈ (−∞,∞). This fast jump
begins at the point O1 in !

u ∩ To(ĉ1), where O1 = (u+, p+) and p+ = ε
√
µu+ by (2.9).

The touchdown point of this fast jump is the point D1 on F(!u)∩Td(ĉ1) with u = u+.
Specifically, D1 = (u+, ε[

√
µu+ − (6f(u+)/g2(u+))]), by (2.18) and (4.2) or by (2.19).

• The right slow segment, which corresponds to the interval (Γ1, 0], is the segment of
hyperbolic cosine orbit on M that goes through D1 up until it hits the u-axis at a
point labeled (umin, 0).
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The phase space geometry reveals that, in this case, a good singular two-pulse solution can
be formed by choosing the right pulse so that it is a reflection of the left pulse about x = 0.
As a consequence, we have ĉ2 = −ĉ1. The singular solution for the right pulse has a left slow
segment on [0,Γ2), where Γ2 = −Γ1, that is, the continuation of the above hyperbolic cosine
orbit from (umin, 0) to the point O2 = (u+, ε[−√µu+ + (6f(u+)/g2(u+))]), which is on both
To(ĉ2) and F−1(!s); see (2.20). Finally, there is the fast jump at x = Γ2 from the point O2 to
the point D2 on !

s in the phase space, followed by the right slow segment defined for (Γ2,∞)
along !s from D2 all the way back into S.

The results of section 3.2 now directly imply the existence of two-pulse solutions for
0 < ε � 1, and these true solutions are close to the singular (ε = 0) two-pulse solutions just
constructed.

Remark 4.1. The reason for the restriction (4.1) on the allowable u+ values is intrinsic to
the phase space geometry. The first landing point, D1, which lies on F(!u), must lie above
!s and below the u-axis. Otherwise, the next slow segment lies outside of the wedge, and the
solution cannot return to the {p̂ > 0} half-plane, or the solution can never enter the {p̂ < 0}
half-plane. The restriction (4.1) states that u+ should be such that F(!u) is in between the
positive u-axis and the ray p̂ = −√µu, which is !s, i.e., in that part of the wedge with negative
p̂-coordinate. As a consequence, D1 must be a point on a hyperbolic cosine solution of the
reduced slow system with negative p̂-coordinate. It is also useful to note that, in the special
case in which f(0)/g2(0) > 0 and the intersection F(!u)∩F−1(!s) is nonempty, the condition
(4.1) can also be written as

πu (!
u ∩ To(0)) < u+ < πu(F(!u) ∩ F−1(!s)),(4.3)

where πu denotes the projection onto the u-coordinate.

4.2. The ODE for the pulse separation distance. In this section, we derive the implicit
ODE for the separation distance between the pulses of the symmetric two-pulse solutions
under consideration. From the definitions of the pulse positions, the distance between the two
pulses in the lab frame (x-axis) is

∆Γ(t) = ∆Γ(0)− 2ε3
∫ t

0
ĉ1(s)ds,(4.4)

where we have introduced ∆Γ(t) ≡ Γ2(t)− Γ1(t) as the distance between the two pulses and
we have used ĉ2 = −ĉ1. Hence

d

dt
∆Γ(t) = −2ε3ĉ1(t).(4.5)

Moreover, instantaneously, at any t, the speed of the left pulse is given in terms of u+ by

ĉ1 =

[
√
µu+ − 3f(u+)

g2(u+)

]
g′(u+)

2g(u+)
,(4.6)

since the takeoff (or jump off) point O1 for the fast jump lies in !
u∩To(ĉ1); see (4.2). Therefore,

plugging in the pulse speed (4.6) into the ODE (4.5), we find

d

dt
∆Γ(t) = −ε3

[
√
µu+ − 3f(u+)

g2(u+)

]
g′(u+)

g(u+)
.(4.7)
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Next, we express the right member of this equation in terms of ∆Γ, at least implicitly for
the general f(u) and g(u) under consideration. From the geometry in the phase space, we see
that the distance ∆Γ(t) equals the sum of the “times” of flight along the two hyperbolic cosine
orbit segments on M between D1 and (umin, 0) and between (umin, 0) and O2, respectively.
The leading order expression for this total “time” is found by examining the leading order
ODEs for the dynamics on M written in terms of the fast “time” ξ,

ü = ε4µu,

where we used (2.8) and dropped the last term because it is of higher order. Hence the general
solution is

u(ξ) = Aeε
2√µξ +Be−ε

2√µξ.(4.8)

In turn, the coefficients A and B for the desired hyperbolic cosine orbit segment are
determined by the condition that (u(0), u̇(0)/ε) = D1. Hence

A+B = u+,
√
µ (A−B) =

√
µu+ − 6f(u+)

g2(u+)
,

which implies that

A = u+ − 3f(u+)√
µg2(u+)

and B =
3f(u+)√
µg2(u+)

.(4.9)

The other condition that has to be satisfied is that, when the total “time” of flight ξT
along these hyperbolic orbit segments satisfies εξT = ∆Γ, the solution u(ξ) has to be at the
point O2. Looking at uξ(ξT ), we find

ε2
√
µ(Aeε

2√µξT −Be−ε
2√µξT ) = ε2

(
−√µu+ +

6f(u+)

g2(u+)

)
.

By setting z = eε
2√µξT , rewriting this equation as a quadratic in z, using (4.9), and choosing

the positive solution (z+ = B/A, which is known in terms of u+), we obtain

e−ε
√
µ∆Γ(t) =

√
µu+ − 3f(u+)

g2(u+)

3f(u+)
g2(u+)

.(4.10)

Finally, we use (4.10) to replace the term in square brackets in (4.7):

d

dt
∆Γ(t) = −3ε3 f(u

+)g′(u+)

g3(u+)
e−ε

√
µ∆Γ(t).(4.11)

The ODE (4.11) is the desired ODE for the separation distance ∆Γ(t) = Γ2(t) − Γ1(t). The
value of u+ is given implicitly by (4.10), i.e., by

G(u+) =
e−ε

√
µ∆Γ + 1√
µ

,(4.12)

as long as this root exists, where G is the single-valued function defined by

G(u+) ≡ u+g2(u+)

3f(u+)
.(4.13)
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4.3. Interpretation of the implicit ODE (4.11). Since f and g are strictly positive by
assumption, the sign of d

dt∆Γ is determined by that of g′(u). Moreover, g′(u) is sign-definite
in the analysis of this section because we assumed that g′(u) �= 0 for all u > 0. Therefore, we
conclude from (4.11) that

if g′(u) > 0, then
d

dt
∆Γ < 0, and the pulses attract;

if g′(u) < 0, then
d

dt
∆Γ > 0, and the pulses repel.(4.14)

The ODE (4.11) also yields an extremal value of the pulse speed. In particular, the left
member of (4.11) equals −2ε3ĉ1 by the definitions of Γ1 and Γ2 and by the fact that ĉ2 = −ĉ1
here. Therefore, since the right member has an extremum when Γ2 = Γ1, i.e., ∆Γ = 0, we
find that an extremum of ĉ1 occurs at

√
µu+g′(u+)/(4g(u+)). This extremum is a maximum

when g′(u) < 0 and a minimum when g′(u) > 0. Also, we note that ĉ(t) might have additional
(local) extrema; see section 6.

Finally, in the limit ∆Γ� 1, the ODE for the separation distance between the two pulses
in this case is the same as that one would find from weak interaction theory; i.e., to leading
order

d

dt
∆Γ(t) = C1e

−C2∆Γ(t)

for some positive constants C1 and C2; see [12, 14].
This completes our analysis of symmetric, slowly varying, two-pulse solutions of (1.1)

under conditions (i) and (ii).

5. Examples. In this section, we consider three explicit examples of systems in which
semistrong pulse interactions occur and analyze the dynamics of symmetric two-pulse solutions
constructed by the methods developed in sections 3 and 4.

The first example has a purely mathematical character. We choose f(U) and g(U) in
(1.1) such that the computational effort to determine an explicit version of the ODE (4.11)
for ∆Γ(t) is minimal. The other two examples are more physically motivated. As stated in
the introduction, both systems are closely related to (and contain as a special case) the well-
studied Gierer–Meinhardt equation, and they both show that semistrong pulse interactions
can generate unexpected phenomena, such as finite-time blowup.

5.1. An elementary mathematical example. The first example is provided by the ele-

mentary mathematical case of f(u) = 1
3g

2(u) and g(u) = e
2u
γ , with γ �= 0. Here, f(u) and

g(u) are chosen such that the quotients g(u)/g′(u) and 3f(u)/g2(u) that appear throughout
the analysis of the general case reduce to constants. As a consequence, To(0), Td(0), F(!u),
and F−1(!s) are all given by straight lines. The ODE (4.11) becomes

d

dt
∆Γ = −ε3 2

γ
e−ε

√
µ∆Γ(5.1)

with the restriction that 0 < γĉ1 ≤ 1. This restriction follows necessarily from the condition
u+ < 2/

√
µ that arises from the phase space geometry, where 2/

√
µ = πu(F(!u) ∩ F−1(!s));

see (4.1) and Figure 2.1. It directly yields the maximum wave speed |ĉ1| ≤ 1/|γ|.
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If γ > 0, it is clear from (5.1) that ∆Γ(t) decreases and the pulses attract. In addition,
their speeds ĉ1 = −ĉ2 increase algebraically in time according to the ODE

d

dt
ĉ1 = 2ε4

√
µĉ21

up to the maximum wave speed ĉ1 = 1/γ. At this point, the interaction becomes strong
since not even the V -component is near zero in between the pulses anymore, and hence the
interaction can no longer be considered to be semistrong. If, on the other hand, γ < 0, then
ĉ1 < 0 so that the pulses are repelling. Moreover, |ĉ1| decreases to zero algebraically in time.

The ODE (5.1) for the semistrong interaction of pulses in this symmetric case is identical
to that obtained in the weak interaction limit. However, the semistrong analysis also yields
the upper bound, |ĉ1| ≤ 1/|γ|, and it is valid for shorter distances ∆Γ between the pulses.

5.2. A modified Gierer–Meinhardt equation with finite-time blowup. Next, we consider
the more realistic example of f(u) ≡ 1 and g(u) = (1/u) + α, with α ≥ 0 since g(U) in (1.1)
must be positive; see, however, Remark 5.2. Thus (1.1) becomes a modified Gierer–Meinhardt
equation, {

ε2Ut = Uxx − ε2µU + V 2,
Vt = ε2Vxx − V + ( 1

U + α)V 2,
(5.2)

in which α plays the role of (an additional) bifurcation parameter. This equation reduces to
the classical Gierer–Meinhardt equation if α = 0; recall [7, 21]. Moreover, g′(u) < 0 for all
u > 0 so that the pulses in symmetric two-pulse solutions are repelling for any α, including
the classical Gierer–Meinhardt case α = 0, by the theory presented in section 4.

5.2.1. The ODE for ∆Γ(t). It follows from (2.18), (2.19), and (2.20) that

To(ĉ;α), Td(ĉ;α) : p̂ = −2ĉu(αu+ 1)± 3u2

(αu+ 1)2

and

F(!u),F−1(!s) : p̂ = ±√µu∓ 6u2

(αu+ 1)2
.

First, we observe that this equation can have two stationary, homoclinic, one-pulse solutions
since the equation α2u2 + (2α − 3/

√
µ)u + 1 = 0, which is obtained from To(0;α) ∩ !u, has

two (positive) solutions for

0 < α < αbu =
3

4
√
µ
.(5.3)

See also Remark 5.3. As α → 0, one of these pulse solutions becomes unbounded, and the
other one merges with the (uniquely determined) one-circuit homoclinic pulse solution of the
(classical) Gierer–Meinhardt equation [7]. In the opposite limit as α ↑ αbu, the pulses merge
in a saddle-node bifurcation of homoclinic orbits.

The intersection F(!u)∩F−1(!s) also consists of up to two points, and hence the condition
(4.1) can yield up to two intervals of existence. In this section, we focus on the interval
that corresponds to two-pulse solutions that merge with two-pulse solutions of the Gierer–
Meinhardt equation in the limit α → 0 since these two-pulse solutions can be expected to
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be stable. (These two-pulse solutions are associated to the stationary pulse solution of the
Gierer–Meinhardt equation, and these pulses are stable if µ is above a certain critical value
associated to a Hopf bifurcation [7].) We shall see that two-pulse solutions exist beyond αbu,
i.e., for values of α for which there are no stationary pulses. This is not necessarily surprising
since the construction of two-pulse solutions is based on the intersection(s) of To(ĉ;α) and !

u

for ĉ �= 0. This intersection can of course be nonempty even if To(0;α)∩ !u = ∅. Furthermore,
F(!u) lies in the {p̂ > 0} half-plane for α > 3/(2

√
µ) = 2αbu; recall (5.3). Hence it is not

possible to construct these types of two-pulse solutions for α > 2αbu; see Remark 4.1.
The ODE for ∆Γ(t) in this example may be determined directly by substituting the choices

of f and g into (4.11). We obtain

d

dt
∆Γ = 3ε3

u+

(αu+ + 1)3
e−ε

√
µ∆Γ,(5.4)

where 0 < α < 2αbu, and we note that, by (4.12) and (4.13), u+ is related to exp(−ε√µ∆Γ)
through

e−ε
√
µ∆Γ + 1√
µ

=
(αu+ + 1)2

3u+
= G(u+),

where we recall the definition of G given in (4.13). A little algebra yields

1

αu+ + 1
=

1

2
− 1

2

√
1− 4α

3G .

Hence the ODE (5.4) becomes an explicit ODE for ∆Γ(t),

d

dt
∆Γ = ε3

√
µ

√
1− α

αbu
+ e−ε

√
µ∆Γ

(1 + e−ε
√
µ∆Γ)3/2

e−ε
√
µ∆Γ.(5.5)

Note that in the classical Gierer–Meinhardt equation, i.e., α = 0 in (5.2), the ODE for the
evolution of symmetric two-pulse solutions reduces to

d

dt
∆Γ = ε3

√
µ

e−ε
√
µ∆Γ

1 + e−ε
√
µ∆Γ

.(5.6)

5.2.2. Pulse dynamics governed by (5.5) and the blowup time. For parameter val-
ues 0 < α < αbu, the solutions ∆Γ(t) of the ODE (5.5) are defined for all t > 0 because
exp(−ε√µ∆Γ) ∈ (0, 1). The ODE (5.5) describes a pair of symmetric pulses which always
move away from each other with decreasing speed.

For parameter values αbu ≤ α < 2αbu, the ODE (5.5) also governs the evolution of sym-
metric two-pulse solutions even though there is no stationary, homoclinic, one-pulse solution
for α ≥ αbu. However, the ODE is well defined now only for a finite time and only for ∆Γ(t)
not too large. More precisely, in order for the ODE (5.5) to be well defined, ∆Γ(t) must be
less than the critical pulse separation distance,

∆Γbu =
−1
ε
√
µ
ln

(
α

αbu
− 1

)
,
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which is the value of ∆Γ(t) when the term under the square root in (5.5) vanishes.

Let us take a more in-depth look at two pulses that, at t = 0, are less than a distance
∆Γbu apart, i.e., ∆Γ(0) < ∆Γbu. As just shown, the dynamics of these pulses is governed by
(5.5). Nevertheless, (5.5) shows that these pulses move away from each other so that ∆Γ(t)
increases. It follows that there is a time t = tbu, which depends on the initial conditions, at
which ∆Γ = ∆Γ(tbu) = ∆Γbu. Beyond tbu, it is no longer possible to have two-pulse orbits
(almost) homoclinic to the slow manifold M. The methods developed in this article cannot
be used to describe the pulses after the pulses reach the critical separation distance ∆Γbu.

5.2.3. Finite-time blowup and a codimension two self-replication/blowup bifurcation
point. Numerical simulations show that the theory works very well qualitatively and quanti-
tatively. In Figure 5.1, we show the evolution of a symmetric two-pulse solution of (5.2) with
ε2 = 0.01, µ = 5, and α = 0.342; thus, by (5.3), α ∈ (αbu, 2αbu), where αbu ≈ 0.335. The
evolution of the pulses is slow up to t = tbu; in fact, the speed of the pulses reduces to zero as
t→ tbu (5.2). Then, as soon as t passes through tbu, one of the pulses starts to grow rapidly,
both in its U -component and in its V -component. Both components blow up in finite time.
The solution to (5.2) has become unbounded on a localized spatial domain for t slightly above
tbu.

This finite-time blowup behavior occurs generically in (5.2) for α and µ such that α ∈
(αbu, 2αbu) with suitably chosen initial conditions—see below. Only one of the pulses blows up;
the other one is almost immediately overtaken by the exploding one. The distinction between
blowing up and being overtaken seems to depend on (extremely small) asymmetric effects in
the sense that an initially (i.e., for t < tbu) negligible difference between the amplitude of the
two pulse is strongly magnified as soon as t passes through tbu.

The roots of this dynamic finite-time blowup behavior lie in the bifurcation of the station-
ary, solitary, homoclinic, one-pulse solution to (5.2), which exists and is stable for α < αbu.
For α = αbu − σ with 0 < σ � 1, the solitary, one-pulse solution is attracting, whereas
for α = αbu + σ, initial conditions coincident with—or sufficiently close to—the form of the
one-pulse solution for α = αbu − σ blow up in finite time in (5.2). However, this is not the
case for all µ. As soon as µ becomes O(1/ε4)—see [10] and Remark 5.4—the pulse might
undergo a self-replication bifurcation instead of the finite-time blowup bifurcation; i.e., the
pulse might split into a (symmetric) pair of traveling pulses that eventually split again, etc.
Thus the self-replication bifurcation also occurs in the modified Gierer–Meinhardt equation
(5.2). As explained in [10], self-replication of pulses is a generic phenomenon that is not
unique to the Gray–Scott equation [3, 4, 5, 9, 28, 31, 34, 39, 40, 43, 44]. Both bifurcations
determine a curve in the (µ, α) parameter plane. It is found (numerically) for ε2 = 0.1 that
these two curves intersect at a codimension two finite-time self-replication/blowup bifurcation
point at (µ, α) ≈ (22, 0.06). This last statement is based on numerical observation; however,
the methods developed in [7] can be used to obtain rigorous results. See also section 7.1.

Remark 5.1. The ODE (5.5) for ∆Γ(t) (in this case of symmetric pulses) has a natural
counterpart in an ODE for ĉ = ĉ(t) = ±ĉ1,2(t) that may be derived by substituting the general
relation (4.5) between d∆Γ

dt and ĉ into the left member of (5.5). However, the expression for ĉ
determined in this way is in terms of Z = exp(−ε√µ∆Γ) (recall (4.5)). Hence one first needs
to determine an expression for Z in terms of ĉ and then to invert that expression before one
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Figure 5.1. Evolution of a symmetric two-pulse solution of the modified Gierer–Meinhardt equation (5.2)
with ε = 0.1, µ = 5, and α = 0.342. Here, α ∈ (αbu, 2αbu), but close to αbu ≈ 0.335; see section 5.3.2. In
the left frame, the sequence of times is t = 0, 40, 50, 55, 57, 57.6, where t = 0 corresponds (approximately) to
the time (t = tbu) at which the symmetric two-pulse solution reaches the critical separation distance ∆Γbu.
In the right frame, the results of continuing the same simulation are presented for the sequence of times t =
57.8, 57.9, 58.0, 58.1, 58.2, 58.3, 58.4, 58.45, 58.47. Blowup in both U and V occurs appears to occur at t ≈ 58.472
(and of course the actual value may vary slightly depending on implementation and hardware). Again, we used
201 grid points and homogeneous Neumann boundary conditions.

can derive the equation for dĉ/dt from (5.5). Thus, for general α, one has to solve a cubic
equation in Z. This is an unpleasant task, and the outcome will not give much additional
insight. However, there are two special values of α, the Gierer–Meinhardt case α = 0 and the
bifurcation case α = αbu, for which the cubic equation reduces to a much simpler equation.
For the Gierer–Meinhardt equation (α = 0), we find that the equation for the speed of the
pulses is given by

d

dt
ĉ = 2ε4(

√
µ+ 2ĉ)ĉ2.

Also, for the bifurcation case, α = αbu, we find

d

dt
ĉ = 2ε4µ1/6(µ1/3 − (2ĉ)2/3)ĉ2.

Remark 5.2. In this article, we assume that g(U) in (1.1) is positive so that homoclinic
solutions can exist in the fast reduced limit problem (2.5). This does not rule out examining
(5.2) for α < 0. In fact, for α < 0 we can (only) consider U such that g(U) ≥ 0; i.e., we
consider U values that are small enough. In that case, it is also found that the stationary,
solitary, homoclinic pulse of the Gierer–Meinhardt equation (α = 0 in (5.2)) persists, as is the
case for α > 0. The fate of this pulse for decreasing α of course also depends on the other
parameters (ε and µ). For instance, it is found numerically for ε2 = 0.01 and µ = 5.0 that the
pulse remains stable up to α ≈ −400 (!). For such values of α, the pulse has indeed become
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tiny (0 < U < 0.0025). As α decreases even further, the pulse undergoes the self-replication
bifurcation, which leads to a spatially periodic array of “midget pulses.”

Remark 5.3. Since To(0;α) and !u can have two intersection points, it is also possible to
construct pairs of asymmetric pulses. The geometric construction is straightforward; however,
the derivation of the ODE for the dynamics of the pulses is quite cumbersome and does not give
additional insight. Interestingly, though, the asymmetric solution approaches the symmetric
two-pulse solution as the parameter α approaches αbu. So there may be a connection between
the asymmetry that appears in the simulations reported here, which are for a value of α
very close to, though above, αbu. Finally, we do not expect that these asymmetric two-pulse
solutions are stable.

Remark 5.4. It has been proved in [10] that there is a bifurcation in the Gierer–Meinhardt
equation (α = 0 in (5.2)) that annihilates the solitary homoclinic pulse for µ = O(1/ε4). This
bifurcation initiates the self-replication process. A similar analytical result can be obtained for
the modified Gierer–Meinhardt equation (5.2) introduced above and for the modified Gierer–
Meinhardt equation (5.7) introduced below.

5.3. A modified Gierer–Meinhardt equation with asymptotically large pulses. Finally,
we consider another small modification of the classical Gierer–Meinhardt equation

{
ε2Ut = Uxx − ε2µU + V 2,

Vt = ε2Vxx − V + ( 1
U + β√

U
)V 2;

(5.7)

i.e., we have set f(U) ≡ 1 and g(U) = (1/U) + (β/
√
U) in (1.1), where β ≥ 0 is the new

bifurcation parameter. In the special case β = 0, (5.7) is again the Gierer–Meinhardt equation.

5.3.1. Blowup of stationary, homoclinic, one-pulse solutions. We immediately obtain

To(ĉ;β), Td(ĉ;β) : p̂ = −2ĉu 1 + β
√
u

1 + 1
2β
√
u
± 3u2

(1 + β
√
u)2

and the related expressions for F(!u) and F−1(!s). For

0 ≤ β < β∞ =

√
3√
µ
,(5.8)

there is a unique intersection of To(0;β) and !
u with u-coordinate

u =
1

(β∞ − β)2
.(5.9)

Thus there is a uniquely determined stationary, homoclinic, one-pulse solution for 0 ≤
β < β∞. Moreover, the formula (5.9) reveals that the amplitude of this solution diverges as
β ↑ β∞; i.e., the blowup is determined analytically in this example. This situation contrasts
with the situation for the previous example, where the amplitude approaches a finite number
( 3
4
√
µ) as α→ αbu and the blowup was observed numerically.

Here the analysis is again confirmed by the numerical simulations. The homoclinic pulse
that corresponds to To(0;β) ∩ !u is asymptotically stable up to β = β∞. Its amplitude also
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agrees (to leading order) with (5.9): for ε = 0.1 and µ = 5.0, i.e., β∞ ≈ 1.158 (5.8), we
observe, for instance, in the simulations that the amplitude of the U -component of the pulse
is approximately 5.0 for β = 0.7, while (5.9) gives 4.76. Of course, the error grows as β → β∞:
for β = 1.1, i.e., β∞−β ≈ 0.058, the height of the U -component of the pulse is ≈ 337.8 in the
simulation (see also Figure 5.2), while (5.9) yields ≈ 294.2. Nevertheless, the relative error is
still of O(ε) near the singular limit.

5.3.2. Symmetric two-pulse solutions: The ODE for ∆Γ(t) and an analytical expres-
sion for finite-time blowup. The derivation of the ODE for ∆Γ(t), the distance between the
pulses of a two-pulse solution, proceeds directly along the lines of the general theory of section
4. We find

d

dt
∆Γ = ε3

√
µ

[√
1 + e−ε

√
µ∆Γ − β

2β∞

]
(1 + e−ε

√
µ∆Γ)3/2

e−ε
√
µ∆Γ,(5.10)

which also reduces to (5.6) in the Gierer–Meinhardt limit β = 0.

As in the previous example, it is possible to construct symmetric two-pulse solutions
beyond the critical value β∞. The upper bound on β is determined by the observation that
two-pulse solutions can only be constructed for u values such that the corresponding point on
F(!u) lies below the u-axis. Hence it follows that two-pulse solutions exist for 0 ≤ β <

√
2β∞.

Note that this second critical value of β,
√
2β∞, does not show up explicitly in the ODE

(5.10). We shall discuss the implications of this below.

The amplitude u+ of the U -component of the pulse is given by

u+ =
1

(β∞
√
1 + e−ε

√
µ∆Γ − β)2

;(5.11)

see (4.12) and (4.13). This relation confirms the necessity of the condition β <
√
2β∞. Thus

u+ remains bounded for all (finite) time as long as β ≤ β∞, and the ODE (5.10) is well defined
for all time.

In contrast, for β∞ < β <
√
2β∞, the ODE (5.10) is only well defined for

∆Γ < ∆Γ∞ =
−1
ε
√
µ
ln

(
β2

β2∞
− 1

)
.

Thus, for β∞ < β <
√
2β∞, the ODE (5.10) governs the dynamics of two-pulse solutions that

are close enough at t = 0; i.e., ∆Γ(0) must be less than ∆Γ∞. Since ∆Γ(t) is an increasing
function of time (5.10), there must be a critical time t∞ at which ∆Γ(t∞) = ∆Γ∞. Moreover,
it is clear from (5.11) that the amplitude of the pulse diverges as t approaches t∞. Thus this
second modified Gierer–Meinhardt equation (5.7) also exhibits finite-time (t = t∞) blowup,
and in this example the blowup can be studied analytically. Finally, if ∆Γ(0) > ∆Γ∞, then
the pulses blow up immediately by the same process that causes the blowup of the stationary
pulse for β ≥ β∞.

At first sight, the dynamics of pulses in (5.7) seems to be essentially the same as in (5.2).
However, there are three crucial differences, two of which emerge from the analysis and a third
one that is observed in the numerical simulations, which will be discussed below. First, as
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Figure 5.2. Symmetry-breaking in the evolution of the U-component of an initially symmetric, slowly
varying, two-pulse solution of the second modified Gierer–Meinhardt equation (5.7) with ε2 = 0.01, µ = 5, and
β = 1.1. The symmetry-breaking bifurcation is observed in this simulation since ∆Γ(0) < ∆Γsb. See section
5.3.3. The time steps are t = 0, 60, 68, 72, 76, 82, 90,∞, where again we set t = 0 at (approximately) the last
time (t = t∞) at which a symmetric two-pulse solution exists. (The left pulse has its maximum value for the
sequence of times shown here, while the right pulse has its minimum.) At t = 60, the asymmetry has become
noticeable, and it is growing quickly. At t = 72, the left pulse has almost disappeared, and it is no longer visible
at t = 76. The right pulse then grows even more quickly, and at t = 90 it is close to its asymptotic value
(t→ ∞), which corresponds to the largest peak shown here. This simulation was also done with 201 grid points
and homogeneous Neumann boundary conditions.

was already noted, the finite-time blowup in this case can be fully understood by the analysis,
unlike in the previous example. Here, the blowup occurs at t = t∞ so that the process can
be described in full analytical detail, whereas in the previous example the finite-time blowup
mechanism starts beyond the critical time tbu. Second, there is a difference in the dynamics
of the pulses at (or near) the critical time, tbu or t∞, respectively. In the previous example,
the speed of the pulses approaches 0 as t → tbu. Here, the critical upper bound

√
2β∞ on

β does not show up explicitly in the ODE (5.10). As a consequence, the speed of the pulses
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approaches a well-defined limit as t→ t∞, namely,

|ĉ∞| = 1

4

√
µ

(
β2

β2∞
− 1

)
,

where we have used (4.5).

5.3.3. Stability and a symmetry-breaking bifurcation. We have based the two modified
Gierer–Meinhardt examples of sections 5.2 and 5.3 on recently obtained results on the spec-
tral stability of the homoclinic one-pulse solution in the Gierer–Meinhardt equation ((5.2),
(5.7) with α, β = 0); see [7]. Both pulses of the two-pulse solutions approach a single-pulse
homoclinic solution of the Gierer–Meinhardt equation as t → ∞ and α, β → 0. This gives a
heuristic argument by which one can expect to see stable two-pulse solutions in the modified
systems (5.2) and (5.7). It has been shown in [3, 4] that this argument works in the case of
the Gray–Scott equation. Numerical simulations for the previous example suggest that the
argument is also valid here. Moreover, the simulations also confirm the persistence of the
stability beyond β = 0 for the stationary pulses. Of course, neither of these observations
prove the stability.

On the contrary, the numerical simulations show that one cannot expect to fully under-
stand the semistrong dynamics of the two-pulse solutions in (5.7) even with the combination
of the existence analysis developed in this article and the stability results for the stationary
homoclinic pulse.

We have performed numerical simulations of two-pulse solutions in (5.7) for ε = 0.1 and
µ = 5.0. (Note that the homoclinic pulse in the Gierer–Meinhardt (β = 0) equation has
been proved to be stable for µ > µHopf ≈ 0.36 +O(ε).) Although we have already seen that
the stationary pulses are stable up to β = β∞, which is approximately 1.158 by (5.8), we
observed that the two-pulse solution undergoes a symmetry-breaking destabilizing bifurcation
at β = βsb ≈ 0.9 < β∞. As long as β < βsb, the two-pulse solution travels and grows according
to (5.10) and (5.11). By contrast, for β > βsb, the dynamics of the two-pulse solution depends
crucially on the distance ∆Γ(0) between the pulses at t = 0. If ∆Γ(0) is large enough, i.e.,
if the system is close to the weak interaction limit and both pulses are sufficiently close to
the solitary homoclinic pulse, then the pulses behave exactly as for β < βsb. Note that this
implies that the symmetry-breaking bifurcation is caused by the semistrong interactions. On
the other hand, if ∆Γ(0) is below a certain critical value ∆Γsb = ∆Γsb(β), then the pulses
still evolve according to (5.10), but initially negligible differences between the heights of the
two pulses increase (on a certain intermediate time scale). After a certain critical time, the
smallest of the two pulses is overtaken completely by the larger one. The speed of the resulting
pulse decreases to zero, and the end product of the symmetry-breaking bifurcation is a stable
solitary pulse (see Figure 5.2). The numerics also show that the critical distance ∆Γsb(β)
diverges rapidly as β approaches β∞. The initial separation ∆Γ(0) must be so large for
β = 1.1—recall that β∞ ≈ 1.158—that the interaction between the pulses indeed has become
extremely weak. Thus we conclude that the predicted finite-time blowup does not occur due
to the destabilizing symmetry-breaking effects. However, the appearance of the destabilizing
bifurcation is expected to depend on the parameters µ and β. It is possible that the finite-
time blowup behavior is stable for parameter combinations other than the ones used in the
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numerical simulations reported here.

In summary, both the existence and the stability of two-pulse solutions depend crucially
on the semistrong nature of the interaction.

5.4. Relation to literature on finite-time blowup. For both modified Gierer–Meinhardt
equations (5.2) and (5.7), the associated ODEs that govern spatially homogeneous patterns
have solutions with small initial conditions that grow arbitrarily large. Therefore, in a certain
sense, the discovery of finite-time blowup for the PDEs is not a surprise. A more detailed
examination of the mechanism(s) responsible here is under way and is beyond the scope of
this article.

At first glance, for both (5.2) and (5.7), the spatially localized V profile acts as a source
in the linear equation for U , and the amplitude of this source is 1/ε2, which is large compared
to the O(1) decay rate (µ) of U . Hence unbounded growth in U is possible.

Now, for (5.7) with µ not too large, we observe the following interplay between the growth
of U and V . The maximum value of V along the homoclinic orbit/pulse is given to leading
order by Vmax ∼ 3/[2((1/U) + (β/

√
U))]; see (2.7). Hence, as the (maximum) value of U at a

pulse center increases, so does Vmax, which in turn fuels a further increase in U since V acts
as a source term in the U equation, etc. In this sense, there appears to be a positive feedback
loop, with the growth in the components reinforcing each other.

In addition, for (5.7), as reported above, there is a transition from blowup in finite time
to self-replication at sufficiently large µ. In other words, as µ increases, there appears to be a
transition to a regime in which the decay rate µ is strong enough to balance the large source
term and hence prevent unbounded growth.

For (5.2), the mechanism causing the finite-time blowup appears to be different. In fact, as
suggested by [46], the mechanism here may be similar to the known (see below) blowup results
for self-similar solutions of scalar reaction-diffusion equations of the form Vt = DVxx−V +V 2.
More precisely, g(U) → α, a constant, as U gets large. Hence the V equation essentially
decouples (for large U) and is of this classical form.

The literature on finite-time blowup in reaction-diffusion equations and systems is large.
We cite three interesting examples of coupled reaction-diffusion equations in which the reac-
tions are given by polynomials and in which blowup in finite time is known to occur. First,
[37] establishes the blowup of the catalyst concentration b in the isothermal autocatalytic
reaction A → B that has rate constant kabn with n ≥ 1 (i.e., in so-called nth order auto-
catalysis). In the limit that the ratio of the activator diffusivity to the inhibitor diffusivity is
asymptotically small, it is shown that blowup occurs at a point in infinite time for n ∈ [1, 2]
and in finite time for n > 2. Second, [29] demonstrates the blowup of solutions of the coupled
system ut = d1∆u + u(a1 − b1u + c1v), vt = d2∆v + v(a2 + b2u − c2v) with homogeneous
Neumann boundary conditions and where the bi, ci, and di are all positive, where the ai are
real numbers, and where ∆ denotes the Laplacian on RN . Third, [17] presents “Fujita-type”
blowup and global existence results for systems ut = ∆u + up1vq1 , vt = ∆v + up2vq2 , where
the powers satisfy certain inequalities.

This third work, among others, extends the classical results of [20] for the scalar equations
ut = ∆u+f(u), where f(u) > 0 for u > 0. Fujita proved the existence of nonnegative solutions
that decay sufficiently rapidly at infinity and that blow up in finite time for f(u) = up with
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1 < p < 1+ (2/N), and he showed that, for p larger than critical, all solutions generated from
small initial data exist for all time [20]. Hence one may say (see also [27]) that, in the former
case, small data grows due to the reaction term and the diffusion is not strong enough to
stabilize it, whereas, in the latter case, the diffusion is strong enough to prevent unbounded
growth. Also, we refer to [19] for a seminal analysis of blowup in this equation on bounded
domains and to the useful article [27] that reviews and presents various extensions of the
classical results.

For completeness, we also mention that it has already been shown that diffusion can
destabilize a globally stable equilibrium of the reaction kinetics in such a strong manner that
there is blowup in finite time for certain pairs of weakly coupled systems. See [49] and the
references there. Also, [41] presents new results showing that blowup in the L∞ norm is
possible for solutions of pairs of reaction-diffusion equations with mass dissipation even if
there is an a priori bound on the solution in the L1 norm. However, neither of our modified
Gierer–Meinhardt models satisfies the hypotheses made in these works.

6. Attracting and repelling stationary two-pulse solutions. In this section, we study
systems of the form (1.1) that satisfy the following:

(i) The function g′(u) has one simple zero, say, at u = α (which differs from the α used
in section 5.2).

(ii) The function H(u) again has one simple zero.
Condition (ii) is the same as that imposed in section 4, where we recall that, geometrically,
it implies that !u and To(0) intersect transversely at a unique point (and similarly for !s and
Td(0)). However, condition (i) is different, and the presence of the zero of g′(u) dramatically
alters the locations of the takeoff and touchdown curves To(ĉi) and Td(ĉi), i = 1, 2, respectively,
and makes possible a richer pulse dynamics, as we will see below.

We assume, for ease of presentation, that the condition (4.3) holds, and we consider the
following three cases:

Case I : 0 < α < πu(!
u ∩ To(0)),

Case II : πu(!
u ∩ To(0)) < α < πu(F(!u) ∩ F−1(!s)),

Case III : πu(F(!u) ∩ F−1(!s)) < α,(6.1)

where we recall that πu denotes the projection onto the u-coordinate. These three cases include
all of the structurally different cases, so we see that the assumption (4.3) is not restrictive.

In all three cases, we consider symmetric singular two-pulse solutions (symmetric about
x0 = 0). These are constructed exactly as the two-pulse solutions in section 4 were constructed.
Their left and right pulses have slow and fast segments that are defined in terms of the
intersection points O1, D1, O2, and D2, although the locations of these points differ because
the positions of the curves To(ĉi), Td(ĉi), F(!u), and F−1(!s) are different. Moreover, there
are two sets of such points in case II, which is the feature that makes the richer pulse dynamics
possible. See Figure 6.1.

The main outcome of the analysis in this section is that a pair of slowly varying two-
pulse solutions does not necessarily reach either the weak interaction limit (∆Γ→∞) or the
strong interaction limit (∆Γ ↓ 0). Slowly varying two-pulse solutions may also converge to a
stationary two-pulse solution of the semistrong type. We present the essence of the analysis
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Figure 6.1. The geometry of the curves To(0), To(ĉ1), Td(0), 

u, 
s, F(
u), and F−1(
s), along with their

intersections, on the invariant manifoldM for case II in the case studied in section 6.1. The curve Td(ĉ2) is not
shown in order not to clutter the figure. There are two sets of takeoff and touchdown points OA1 , D

A
1 , O

A
2 , and D

A
2

as well as OB1 , D
B
1 , O

B
2 , and D

B
2 , as shown in section 6.1, and hence two different singular, slowly varying, two-

pulse solutions. The intersection F(
u)∩F−1(
s) occurs at a point on the u-axis, denoted πu(F(
u)∩F−1(
s))
in the text. Also, ū = πu(


u ∩ To(0)).

for the most general case since the details are similar to those in section 4. We do, however,
give the details in the context of a specific example.

Remark 6.1. Throughout this section, we will assume, for the sake of definiteness, that
g′′ < 0 at u = α. This implies that g′(u) > 0 for u < α and g′(u) < 0 for u > α. The results
for the opposite situation can be obtained in the same manner.

6.1. Case II. In case II, there exist two types of symmetric, slowly varying, two-pulse
solutions. Moreover, there also exists a symmetric, stationary, two-pulse solution that attracts
the slowly varying solutions for g′′(α) < 0 and repels them for g′′(α) > 0. We construct these
slowly varying solutions and determine ODEs for the pulse separation distances.

Following the blueprint of section 3, we begin with the curves To(ĉ1), Td(ĉ1), !
u, !s, F(!u),

and F−1(!s). Recall from (2.18) that To(ĉ1) and Td(ĉ1) are given by

p̂ = 2ĉ1
g(u)

g′(u)
± 3f(u)

g2(u)
.

Hence, for ĉ1 > 0, To(ĉ1) lies above To(0) on u < α, whereas it lies below To(0) on u > α
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Figure 6.2. The geometry on the invariant manifold M for case I studied in section 6.2. For definiteness,
we have based some elements of the sketch on properties of the example in section 6.3.

because of the assumptions (4.3) and g′′(α) < 0. Similarly, Td(ĉ1) lies above Td(0) on u < α
and below it on u > α; see Figure 6.1. Moreover, these results would be reversed if one instead
had ĉ1 < 0.

We observe that, since the intersection !u ∩ To(0) consists of a single point by assumption
(ii), the curve F−1(!s) must intersect these two curves also at the same point. Similarly, !s,
Td(0), and F(!u) intersect in a point, symmetrically disposed about the u-axis with respect
to the intersection point !u ∩ To(0) ∩ F−1(!s); see Figures 6.1 and 6.2.

As illustrated in Figure 6.1, the geometry of these curves is such that, for an interval of
positive ĉ1 values, the intersection To(ĉ1) ∩ !u consists of at least two points. There could
be others in between. That there exist at least two follows from the fact that To(ĉ1) can
be taken to be close to To(0) over as large a portion of the interval (0, α) as one pleases by
choosing ĉ1 small enough. Hence the first intersection point, labeled OA

1 , exists and lies close
to the intersection point of !u and To(0) for small ĉ1. We denote its u-coordinate by u+

A.
The existence of the second intersection point, labeled OB

1 , then follows directly from the
observation that, for each ĉ1, To(ĉ1) has a vertical asymptote at u = α since g′(u) has a simple
zero there. The u-coordinate of OB

1 , which we label u+
B, lies close to α for ĉ1 small. Finally,

there is a maximum value of ĉ1 such that, at the maximum, To(ĉ1) has only a tangency to !u

and, for values of ĉ1 larger than the maximum, To(ĉ1) no longer intersects !
u.

The singular solution for the A-pulse consists of the following segments:

• left slow on (−∞,Γ1(t)): (0, 0) to O
A
1 along !u;
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• left fast at x = Γ1(t): O
A
1 to DA

1 ;
• middle slow on (Γ1(t), 0] ∪ [0,Γ2(t)): D

A
1 → (umin, 0)→ OA

2 ;
• right fast at x = Γ2(t): O

A
2 to DA

2 ;
• right slow on (Γ2(t),∞): DA

2 to (0, 0) along !s.
The singular B-pulse is the same type of solution, except with the superscripts A replaced by
B.

Next, we turn to the ODE for the pulse separation distance ∆Γ(t) = Γ2(t) − Γ1(t). We
recall from (4.11) that ∆Γ(t) satisfies

d

dt
∆Γ = −3ε3 f(u

+)g′(u+)

g3(u+)
e−ε

√
µ∆Γ.(6.2)

This ODE has a unique, nontrivial, fixed point at u+ = α for all values of α in case II because
α is the unique zero of g′(u) by assumption (i). This value of u+ corresponds to a symmetric,
stationary, two-pulse solution for which the pulse separation distance is

∆Γstat =
−1
ε
√
µ
ln (

√
µG(α)− 1) ,(6.3)

which is a strictly O(1/ε) quantity; see the definition (4.13) of G, and see also (4.12). This
fixed point is a two-circuit homoclinic solution of the stationary problem associated to the
PDE (1.1), i.e., of the ODE (2.3) with ĉ = 0; see also Remark 6.2 below. It corresponds to
a stable fixed point of (6.2) because we have assumed that g′(u) > 0 on u < α (and to an
unstable point in the opposite case).

For the A-pulse, the ODE (6.2) with u+ = u+
A governs the pulse separation distance, and

for the B-pulse, the ODE is also (6.2) but with u+ = u+
B. Both solutions are attracted to

the symmetric, homoclinic, two-pulse fixed point. However, the A- and B-type pulses are not
necessarily different for all time: during the evolution, a pair of A-pulses may change into a
pair of B-pulses. In other words, a pair of slowly varying pulses might start as being of type A,
and then, after a certain time, when ∆Γ has decreased below a critical value or, equivalently,
when |ĉ| has reached a certain maximal value, the pulses become of type B. See section 6.3
for an explicit example.

Remark 6.2. The existence of the symmetric, stationary, two-pulse solution does not follow
directly from the results of sections 2 and 3. Nevertheless, these solutions can be rigorously
constructed in all three cases. A crucial observation is that (2.12) does not directly imply (2.13)
but a slightly different version, namely, p̂g′(u) = ĉg(u). Thus the intersection of WU (M) and
WS(M) occurs for ĉ = 0 either at p̂ = 0 or at u = α. The new two-circuit homoclinic orbit
can now be constructed using the new u = α branch of WU (M)∩WS(M). These homoclinic
orbits are truly pulses of semistrong type, with the U -component slowly varying in between
the pulses. This contrasts with the multipulse homoclinic orbits constructed in [9] for the
Gray–Scott problem and in [7] for the more general class of problems of the type (1.1), for
which the pulses are so close together that the U -component remains constant to leading order
between them.

6.2. Cases I and III: Repelling or attracting two-pulse solutions. In case I, there exists
a stationary, homoclinic, two-pulse solution and one type of symmetric, slowly varying, two-
pulse solution in which the pulses repel, i.e., ĉ1 < 0 and ĉ2 = −ĉ1 > 0. For ĉ1 < 0, To(ĉ1) lies



84 ARJEN DOELMAN AND TASSO J. KAPER

below To(0) on u < α and above it on u > α due to the assumption that g′′(α) < 0. Similarly,
Td(ĉ1) lies below Td(0) on u < α and above it on u > α. Moreover, much is known for small
values of ĉ1 about the locations of these curves relative to the curves To(0) and Td(0), just as
in case II above. The unique, singular, two-pulse solution in case I is of the same type as the
singular solutions constructed in case II, and it is sketched in Figure 6.2. Finally, from the
ODE (6.2), we see that the two slowly varying pulses repel each other since α < πu(!

u∩T0(0))
here and since u+ > α implies g′(u+) < 0 by the assumption made on g′′(α) throughout this
section. See Figure 6.2. Thus, although there is a stationary two-pulse solution and a slowly
varying two-pulse solution, these solutions cannot approach each other as time evolves due to
geometric obstructions.

Finally, in case III, singular, slowly varying, two-pulse solutions can be constructed along
the same lines as in the above cases. The pulses attract when g′′(α) < 0, which is the
assumption made throughout this section, and they repel in the opposite case when g′′(α) > 0.
Moreover, in the attracting case, there is an αcrit such that, if α > αcrit, then the pulses
accelerate toward each other, whereas, if α < αcrit, then the rate of approach decreases. For
general systems, αcrit is determined by requiring that the tangency between !u and To(ĉ1)
occurs on the boundary at u = πu(F(!u) ∩ F−1(!s)). See also the example in section 6.3.

Remark 6.3. In case I, there are other intersection points !u∩T0(ĉ1); however, these do not
lead to singular, slowly varying, two-pulse solutions. For example, as shown in Figure 6.2 with
ĉ1 < 0, a fast jump that starts at a takeoff point !u∩T0(ĉ1) to the left of u = α lands on F(!u)
at a point below !s. Hence, after it lands, the singular solution is brought to the negative
p̂-axis by the slow flow, and it is not possible to complete a singular two-pulse solution of the
type we study. Other possible intersection points share the same type of difficulty.

6.3. A fourth example. We briefly illustrate the results of this section on problems (1.1)
for which g(U) = eγ(U), with γ′(U) = 2(α−U)/β and α, β > 0, and for which f(U) = g2(U)/3.
Hence we model a general function g for which g′(u) has one simple zero (at α), but we restrict
the choice of f for the purpose of illustration, as was also done in the example of section 5.1.
This example exhibits some interesting dynamics and illustrates various characteristics of the
dynamics in cases I–III.

The important curves on M are branches of hyperbolas and lines, respectively,

To(ĉ), Td(ĉ) : p̂ =
ĉβ

α− u
± 1,

F(!u),F−1(!s) : p̂ = ±√µu∓ 2,

so that !u ∩ T0(0) occurs at u = 1/
√
µ and F(!u) ∩ F−1(!s) occurs at u = 2/

√
µ. Moreover,

the ODE (6.2) becomes

d∆Γ

dt
=
−2ε3√
µβ

[α
√
µ− 1− e−ε

√
µ∆Γ]e−ε

√
µ∆Γ.(6.4)

Note that the stationary, homoclinic, two-pulse solution corresponds to the fixed point of this
ODE that is determined by ∆Γstat = (−1/ε√µ) ln(α√µ− 1).
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Case II corresponds to α ∈ (1/
√
µ, 2/

√
µ). In this case, the pulses in a slowly varying

two-pulse solution attract each other. The speed of attraction varies. From (4.5), we find

d2

dt2
∆Γ = −2ε3dĉ1

dt
.

Then differentiation of the ODE (6.4) yields

dĉ1
dt

=
ε

β
[2e−ε

√
µ∆Γ − α

√
µ+ 1]eε

√
µ∆Γ

(
d

dt
∆Γ

)
.(6.5)

Therefore, since d
dt∆Γ < 0 in case II and since β > 0 by assumption, there exists a critical

separation distance,

∆Γ� =
−1
ε
√
µ
ln

(
1

2
(α
√
µ− 1)

)
,(6.6)

such that d
dt ĉ1 = 0 for ∆Γ = ∆Γ�. In addition, ĉ1(t) increases for ∆Γ > ∆Γ�, while ĉ1(t)

decreases for ∆Γstat < ∆Γ < ∆Γ�.
For the A-pulses, the pulses accelerate toward each other; i.e., ĉ1(t) increases, while, for

the B-pulses, the rate of approach decreases in time. Moreover, there can be a dynamic
change-over from type-A pulses to type-B pulses. This occurs, for example, with pulse pairs
for which ∆Γ(0) exceeds ∆Γ�. The pulses are first of the A type and accelerate toward each
other. Then, when the separation distance has decreased to ∆Γ�, the pulses change to being
of type B, and their speeds decrease as the two-pulse solution approaches the stationary
two-pulse solution.

In case III, the critical value of α at which the switch-over from deceleration to acceleration
occurs is αcrit = 3/

√
µ. This may be determined as follows. We recall that F(!u) and F−1(!s)

intersect at u = 2/
√
µ. Hence, by examining the intersection of To(ĉ) and !

u at that u value,
we find that the critical wave speed is

ĉcrit =
α− 2√

µ

β
.

Moreover, at this same value of u, the above intersection is a quadratic tangency, and hence,
by equating the derivatives with respect to µ of the expressions for To(ĉcrit) and !u, we find
the above value of αcrit.

7. Discussion. In this section, we discuss the stability of the pulse patterns and the
validity of the asymptotic construction. Also, we discuss several extensions of the theory
developed in this article, first to the larger class of systems (1.2) and then to a number of
different types of N -pulse solutions for N ≥ 3.

7.1. Stability and validity. In this article, we considered the existence problem for inter-
acting pulses; i.e., we have developed a method by which the dynamics of semistrong pulses
can be described. We now briefly discuss their stability and the closely related issue of the
validity of the asymptotic construction.

We begin with the stationary pulses and the pulses that are stationary in a comoving frame.
A rigorous result on the existence of the homoclinic orbits associated to the intersections
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!u∩To(0) follows by geometric singular perturbation theory. It is a straightforward application
of the methods developed in [7, 9]. (See also [8] for much more exotic singular patterns
constructed by these methods.) Thus the validity of the asymptotic construction can be
established also in this case. The validity of the more complex (stationary and traveling)
multipulse patterns of sections 6 and 7, which are associated to zeros of g′, can also be
obtained along these lines (although here the procedure might be a little less straightforward;
see also Remark 6.2).

In [5, 6, 7], a method has been developed by which the stability of stationary-pulse solutions
of two-component, singularly perturbed, reaction-diffusion equations can be studied in full
analytical detail. This method, the so-called nonlocal eigenvalue problem (NLEP) method,
extends the Evans function approach of [1] to singularly perturbed systems of the same type
as (1.1) and (1.2). A crucial ingredient of the NLEP method is the reduction of the eigenvalue
problem, which is a coupled system of two second order equations, associated to the stability
of a pulse to a single, second order, inhomogeneous equation of Sturm–Liouville type that has
a nonlocal term.

The NLEP method can be applied directly to the stability problem for a stationary,
homoclinic, one-pulse solution (Uh(ξ), Vh(ξ)) of (1.1). We give a brief sketch of the procedure
and refer to [6, 7] for the details. In order to study the spectral stability of (Uh(ξ), Vh(ξ)), we
set

(U(x, t), V (x, t)) = (Uh(ξ) + u(ξ)eλt, Vh(ξ) + v(ξ)eλt),

substitute this into (1.1), and linearize. As stated above, the coupled second order equations
for u and v are then reduced to the corresponding NLEP problem,

(L(ξ)− λ)v ≡ vξξ + [2g(Uh)Vh − (1 + λ)]v = −V 2
h g

′(Uh)(7.1)

with v(ξ) and λ such that

t2(λ) = 1− 1

2
√
µ+ λ

∫ ∞

−∞
[f ′(Uh)V 2

h + 2f(Uh)Vhv]dξ = 0.(7.2)

Here, the expression for t2 arises from an analysis of the u equation in both the fast and the
slow limits. The function t2(λ) is the so-called slow transmission function; it is a factor in the
Evans function D associated to the stability problem [6, 7].

For almost all λ (see [6, 7]), there exist bounded solutions to (7.1), and then the eigenvalues
are selected by applying the additional constraint (7.2). So, it is convenient to express the
system—equation plus constraint—as a single, nonlocal equation,

wξξ + [2g(Uh)Vh − (1 + λ)]w = 2V 2
h g

′(Uh)
∫∞
−∞ f(Uh)Vhwdξ∫∞

−∞ f ′(Uh)V 2
h dξ − 2

√
µ+ λ

(7.3)

[5, 6, 7]. We briefly consider the NLEP (7.1), (7.3) here to indicate that the sign of g′ plays
a significant role in the stability analysis. The full stability problem is in itself the subject of
an independent investigation.

First, (7.1) strongly suggests that the two- (andN -) pulse solutions that can be constructed
when g′ has zeros—see section 6—can be expected to be unstable. It follows from the character
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of the pulse solutions that the homogeneous Sturm–Liouville problem Lv = λv associated
to (7.1) must have an unstable eigenvalue λfast

0 > 0 [7]. In general, this eigenvalue can
be stabilized by the coupling of (7.1) to the slow nonlocal equation (7.2) [6, 7]. However,
this coupling does not exist when g′(Uh) = 0, which is the case for the stationary two-pulse
solutions. Thus it is to be expected that λfast

0 is (to leading order) also an unstable eigenvalue of
the full problem. Of course, this statement is far from rigorous; it is a fully heuristic argument
that neglects several possible additional stabilizing effects. Nevertheless, the argument shows
that the existence and stability analysis are intertwined, a feature that is common in the
analysis of localized solutions.

Second, a preliminary analysis of (7.1) and (7.2) indicates that there is a regime in param-
eter space in which there are stable homoclinic pulses when g′ < 0 (i.e., in the case in which
the two-pulse solutions consist of repelling pulses). Here, the underlying mechanism is more
subtle. The above-mentioned unstable eigenvalue λfast

0 corresponds to an eigenvalue λ0(µ) of
the full equation in the sense that limµ→0 λ0(µ) = λfast

0 [7]. In the Gray–Scott model studied
in [6] and in the generalized Gierer–Meinhart equations studied in [7], this eigenvalue merges,
as µ increases, with a second positive eigenvalue λ1(µ) to form a complex conjugate pair of
eigenvalues. This pair crosses the imaginary axis in the λ plane at a critical Hopf-bifurcation
value of µ that stabilizes the pulse.

On the contrary, this same preliminary analysis suggests that the homoclinic pulses in
systems for which g′ > 0—i.e., in the case of attracting two-pulse solutions—will be unstable
in general. The above-mentioned second positive eigenvalue λ1(µ) cannot exist when g′ > 0.
Hence the pulse cannot be stabilized (at least not by the mechanism studied in [6, 7]).

It is clear that, on the one hand, the stability problem is far from being solved and, on
the other hand, that the methods of [5, 6, 7] are strong enough to be applied here. However,
these methods are developed in the context of stationary pulses. The slowly varying pulses
constructed in this article are not of that type. Therefore, one has to extend the methods of
[5, 6, 7] in order to be able to consider the interacting pulses. This is the essential next step
in the analysis of semistrong pulse interactions. A first (and formal) result in that direction
has been obtained in [3, 4]. Using the ideas of [5, 6], it was possible to derive slowly varying
eigenvalues that governed the short time stability of the slowly varying pulses in the Gray–
Scott equation. Again, the situation differs in an important aspect from that of the weak
interaction case since the eigenvalues will undergo O(1) changes during the time evolution of
the system.

Preliminary analysis indicates—under some additional conditions—that repelling pulse
pairs can be stable (through the same stability mechanism that stabilizes the homoclinic
pulses). Furthermore, we note that, in each of the systems in which g′(u) < 0 that we
have simulated numerically, the numerical simulations also suggest that repelling-type two-
pulse solutions can be stable on the time scales on which they exist. However, as we have
seen in the example of section 5.3, the changes in the eigenvalues might be able to trigger
bifurcations/destabilizations that are not present in the stationary (or weak interaction) limit.
In addition, since the homoclinic pulses are not likely to be stable for g′ > 0, we do not expect
stable pairs of attracting pulses.

Finally, we come to the question of the validity of the asymptotic construction of the
slowly varying two-pulse solutions. As explained in section 3.2, we can still evoke the concepts
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of geometrical singular perturbation theory to conclude that the singular pulses do persist.
However, the nonrigorous part of the construction is not during the fast jumps but in the point
of symmetry between the pulses where the solution to the left is “glued” to its symmetrical
counterpart on the right. There, we describe the solutions by ODEs (2.3) that have different
values of ĉ, so the connection cannot be smooth or, in other words, cannot be a solution of
the PDE—see section 3.1. As explained in Remark 3.1, it can be shown that this problem
can be solved in a consistent way at the higher order level—see also [4]—but such a consistent
higher order expansion of course does not settle the validity of the construction.

In the case of weak interactions, the validity question is tackled either by a center manifold
approach [12, 14] or by a renormalization approach [42]. Both methods exploit the fact that the
associated homoclinic pulses are stable/attracting. These methods cannot be used directly in
the semistrong case. However, it is likely that it is possible to use either of these approaches
in a modified fashion to settle the validity in the semistrong case for the stable two-pulse
solutions. To do so, one has to have full control on the (slowly varying) eigenvalues of these
two-pulse solutions. Thus the validity issue is closely intertwined with the stability question.

We conclude that the stability and validity analysis of the pulse solutions constructed in
this article is a significant problem. It is the subject of work in progress.

Remark 7.1. There is an alternative approach to the stability analysis of stationary one-
pulse solutions of a certain, slightly more restrictive version of the Gierer–Meinhardt equation;
see [23, 33, 48]. As in [5, 6, 7], the stability problem is reduced to a system of the same type
as (7.3). However, the corresponding equation is of a different nature.

7.2. A more general class of PDEs. In the preceding sections, we focused on the class
of PDEs (1.1) that includes many named models. However, examination of the techniques
employed in sections 2, 3, 4, 5, and 6 reveals that they can also be applied to the much broader
class of coupled reaction-diffusion equations (1.2), which, we recall, are

{
ε2+σUt = Uxx + ε2F1(U) + V F2(U, V ),

Vt = ε2Vxx +G(U, V ).
(7.4)

Here, σ ≥ 0, 0 < ε � 1, and the functions F1, F2, and G are smooth for U > 0 and V ≥ 0
and admit at most poles at U = 0. They also satisfy additional assumptions. We assume that
(U0, V0) = (0, 0) is a linearly stable, homogeneous steady state of (1.2) and use the stretched

variable ξ = x−Γ(t)
ε in the comoving frame. Finally, we assume that the traveling wave ODE

has a normally hyperbolic invariant manifold M for ε = 0 and that, on the persistent slow
manifold, which may coincide with the ε = 0 manifold as for systems (1.1) or which may be
O(ε) close to the plane {V = 0, Vξ = 0}, the flow is superslow, i.e., slow in the slow/outer
comoving variable x− Γ(t).

The first generalization is to systems of the form (1.2) for which F1(U) = −µU , F2(U, V ) =
h1U

α1V β1 , and G(U, V ) = −V + h2U
α2V β2 with µ > 0, h1 > 0, and h2 > 0, namely, to

ε2Ut = Uxx − ε2µU + h1U
α1V β1 ,

Vt = ε2Vxx − V + h2U
α2V β2 .(7.5)

We require that α1 > 1+ α2β1

β2−1 , α2 < 0, β1 > 1, and β2 > 1. This class of equations includes the
generalized Gierer–Meinhardt equations; see [7, 21, 23, 33]. In [7], we showed the existence
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and analyzed the stability of stationary, homoclinic, one-pulse solutions for systems (7.5)
and also of multipulse homoclinic solutions consisting of a finite number of rapid pulses in
quick succession; see Remark 6.2. In addition, in [8] we established the existence of stationary
spatially periodic solutions, which are known to be attractors in the self-replication region, and
we showed that on a sufficiently large interval one can construct a solution for any arbitrary
prespecified pulse sequence.

While the flow on M is still linear due to the choice of F1, the functions F2 and G are
more general than those in (1.1). The function G = −V + h2U

α2V β2 is a more general choice
for which the reduced fast system,

0 = vξξ +G(ū, v),(7.6)

has a homoclinic orbit to the saddle point (0, 0), and the choice of F2 reflects the competing
goals of wanting to have the most general possible form for F2 but at the same time retain the
necessary property that the fast jump, ∆p, bridges the correct takeoff and touchdown points
on M.

Two-pulse solutions of the different types constructed in sections 3, 4, 5, and 6 (and
N -pulse solutions of the types studied below in section 7.3) can be constructed for systems
(7.5) satisfying the above conditions following the same technique used above. Moreover,
the system (7.5) is itself a normal form in the study of large-amplitude pulse solutions in
coupled reaction-diffusion equations. See (1.1) and (1.2) in [7], and we refer the reader to the
introduction and the appendix there for further details.

There is also a second level of generalization that we can make, and we conclude this
section by briefly sketching the necessary ingredients. First we consider how general the
choice of the function G can be. In particular, we look at all possible G for which the reduced
fast system (7.6) supports a homoclinic orbit to the saddle fixed point (v = 0, vξ = 0). Let
Ū denote the value of the component U at the center of the pulse. This entails assuming
that, for every Ū > 0, G(Ū , 0) = 0, (∂G/∂V )(Ū , 0) < 0, G(Ū , V1) = 0 for some V1 > 0,
(∂G/∂V )(Ū , V1) > 0, and G(Ū , V ) < 0 for all V ∈ (0, V1). Second, we observe that there is
a wide class of functions F1 to which one can extend the results of this article. The leading
order flow on the persistent slow manifold is given by

uxx + ε2F1(u) = 0,(7.7)

which is automatically superslow. So, now, instead of choosing F1 to be a linear function, as
was done for both (1.1) and (7.5), it can be chosen to be any (nonlinear) function for which the
fixed point of (7.7), which corresponds to the asymptotic state of the pulses, is a saddle fixed
point, and for which the various takeoff and touchdown points on the persistent slow manifold
can be connected via the jump, ∆p determined by F2, in the fast field. The requirement that
the critical point u, ux = 0, on the slow manifold is of saddle type is directly related to the
(natural) assumption that the trivial background state (U, V ) ≡ (0, 0) is stable as a solution of
the PDE (7.4). Examples of such nonlinear slow systems include planar Hamiltonian systems,
such as the classical pendulum, the Duffing equation, and escape oscillators.

Remark 7.2. For the problem of resonance bands in Hamiltonian systems, one-pulse and
multipulse (with alternating fast-slow segments) homoclinic orbits have been constructed in
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[25]. There, the slow flow was given to leading order by the nonlinear pendulum with con-
stant torque, adiabatic Melnikov theory was used to calculate the fast jumps, and geometric
singular perturbation theory was used to assemble (and rigorously prove the existence of) the
homoclinic orbits.

7.3. Beyond symmetric two-pulse solutions. In this last section, we give some straight-
forward extensions of the two-pulse results of the previous sections to establish the existence
of stationary N -pulse solutions, traveling N -pulse solutions, and slowly varying N -pulse solu-
tions for N > 2. These solutions are biasymptotic to (U = 0, V = 0), just as was the case for
N = 2, and they consist of N localized (fast) pulses in alternation with N +1 slow segments.
We sketch only the geometrical backbones of the constructions.

In order to construct some stationary N -pulse solutions, we focus on those PDEs (1.1)
for which g′(U) has one simple zero, again at U = α, and for which To(0) and !u intersect
transversely in one point. Extensions to problems in which g′(U) has more than one simple
zero and/or in which To(0) and !

u intersect transversely in more than one point follow readily.

Singular, stationary, N -pulse solutions consist of the following segments, where ĉ ≡ 0 in
the governing ODEs:

• left slow segment along !u from (0, 0) to the takeoff point O1 ≡ !u ∩ {u = α};
• left fast pulse from O1 to the touchdown point D1 ≡ F(!u) ∩ {u = α};
• second slow segment along hyperbolic cosine orbit segment γ on M from D1 to O2 ≡
γ ∩ To(0);

• second fast pulse from O2 to D2 ≡ γ ∩ Td(0);
• third through (N − 1)th slow segments along γ from D2 back to O2, interspersed with
the third through (N − 1)th fast pulses, each of which connects O2 to D2;

• Nth slow segment along γ from D2 to ON ≡ F−1(!s) ∩ {u = α};
• Nth fast pulse from ON to DN ≡ !s ∩ {u = α};
• (N + 1)th slow segment along !s from DN to (0, 0).

See Figure 7.1(a) for an illustration with N = 5. Moreover, the same type of geometric
singular perturbation theory arguments (see also Remark 6.2) can be used here to show that
there exists a true N -pulse solution for 0 < ε � 1 near a singular (ε = 0) solution of the
type just constructed. If we assume that (4.3) holds and that α > πu(!

u ∩ T0(0)), then the
maximum values of u are highest at the tops of pulses 2, . . . , N − 1 and slightly lower at the
maxima of the first and Nth pulses; see Figure 7.1(a). Moreover, for each pulse in an N -pulse
solution, the maximum of U exceeds that of the (N = 1)-pulse solution.

Next, we show how to construct N -pulse solutions that travel with constant wave speed,
ĉ(t) ≡ ĉN . We do this for PDEs of the form (1.1) for which g′(U) has one simple zero (again,
at U = α) but now for which To(ĉ1) and !u intersect transversely in at least two distinct
points, one with U -coordinate less than α and the other with U -coordinate greater than α;
see Figure 7.1(b). Here also, extensions are possible.

The ODE governing N -pulse classical traveling waves is (2.3) with ĉ(t) ≡ ĉN . We describe
the singular solution for a traveling N -pulse solution with N = 2, which consists of the
following segments:

• left slow segment along !u from (0, 0) to the first takeoff point O1 ≡ !u∩T0(ĉN ), where
πu(O1) < α;
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Figure 7.1. (a) Sketch of a singular, stationary, N-pulse solution, with N = 5. The points O3 and O4

coincide with O2, and the points D3 and D4 coincide with D2. (b) Sketch of a singular, traveling, N-pulse
solution, with N = 2.

• left fast pulse from O1 to the touchdown point D1 ≡ Td(ĉN ) ∩ {u = πu(O1)};
• middle slow segment along a hyperbolic cosine orbit segment γ on M from D1 to
O2 ≡ γ ∩ To(ĉN ), where πu(O2) > α;

• second fast pulse from O2 to D2 ≡ !s ∩ Td(ĉN );
• right slow segment along !s from D2 back to (0, 0).

See Figure 7.1(b). The generalization to N > 2 follows the same procedure. The wave speed
ĉN is selected by the relative positions of the various intersection points. (A small change in
ĉ2 in the construction in Figure 7.1(b) will remove the final touchdown point D2 from !s.)
Moreover, due to symmetries, if there exists a traveling N -pulse solution with wave speed ĉN ,
then there also exists a symmetrically disposed N -pulse traveling wave with speed −ĉN . Note
that there are of course several conditions like (4.1) that have to be satisfied in order to be
able to construct (stationary or traveling) multipulse solutions in the general PDE (1.1).

Finally, one can construct slowly varying N -pulse solutions by mimicking the results of
section 4. For these solutions, the outermost pulses, i.e., the first and Nth pulses, move
away from each other when g′(U) < 0 for all u > 0, and they move toward each other when
g′(U) > 0 for all u > 0. Such an analysis would also be useful to further answer the questions
of whether pulse-splittings are of the type 2n or of the type for which just the edge pulses
split. See [15] for the analysis of this question in the context of weak interactions.

Appendix. Coupled reaction-diffusion equations in general form. In this appendix, we
briefly examine a number of named systems of coupled reaction-diffusion equations. We rescale
the equations into a natural form associated to the singular character of the pulse solutions
exhibited by these systems. We find that these natural forms are given by (1.1) or (1.2).
Thus the methods developed in this article can be applied directly to any of these equations.
Specifically, we examine the (classical and generalized) Gierer–Meinhardt equations, the Gray–
Scott model, the Schnakenberg system, and the Thomas equations. The scaling analysis
needed for the first two of these models has been derived earlier in [3, 4, 7, 10].
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We begin with the classical Gierer–Meinhardt equations,

Ut = Uxx − µU + V 2,

Vt = DVxx − V +
V 2

U
,(A.1)

where µ > 0 and D is the ratio of the diffusivities, taken to be less than one following the
usual Turing analysis. The scalings appropriate for large-amplitude pulse solutions are shown
in [7, 10] to be

U =
1√
D
Û, V =

1√
D
V̂ , x = D1/4x̂.

Note that these scalings represent the fact that the amplitudes of both the U - and the V -
components of the pulse solutions of (A.1) are O(1/√D). The amplitudes of Û and V̂ will be
O(1) in the natural scaled form (that will be of type (1.1)).

In terms of these scaled variables, the PDE (A.1) becomes

√
DÛt = Ûx̂x̂ − µ

√
DÛ + V̂ 2,

V̂t =
√
DV̂x̂x̂ − V̂ +

V̂ 2

Û
.

Hence it is natural to introduce the parameter ε via

ε2 =
√
D.

The scaled Gierer–Meinhardt equations therefore may be written in the normal form of the
type (1.1), namely, as

ε2Ût = Ûx̂x̂ − ε2µÛ + V̂ 2,

V̂t = ε2V̂x̂x̂ − V̂ +
V̂ 2

Û
.

It was shown in [7] that stationary singular pulses exist for ε2 =
√
D � 1 and that there is

a Hopf bifurcation at µHopf (≈ 0.36 to leading order) in the regime µ = O(1) such that the
pulses are stable for µ > µHopf and unstable for µ < µHopf . In addition, it was shown in [10]
that pulse splitting occurs in the regime in which µ = O(1/ε4). Finally, we remark that a
similar analysis can be done for the generalized Gierer–Meinhardt equations, as shown in [7],
provided that the conditions on the powers stated in [7] are satisfied.

Next, we turn our attention to singular-pulse solutions in the Gray–Scott model,

Ut = Uxx − UV 2 +A(1− U),
Vt = DVxx + UV 2 −BV,(A.2)

where A,B,D > 0. Then the scaling introduced in [3, 4] (see especially equation (1.3) in [4])
is

x =

√
D

B
ξ, U =

B
√
B
√
D√

A
Û, V =

√
A

BD
V̂ .
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The scaling of x reflects the narrowness of the pulses, and hence ξ is the appropriate stretched
variable with which to analyze the localized pulses. The scalings of U and V reflect their
amplitudes.

Substituting these scalings into the system (A.2), we obtain

D

B
Ût = Ûξξ − A

B2
Û V̂ 2 +

A
√
A
√
D

B2
√
B

(
1− B

√
B
√
D√

A
Û

)
,

1

B
V̂t = V̂ξξ + Û V̂ 2 − V̂ .

Now, in order to put this scaled Gray–Scott PDE into the form of the general systems (1.2)
studied here, one needs to look at this system in terms of the long (or slow) spatial variable
and a scaled time,

x̂ =

√
A

B
ξ, t̂ = Bt.

Also, the natural parameter groups that emerge are

ε2 =
A

B2
, δ =

√
BD.

Furthermore, we introduce the parameter σ by

D = ε4+σ.(A.3)

Hence the Gray–Scott model may be written as

ε2+σÛt̂ = Ûx̂x̂ − ε2
[
δ

ε

(
δ

ε
Û − 1

)]
− Û V̂ 2,

V̂t̂ = ε2V̂x̂x̂ − V̂ + Û V̂ 2,

which is of the form of (1.1) modulo a simple linear shift in U if δ/ε = O(1) and σ = 0, i.e.,
D = O(ε4) = O(A2/B4); recall (A.3). These conditions on the parameter play central roles in
the analysis of the Gray–Scott equation [3, 4, 5, 9]. For instance, σ = 0 marks the transition
(by a Hopf bifurcation) from unstable pulse patterns (σ < 0) to stable pulse patterns (σ > 0);
these patterns include periodic patterns [5] and slowly varying two-pulse solutions [3, 4]. Note
that this also implies that the condition B4D � A2 or σ > 0, i.e., the case in which the scaled
Gray–Scott model is of the form (1.2), is a natural condition on the parameters A, B, and
D in the original, unscaled, Gray–Scott equation (A.2). We refer the reader to [3, 4] for a
detailed analysis of the existence, bifurcation, splitting, and stability of two-pulse solutions of
the Gray–Scott model for the different parameter combinations.

Third, we look at the Schnakenberg model,

Ut = Uxx + γ(b− UV 2),
Vt = DVxx + γ(a− V + UV 2),(A.4)

where a, b, γ ≥ 0, and we set γ = 1 for convenience. The reaction kinetics are very similar to
those of the Gray–Scott model, except that there is a feed term for the activator and there is
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no linear decay term for the inhibitor concentration. (Analysis of the Gray–Scott model with
an activator-feed term is presented in [22, 40], and the analysis of the slowly varying two-pulse
solutions presented in [3, 4] can be extended to this case.) There is a homogeneous steady
state at the point (b/(a + b)2, b + a). See section 6.4 of [32] for analysis of the phase plane.
While more general results can be found for a > 0, we analyze the special case a = 0 here for
expedience.

Setting D = ε2, we scale the variables as

U = εαÛ , V = ε−αV̂ , x = εαξ,

with α > 0, since the u-component is small at the pulse center, whereas the v-component
diverges as ε → 0. Restricting ourselves to the interval α ∈ [1/2, 1), we find that the model
(A.4) may be written as an equation of the form (1.1), (1.2)

ε̂2+σÛt = Ûξξ + ε̂2b̂− Û V̂ 2,

V̂t = ε̂2V̂ξξ − V̂ + Û V̂ 2,

where we have scaled b = ε2−3αb̂ and introduced ε̂ = ε(1−α) and σ = 4α− 2.
Note, however, that there is a certain difference here. The plane V = 0, Vξ = 0 is again

invariant and normally hyperbolic, although now there are no fixed points on it. So, instead of
looking for one-pulse solutions of the homoclinic type that are biasymptotic to an equilibrium
on the plane, we look for spatially periodic solutions that consist of periodic arrays of localized
near-homoclinic pulses interspersed with slow segments exponentially close to solutions of the
slow system on the plane. This can be done using the same machinery developed in [5] and
further employed in [30] to study the spatially periodic solutions that are the attractors in the
pulse-splitting regime of the Gray–Scott model, and here such periodic solutions are found to
exist for α ∈ [2/3, 1).

Finally, we observe that a similar type of scaling analysis can be carried out on the Thomas
equations,

Ut = Uxx + γ (α(b− U)−H(U, V )) ,
Vt = DVxx + γ (a− V +H(U, V )) ,

where H(U, V ) = ρUV/(1 + V +KV 2), and all parameters are nonnegative; see Chapter 5 of
[32]. We do not go into the details.
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Bifurcation on the Visual Cortex with Weakly Anisotropic Lateral Coupling∗

Martin Golubitsky†, Lie June Shiau‡, and Andrei Török†

Abstract. Mathematical studies of drug induced geometric visual hallucinations include three components: a

model (or class of models) that abstracts the structure of the primary visual cortex V1; a mathe-

matical procedure for finding geometric patterns as solutions to the cortical models; and a method

for interpreting these patterns as visual hallucinations.

Ermentrout and Cowan used the Wilson–Cowan equations to model the evolution of an activity

variable a(x) that represents, for example, the voltage potential a of the neuron located at point x

in V1. Bressloff, Cowan, Golubitsky, Thomas, and Wiener generalize this class of models to include

the orientation tuning of neurons in V1 and the Hubel and Wiesel hypercolumns. In these models,

a(x, φ) represents the voltage potential a of the neuron in the hypercolumn located at x and tuned

to direction φ. The work of Bressloff et al. assumes that lateral connections between hypercolumns

are anisotropic; that is, neurons in neighboring hypercolumns are connected only if they are tuned

to the same orientation and then only if the neurons are oriented in the cortex along the direction of

their cells’ preference. In this work, we first assume that lateral connections are isotropic: neurons

in neighboring hypercolumns are connected whenever they have the same orientation tuning. Wolf

and Geisel use such a model to study development of the visual cortex. Then we consider the effect

of perturbing the lateral couplings to be weakly anisotropic.

There are two common features in these models: the models are continuum models (neurons

and hypercolumns are idealized as points and circles), and the models all have planar Euclidean

E(2)-symmetry (when cortical lateral boundaries are ignored). The approach to pattern formation

is also common. It is assumed that solutions are spatially periodic with respect to a fixed planar

lattice and that patterns are formed by symmetry-breaking bifurcations (corresponding to wave

vectors of shortest length) from a spatially uniform state. There are also substantial differences.

In the Ermentrout–Cowan model, E(2) acts in its standard representation on R2, whereas in the

Bressloff et al. model, E(2) acts on R2 × S1 via the shift-twist action. In our model, isotropic

coupling introduces an additional S1-symmetry. Weak anisotropy is then thought of as a small

forced symmetry-breaking from E(2)+̇S1 to E(2) in its shift-twist action.

The bifurcation analyses in each of these theories proceed along similar lines, but each produces

different hallucinatory images—many of which have been reported in the psychophysics literature.

The Ermentrout–Cowan model produces spirals and funnels, whereas the Bressloff et al. model pro-

duces in addition thin line images including honeycombs and cobwebs. Finally, our model produces

three types of time-periodic states: rotating structures such as spirals, states that appear to rush
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into (or out from) a tunnel with its hole in the center of the visual field, and pulsating images. Al-

though it is known that branches of time-periodic states can emanate from steady-state bifurcations

in systems with symmetry, this model provides the first examples of this phenomena in a specific

class of models.

Key words. bifurcation, pattern formation, symmetry, hallucinations, visual cortex, rotating waves

AMS subject classifications. 37G40, 34C23, 92C15

PII. S1111111102409882

1. Introduction and overview. In the 1930’s, Klüver classified geometric visual hallucina-

tions into four groups of form constants (see [17, p. 66]): honeycombs, cobwebs, tunnels, and

spirals. Klüver states “For the sake of analysis in terms of ‘form,’ we have ignored aspects of

color, brightness, and movement” and, on p. 71, “We wish to stress merely one point, namely,

that under diverse conditions the visual system responds in terms of a limited number of form

constants.”

Ermentrout and Cowan [9] pioneered an approach to the mathematical study of geometric

patterns produced in drug induced hallucinations. They assumed that the drug uniformly

stimulates an inactive cortex and produces, by spontaneous symmetry-breaking, a patterned

activity state. The mind then interprets the pattern as a visual image—namely, the visual

image that would produce the same pattern of activity on the primary visual cortex V1.1

The Ermentrout–Cowan analysis assumes that a differential equation governs the symmetry-

breaking transition from an inactive to an active cortex and then studies the transition ab-

stractly using standard pattern formation arguments developed for reaction-diffusion equa-

tions. Their cortical patterns are obtained by thresholding. (Points where the solution is

greater than some threshold are colored black, whereas all other points are colored white.)

These cortical patterns are then transformed to retinal patterns2 using the inverse of the

retino-cortical map described below (see (1.4)), and these retinal patterns are similar to some

of the geometric patterns of visual hallucinations, namely, tunnels and spirals.

It is now well established that neurons in V1 are sensitive to orientations in the visual

field,3 and it is mathematically reasonable to assign an orientation preference to each neuron in

V1. Hubel and Wiesel [16] introduced the notion of a hypercolumn—a region in V1 containing

1The primary visual cortex, or V1, is the area of the visual cortex that receives electrical signals directly

from the retina.
2The retina is the light-sensitive tissue lining the back of the eyeball that sends electrical impulses to the

brain.
3Experiments show that most V1 cells signal the local orientation of a contrast edge or bar; these neurons

are tuned to a particular local orientation. See [16, 12, 2, 4] and [6] for more discussion.
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for each orientation at a single point in the visual field (a mathematical idealization) a neuron

sensitive to that orientation.

More recently, Bressloff et al. [6] studied the geometric patterns of drug induced hallu-

cinations by including orientation sensitivity. As before, the drug stimulation is assumed to

induce spontaneous symmetry-breaking, and the analysis is local in the sense of bifurcation

theory. There is one major difference between the approaches in [6] and [9]. Ignoring lateral

boundaries, Ermentrout and Cowan [9] idealize the cortex as a plane, whereas Bressloff et

al. [6] take into account the orientation tuning of cortical neurons and idealize the cortex as

R2 ×S1. This approach leads to a method for recovering thin line hallucinations such as cob-

webs and honeycombs in addition to the threshold patterns found in the Ermentrout–Cowan

theory.

There are two types of connections between neurons in V1: local and lateral. Experimental

evidence suggests that neurons within a hypercolumn are all-to-all connected, whereas neurons

in different hypercolumns are connected in a very structured way. This structured lateral

coupling is called anisotropic, and it is the bifurcation theory associated with anisotropic

coupling that is studied in Bressloff et al. [6, 5].

In this paper, we study generic bifurcations when lateral coupling is weakly anisotropic.

First, we study bifurcations in models that are isotropic, showing that these transitions lead

naturally to a richer set of planforms than is found in [6, 5] and, in particular, to time-

periodic states. (Isotropic models have an extra S1-symmetry and have been studied by Wolf

and Geisel [26] as a model for the development of anisotropic lateral coupling.) There are three

types of time dependent solutions: slowly rotating spiral and funnel shaped retinal images;

tunneling images, where the retinal image appears to rush into or spiral into the center of the

visual field; and pulsating images, where the spatial pattern of the solution changes periodically

in time. Such images have been reported in the psychophysics literature; see Klüver [17, p. 24].

(Note that near death experiences are sometimes described as traveling down a tunnel toward

a central area.) Second, we consider weak anisotropy as forced symmetry-breaking from

isotropy and by doing so find two additional rotating time-periodic states.

We note that time-periodic, spatially periodic states have been studied previously in

Tass [24] using averaging (Hopf bifurcation) applied to the Ermentrout–Cowan activator-

inhibitor model [9], whereas our results lead to time-periodic states through symmetry-

breaking steady-state bifurcations.

We mention two caveats associated with our methods. First, our analysis applies only to

generic members of the general class of equations having symmetries associated to isotropic

lateral coupling (and to weak symmetry-breakings that preserve the symmetry of anisotropic

lateral coupling). It would be an extraordinarily difficult calculation to show, for example,
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that every statement that we make is valid for some particular variant of the Wilson–Cowan

equations, though most likely they are valid. Second, we assume that the new states are

hyperbolic (which is true generically but is also quite difficult to verify in a particular model).

The remainder of this section is devoted to two primary issues: the background from

previous studies that is needed to understand the current study and the comparison of our

results (on the square lattice) with previous results. The section ends with a brief description

of the (more complicated) hexagonal lattice results.

1.1. The continuum models and cortical planforms. The Ermentrout and Cowan [9]

model of V1 consists of neurons located at each point x in R2. Their model equations,

variants of the Wilson–Cowan equations [25], are written in terms of a real-valued activity

variable a(x), where a represents, say, the voltage potential of the neuron at location x.

Bressloff et al. [6] incorporate the Hubel–Weisel hypercolumns [16] into their model of V1

by assuming that there is a hypercolumn centered at each location x. Here a hypercolumn

denotes a region of cortex that contains neurons sensitive to orientation φ for each direction

φ. Their models, also adaptations of the Wilson–Cowan equations [25], are written in terms

of a real-valued activity variable a(x, φ), where a represents, say, the voltage potential of the

neuron tuned to orientation φ in the hypercolumn centered at location x. Note that angles φ

and φ+ π give the same orientation; so

a(x, φ+ π) = a(x, φ).

The cortical planform associated to a(x, φ) is obtained in a way that is different from the

Ermentrout–Cowan approach. For each fixed x ∈ R2, a(x, ·) is a function on the circle. The

planform associated to a is obtained through a winner-take-all strategy. The neuron that is

most active in its hypercolumn is presumed to suppress the activity of other neurons within

that hypercolumn. The winner-take-all strategy chooses, for each x, the directions φ that

maximize a(x, ·) and results in a field of directions. The two approaches to creating plan-

forms can be combined by assigning directions only to those locations x where the associated

maximum of a(x, ·) is larger than a given threshold.

A possible justification for the continuum model that idealizes a hypercolumn at each

cortex location is that each location is in fact surrounded by neurons sensitive to all of the

possible orientations. This fact suggests that the signal read from the primary visual cortex

V1 need not be limited to one orientation from each “physical” hypercolumn. In V1, there is a

grid of physical hypercolumns that is approximately 36× 36 in extent. (See [5] and references

therein.) It is reasonable to suppose that other layers of the visual cortex receive much more

information than a 36× 36 matrix of orientation values.
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hypercolumn

lateral connections

local connections

Figure 1. Illustration of isotropic local and anisotropic lateral connection patterns.

1.2. Euclidean symmetry. The Euclidean group E(2) is crucial to the analyses in both

[9] and [6], but the way that group acts is different. In Ermentrout and Cowan, the Euclidean

group acts on the plane by its standard action, whereas in Bressloff et al., the Euclidean group

acts on R2 × S1 by the so-called shift-twist representation, as we now explain.

Bressloff et al. [6] argue, based on experiments by Blasdel [2] and Eysel [10], that the lateral

connections between neurons in neighboring hypercolumns are anisotropic. That anisotropy

states that the strength of the connections between neurons in two neighboring hypercolumns

depends on the orientation tuning of both neurons and on the relative locations of the two

hypercolumns. Moreover, this anisotropy is idealized to the one illustrated in Figure 1, where

only neurons with the same orientation selectivity are connected and then only neurons that

are oriented along the direction of their cells preference are connected. These conclusions are

based on work of Gilbert [12] and Bosking et al. [4]. In particular, the symmetries of V1 model

equations are those that are consistent with the idealized structure shown in Figure 1.

The Euclidean group E(2) is generated by translations, rotations, and a reflection. The

action of E(2) on R2 × S1 that preserves the structure of lateral connections illustrated in

Figure 1 is the shift-twist action. This action is given by

Ty(x, φ) ≡ (x + y, φ),

Rθ(x, φ) ≡ (Rθx, φ+ θ),

Mκ(x, φ) ≡ (κx,−φ),

(1.1)

where (x, φ) ∈ R2 × S1, y ∈ R2, κ is the reflection (x1, x2) 	→ (x1,−x2), and Rθ ∈ SO(2) is

the rotation of the plane counterclockwise through angle θ.
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Figure 2. Distribution of orientation preferences in the Macaque V1 obtained via optical imaging and using

color to indicate iso-orientation patches. Redrawn from [2].

Figure 3. Lateral connections made by cells in Macaque (left panel) and Tree Shrew (right panel) V 1. A

radioactive tracer is used to show the locations of all terminating axons from cells in a central injection site,

superimposed on an orientation map obtained by optical imaging. Redrawn from [23] and [4].

Work on optical imaging has made it possible to see how the orientation preferences of cells

are actually distributed in V1 [2], and a variety of stains and labels have made it possible to see

how they are interconnected [10, 4]. Figure 2 shows the distribution of orientation preferences

in the Macaque. In particular, approximately every millimeter there is an iso-orientation

patch of a given preference.

Recent optical imaging experiments combined with anatomical tracer injections suggest

that there is a spatial anisotropy in the distribution of patchy horizontal connections, as

illustrated in Figure 3. It will be seen from the right panel that the anisotropy is particularly

pronounced in the tree shrew. The major axis of the horizontal connections tends to run

parallel to the visuotopic axis of the connected cells’ common orientation preference. There

is also a clear anisotropy in the patchy connections of the Macaque, as seen in the left panel.
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hypercolumn

lateral connections

local connections

Figure 4. Illustration of isotropic local and isotropic lateral connection patterns.

However, in this case, most of the anisotropy can be accounted for by the fact that there is

a stretching in the direction orthogonal to ocular dominance columns [1, 23]. It is possible

that when this stretching is factored out, there remains a weak anisotropy correlated with

orientation selectivity, but this remains to be confirmed experimentally. It should further

be noted that feedback connections from higher cortical areas are also patchy and appear

to link cells with similar functional features. Preliminary studies suggest that these feedback

connections do seem to have a much stronger anisotropy than the lateral connections [1]. This

is still a matter of ongoing investigation.

1.3. Isotropy of lateral connections. As noted in the previous paragraph, the anisotropy

in lateral connections pictured in Figure 1 can be small in the following sense. We call the

lateral connections between hypercolumns isotropic, as is done in Wolf and Geisel [26], if the

strength of lateral connections between neurons in two neighboring hypercolumns depends

only on the difference between the angles of the neurons’ orientation sensitivity. Lateral

connections in the isotropic model are illustrated in Figure 4. In this model, equations admit,

in addition to Euclidean symmetry, the following S1-symmetry:

I
φ̂
(x, φ) = (x, φ+ φ̂).(1.2)

Note that φ̂ ∈ S1 commutes with y ∈ R2 and Rθ ∈ SO(2), but κφ̂ = (−φ̂)κ.

The action of γ ∈ E(2)+̇S1 on the activity function a is given by

γa(x, φ) = a(γ−1(x, φ)).
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For example, Rθ ∈ SO(2) acts by

(Rθa)(x, φ) = a(R−θx, φ− θ).

In this paper, we determine solutions to symmetry-breaking bifurcations in the isotropic

case and then study how these solutions change when anisotropy is introduced as a small

forced symmetry-breaking parameter.

1.4. Symmetry-breaking bifurcations on lattices. Spontaneous symmetry-breaking in

the presence of a noncompact group such as the Euclidean group is far from completely un-

derstood. The standard approach is to reduce the technical difficulties by looking only for

solutions that are spatially doubly periodic with respect to some planar lattice (see Golubitsky

and Stewart [13]); this is the approach taken in [9, 6] and in this study. This approach is jus-

tified by the remarkable similarities between the geometric patterns obtained mathematically

in [9, 6] and the hallucinatory images reported in the scientific literature [6, 7].

The first step in such an analysis is to choose a lattice type; in this paper, we describe

transitions on both the square and hexagonal lattices. The second step is to decide on the size

of the lattice. Euclidean symmetry guarantees that at bifurcation, critical eigenfunctions will

have plane wave factors e2πik·x for some critical dual wave vector k. See [5] or [13, Chapter 5].

Typically, the lattice size is chosen so that the critical wave vectors will be the vectors of

shortest length in the dual lattice; that is, the lattice has the smallest possible size that can

support doubly periodic solutions.

By restricting the bifurcation problem to a lattice, the group of symmetries is transformed

to a compact group. First, translations in E(2) act modulo the spatial period (which we

can take to be 1 on the square lattice) and thus act as a 2-torus T2. Second, only those

rotations and reflections in E(2) that preserve the lattice (namely, the holohedry D4 for

the square lattice) are symmetries of the lattice restricted problem. Thus the symmetry

group of the square lattice problem is Γ = D4+̇T2. Recall that at bifurcation Γ acts on the

kernel of the linearization, and a subgroup of Γ is axial if its fixed-point subspace in that

kernel is one-dimensional. Solutions are guaranteed by the Equivariant Branching Lemma

(see [14, 13]), which states the following: generically there are branches of equilibria to the

nonlinear differential equation for every axial subgroup of Γ. The nonlinear analysis in [5, 9]

proceeds in this fashion.

1.5. Previous results on the square lattice. In Ermentrout and Cowan [9], translation

symmetry leads to eigenfunctions that are linear combinations of plane waves and, on the

square lattice, to two axial planforms: stripes and squares. See Figure 5.

In Bressloff et al. [6, 5], translation symmetry leads to critical eigenfunctions that are

linear combinations of functions of the form u(φ)e2πik·x. These eigenfunctions correspond to
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Figure 5. Thresholding of eigenfunctions: (left) stripes; (right) squares.

one of two types of representations of E(2) (restricted to the lattice): scalar (u even in φ)

and pseudoscalar (u odd). The fact that two different representations of the Euclidean group

can appear in bifurcations was first noted by Bosch Vivancos, Chossat, and Melbourne [3].

Bressloff et al. [6] also show that a trivial solution to the Wilson–Cowan equation will lose

stability via a scalar or pseudoscalar bifurcation depending on the exact form of the lateral

coupling. Thus each of these representations is, from a mathematical point of view, equally

likely to occur. On the square lattice, [3, 5] show that there are two axial planforms each in

the scalar and pseudoscalar cases: stripes and squares.

To picture the planforms in these cases, we must specify the function u(φ), and this can be

accomplished by assuming that anisotropy is small. When anisotropy is zero, the S1-symmetry

in (1.2) forces u(φ) = cos(2mφ) in the scalar case and u(φ) = sin(2mφ) in the pseudoscalar

case. (This point will be discussed in more detail when we review representation theory in

sections 2 and 4.) The assumptions in Bressloff et al. [6] imply that u is a small perturbation

of sine or cosine. Note that the Ermentrout–Cowan planforms are recovered in the scalar

case when m = 0; in this case, u is constant, and all directions are equally active. As often

happens in single equation models, the first instability of a trivial (spatially constant) solution

is to eigenfunctions with m small, and that is what occurs in certain models based on the

Wilson–Cowan equation (see [6]). Planforms for the scalar and pseudoscalar planforms when

m = 1 are shown in Figures 6 and 7.

1.6. New planforms when lateral connections are isotropic. In our analysis of the

isotropic case (Γ̃ = Γ+̇S1-symmetry), we find four axial subgroups (Σ1–Σ4) and one max-

imal isotropy subgroup Σ5 with a two-dimensional fixed-point subspace. The axial subgroups

lead to group orbits of equilibria. This fact must be properly interpreted to understand how

the new planforms relate to the old. A phase shift of sin(2φ) yields cos(2φ). Thus the extra

S1-symmetry based on isotropic lateral connections identifies scalar and pseudoscalar plan-
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Figure 6. Direction fields of scalar eigenfunctions: (left) stripes Σ3; (right) squares Σ1.

Figure 7. Direction fields of pseudoscalar eigenfunctions: (left) stripes Σ3; (right) squares Σ1.

Figure 8. Direction fields of new planforms in isotropic model: (left) axial planform Σ2; (center) axial

planform Σ4; (right) rotating wave Σ5 (direction of movement is up and to the left).

forms; up to this new symmetry, the planforms are the same. Thus the axial subgroup Σ3

corresponds to stripes (both scalar and pseudoscalar), and the axial subgroup Σ1 corresponds

to squares (both scalar and pseudoscalar). The axial subgroups Σ2 and Σ4 correspond to new

types of planforms. Finally, the maximal isotropy subgroup Σ5 with its two-dimensional fixed-

point subspace leads to a time-periodic rotating wave whose frequency is zero at bifurcation.

The planforms associated with these new types of solutions are pictured in Figure 8.
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It is unusual for a steady-state bifurcation (eigenvalues of a linearization moving through

0) to lead to time-periodic states. It is well known that in systems without symmetry, time-

periodic states will appear in unfoldings of codimension two Takens–Bogdanov singularities (a

double zero eigenvalue with a nilpotent normal form). It is less well known that codimension

one steady-state bifurcations with symmetry can also lead to time-periodic states. Field

and Swift [11] were the first to find such a bifurcation (in a system with finite symmetry).

Melbourne [21] was the first to find an example of a rotating wave in a steady-state bifurcation

in a system with continuous symmetry. Nevertheless, the documented cases where time-

periodic states occur in codimension one steady-state bifurcations are relatively rare, and

our work provides the first example where this mathematical phenomenon appears in model

equations.

1.7. Weak anisotropy in lateral connections. Next, we discuss what happens to the bi-

furcating solutions to the isotropic nonlinear equation when anisotropy is added as a small

symmetry-breaking parameter. As was noted in Bressloff et al. [6], the linear effect of

anisotropy is to split the eigenfunctions into scalar and pseudoscalar representations. The

effect on solutions to the nonlinear equation can also be established using the methods of

Lauterbach and Roberts [20]. This method is applied independently to each branch of (group

orbits of) solutions found in the isotropic case. The results for square lattice solutions are

easily described.

Generically, the dynamics on the Γ̃ group orbit of equilibria corresponding to the axial

subgroup Σ3 has two (smaller Γ) group orbits of equilibria: scalar stripes and pseudoscalar

stripes. There may be other equilibria coming from the Γ̃ group orbit, but, at the very least,

scalar and pseudoscalar stripes always remain as solutions.

Similarly, the dynamics on the group orbit of equilibria corresponding to the axial subgroup

Σ1 generically has two equilibria corresponding to scalar and pseudoscalar squares.

The dynamics on the group orbit of the axial subgroups Σ2 and Σ4 and the fifth maximal

isotropy subgroup Σ5 does not change substantially when anisotropy is added. These group

orbits still remain as equilibria and rotating waves.

1.8. Retinal images. Finally, we discuss the geometric form of the cortical planforms in

the visual field; that is, we try to picture the corresponding visual hallucinations. It is known

that the density of neurons in the visual cortex is uniform, whereas the density of neurons in the

retina falls off from the fovea4 at a rate of 1/r2. Schwartz [22] observed that there is a unique

conformal map taking a disk with 1/r2 density to a rectangle with uniform density, namely,

the complex logarithm. This is also called the retino-cortical map. It is thought that using

4The fovea is the small central area of the retina that gives the sharpest vision.



108 M. GOLUBITSKY, L. J. SHIAU, AND A. TÖRÖK

the inverse of the retino-cortical map, the complex exponential, to push forward the activity

pattern from V1 to the retina is a reasonable way to form the hallucination image—and this

is the approach used in Ermentrout and Cowan [9] and in Bressloff et al. [6, 7]. Specifically,

the transformation from polar coordinates (r, θ) on the retina to cortical coordinates (x, y) is

given in Cowan [8] to be

x = 1
ε ln

(
1
ω r
)
,

y = 1
εθ,

(1.3)

where ω and ε are constants. See Bressloff et al. [7] for a discussion of the values of these

constants. The inverse of the retino-cortical map (1.3) is

r = ω exp(εx),

θ = εy.
(1.4)

In our retinal images, we take

ω =
30

e2π
and ε =

2π

nh
,

where nh is the number of hypercolumn widths in the cortex, which we take to be 36.

There are additional issues that need to be discussed.

1. What is the relationship between the spatial period of the planform and the size of a

“physical” hypercolumn?

2. How many points within a hypercolumn should be used to create the visual image?

3. In our symmetry analysis, states are enumerated up to symmetry. Are the retinal

images of symmetry-related cortical states the same?

We discuss each of these questions in turn.

1.8.1. Spatial period. The human visual cortex contains a grid of approximately 36 ×
36 hypercolumns. Bressloff et al. [6, 7] argue that each spatial period is the size of two

hypercolumns. This conclusion is based on the properties of reported visual hallucinations

and on the responses of human subjects to perceived grating patterns.

1.8.2. Grid points per hypercolumn. There are regions within a fundamental square in

which the line field varies continuously and curves across which discontinuities in line field

direction appear. Discontinuities in the direction field follow from the winner-take-all strategy

and cannot be avoided. Generally we find that to sample every region in which the line field

is continuous, it is sufficient to evaluate the direction fields on a 4× 4 array of points in each

hypercolumn.
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1.8.3. Retinal planforms from conjugate cortical planforms. We begin by justifying our

choice of lattice orientation. Observe that vertical lines on the cortex are taken by (1.4) to

circles in the retina. Therefore, the vertical y-direction on the cortex is a periodic direction,

and it makes sense to align the square lattice so edges of the square are vertical and horizontal

lines on the cortex. It is also sensible to align the hexagonal lattice so that one of the three

sets of parallel lines defining a fundamental hexagon consists of horizontal lines.

Certain lattice symmetries do change the retinal planform, and some do not. Moreover,

certain ways of representing the data graphically change with conjugacies, and others do not.

To verify these points, consider a cortical pattern consisting of parallel stripes that is mapped

by (1.4) to a concentric family of circles in the retina. Rotating this striped state on the

cortex by π/2 leads to another square lattice state whose associated retinal pattern consists

of radial lines. See Figures 10 (center, right) and 11 (center, right). Thus the transformation

from cortex to retina given in (1.4) does not respect the symmetries of the cortex.

There are, however, certain cortical symmetries that do not change retinal planforms

in any important way. First, each of the planforms that we draw has certain well-defined

symmetries; indeed, our planforms are determined by these symmetries. So rotating a square

symmetric cortical planform by π/2 will not change the cortical pattern and hence will not

change the retinal planform. Second, translating a cortical pattern in the y-direction just

rotates the retinal pattern, whereas translating a cortical pattern in the x-direction scales the

retinal pattern in the radial direction. So cortical translations do not change retinal planforms

in significant ways; in particular, the Klüver form constant of a retinal image is not changed

by cortical translations.

Finally, note that we may draw patterns on the retina and cortex in two distinct ways.

First, we may use the line fields obtained from the winner-take-all strategy; and, second, we

may ignore the direction information in the line field and just fill in areas where the maximum

value of a(x, ·) is greater than some threshold value, as is done in the Ermentrout–Cowan

theory. The second method for representing patterns is also unchanged by symmetries in Γ

that are projections of the isotropy group in Γ̃.

The visual images that correspond to the previously derived planforms are reproduced

here from Bressloff et al. [7]. Figure 9 illustrates the Ermentrout–Cowan planforms. The

scalar and pseudoscalar planforms are shown in Figures 10 and 11. When these images are

just thresholded, the scalar and pseudoscalar planforms are identical (since, because of S1-

symmetry, the maximum value of a(x, ·) is the same in the corresponding planforms) and are

shown in Figure 12. The new planforms found by assumption of isotropy in lateral connections

are illustrated in Figures 13–15.
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(a) (b)

Figure 9. Action of inverse retino-cortical map (1.4) on Ermentrout–Cowan noncontoured square lattice

planforms: (a) squares; (b) stripes.

Figure 10. Action of (1.4) on Bressloff et al. scalar square lattice planforms: (left) squares Σ1; (center and

right) stripes Σ3.

1.9. Hexagonal lattice planforms. In isotropic models on the hexagonal lattice, there

are (at least) 12 maximal isotropy subgroups; nine of these are axial subgroups and lead to

branches of group orbits of equilibria, and three of these have two-dimensional fixed-point

spaces, two of which lead to rotating waves. The rotating waves look like rotating spirals

in retinal coordinates. Depending on the specific model, the maximal isotropy subgroup

corresponding to the third two-dimensional fixed-point space can lead to an equilibrium or a

time-periodic state.

When anisotropy is added into the model, two of the nine axial solutions become time-

periodic. The retinal planforms associated to these isotropy subgroups have a substantially

different character—certain planforms move radially inward (or radially outward), and certain

planforms spiral inward (or spiral outward). Thus rotating patterns appear in these models

through spontaneous symmetry-breaking, whereas tunneling images appear through forced

symmetry-breaking. All of the time-periodic patterns result from weak anisotropy, and the

fact that they rotate or tunnel in the retinal image depends just on symmetry and not on the

specific method by which the patterns are imaged.



BIFURCATION ON THE VISUAL CORTEX 111

Figure 11. Action of (1.4) on Bressloff et al. pseudoscalar square lattice planforms: (left) squares Σ1;

(center and right) stripes Σ3.

Figure 12. Threshold retinal images on Bressloff et al. scalar and pseudoscalar square lattice planforms:

(left) squares Σ1; (center and right) stripes Σ3.

The detailed description of the square lattice results are given in section 2, and those for

the hexagonal lattice are given in section 3. The proofs of the bifurcation theory statements

made in these sections are deferred until section 4.

2. Square lattice planforms. In this section, we discuss the spatially doubly periodic

solutions that must emanate from the simplest bifurcations of Euclidean invariant differential

equations restricted to a square lattice. We assume that the Euclidean action on R2 × S1 is

the one given by (1.1) and that the extra S1 symmetries (1.2) associated with isotropy are

present. Our findings include the following:

1. The simplest Γ̃ = Γ+̇S1 bifurcations, where Γ = D4+̇T2, occur at irreducible rep-

resentations of Γ̃ that are the direct sum of the scalar and pseudoscalar bifurcations

studied in [3, 5].

2. There are five branches of (group orbits of) solutions (corresponding to maximal

isotropy subgroups of Γ̃) that must bifurcate from a trivial equilibrium: four are

equilibria, and one is a slowly traveling wave in cortical coordinates (and a rotating
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Figure 13. New square axial planform Σ2 in isotropic model: (left and center) conjugate line field images;

(right) threshold image.

Figure 14. New axial planform Σ4 in isotropic model. Thresholding is not relevant for these planforms;

see section 3.4.2.

spiral wave in retinal coordinates).

3. When weak anisotropy in the lateral connections is assumed (that is, symmetry is

broken from Γ̃ to Γ in the model equations), one solution leads to both scalar and

pseudoscalar rolls (and perhaps a third intermediate state), and a second leads to both

scalar and pseudoscalar squares (and perhaps a third intermediate state). The two

remaining equilibria persist as equilibria when symmetry is broken, and the rotating

wave also persists. These last three solution types correspond to hallucinatory states

that have not been discussed previously.

In our exposition, we describe the results in this section and refer to section 4 for the details

of the proofs.

2.1. Representation theory of Γ̃. Without loss of generality, we assume that the square

lattice L consists of squares of unit length. Let FL be the space of functions a(x, φ) that are

doubly periodic with respect to translations in L and π-periodic in φ. The action of Γ̃ on FL
is the one induced from the action of E(2)+̇S1 on R2 × S1 given in (1.1) and (1.2).
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Figure 15. Rotating planform Σ5 in isotropic model; movies are associated to framed images.

We expect the simplest square lattice bifurcations to be from equilibria whose lineariza-

tions have kernels that are irreducible subspaces of FL, and we consider only bifurcations

based on dual wave vectors of shortest (unit) length. It follows that we may assume that the

critical eigenspace Wm consists of functions of the form

a(x, φ) =
(
z1e

2imφ + w1e
−2imφ

)
e2πik1·x(2.1)

+
(
z2e

2im(φ−π/2) + w2e
−2im(φ−π/2)

)
e2πik2·x + c.c.,

where (z1, w1, z2, w2) ∈ C4. Moreover, the action of Γ̃ on this subspace is absolutely irre-

ducible. These statements are verified in section 4.1. From now on, for m ≥ 1, we will

identify Wm with C4 through (2.1).

We show in section 4.2 that, from a bifurcation theoretic point of view, we may assume

that m = 0 or m = 1. The case in which m = 0 was considered in [5]; so, in the current

analysis, we assume that m = 1.

In this section, we describe planforms that generically appear in bifurcations with respect

to the group Γ̃ and discuss what happens to these planforms after symmetry is broken to Γ ⊂ Γ̃.

Therefore, we are interested in how a Γ̃ representation decomposes into Γ representations. The

proof of Lemma 4.1 leads to the following lemma.

Lemma 2.1. The subspace W1 ⊂ FL decomposes into two nonisomorphic absolutely irre-

ducible representations of Γ: W1 = W+
1 ⊕W−

1 , where

W+
1 = {(u, u, v, v) | u, v ∈ C},

W−
1 = {(u,−u, v,−v) | u, v ∈ C}.

The representation W+
1 is scalar, and the representation W−

1 is pseudoscalar.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_02.gif
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Table 1

Group action on (z1, w1, z2, w2) ∈W1 = C4; ξ, κ ∈ D4, 0 ≤ θ1, θ2 < 1, and 0 ≤ φ̂ < π.

Generators Action

ξ (w2, z2, z1, w1)

κ (w1, z1, z2, w2)

[θ1, θ2, 0] (e2πiθ1z1, e
2πiθ1w1, e

2πiθ2z2, e
2πiθ2w2)[

0, 0, φ̂
]

(e−2iφ̂z1, e
2iφ̂w1, e

−2iφ̂z2, e
2iφ̂w2)

2.2. Group action on W1. A calculation shows that when m = 1, Γ̃ acts on W1
∼= C4 in

the way presented in Table 1. The action for general m is presented in Table 6. When m = 1,

the action has a nontrivial kernel Z2 generated by
[

1
2 ,

1
2 ,

π
2

]
.

Table 2

Square lattice maximal isotropy subgroups of Γ̃ acting on C4; u ∈ C.

Generators Fixed subspace Dim Name

Σ1 κ, ξ R{(1, 1, 1, 1)} 1 squares

Σ2 κ,
[
3
4
, 1

4
, π

4

]
ξ R{(1, 1, 1,−1)} 1

Σ3 κ, ξ2, [0, θ2, 0] R{(1, 1, 0, 0)} 1 stripes

Σ4 κξ2, [0, θ2, 0], [θ1, 0, πθ1] R{(1, 0, 0, 0)} 1

Σ5 κξ, [θ1, θ1, πθ1] {(u, 0, u, 0)} 2 rotating spirals

The relations among the generators are as follows:

ξκ = κξ−1,

κ[θ1, θ2, φ̂] = [θ1,−θ2,−φ̂]κ,

ξ[θ1, θ2, φ̂] = [−θ2, θ1, φ̂]ξ.

(2.2)

The list of maximal isotropy subgroups of Γ̃ acting on C4 is given in Table 2. This list

is a subset of the list of isotropy subgroups of Γ̃ acting on C4 given in Table 7. We discuss

only those planforms associated with maximal isotropy subgroups. Table 2 shows that there

are four axial subgroups (Σ1–Σ4) of Γ̃ acting on W1 and one maximal isotropy subgroup with

a two-dimensional fixed-point subspace Σ5. Note that the normalizer of Σ5 is generated by

[θ1,−θ1, 0] over Σ5.

2.3. Solutions corresponding to maximal isotropy subgroups. The Equivariant Branch-

ing Lemma [14] proves the existence (generically) of equilibria corresponding to each axial

subgroup. Generally, there is a branch of rotating waves corresponding to each maximal

isotropy subgroup with a two-dimensional fixed-point subspace when the normalizer of that

subgroup contains a circle group (see Melbourne [21, Theorem 2.4]). Moreover, the periods
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of these solutions will tend to infinity at the bifurcation point. See section 4.4 for additional

details.

Finally, we note that each of these solutions can be asymptotically stable to perturbations

within the square lattice. The computation of linear stability is complicated and the calcula-

tions are not included in this paper. The results of these calculations are given in Table 8 in

subsection 4.5.

2.4. The effects of weak anisotropy. We discuss how solutions corresponding to Γ̃-

bifurcations behave generically when the isotropy of the lateral connections is broken, that is,

when the Γ̃-equivariant vector field is perturbed to a Γ-equivariant field.

2.4.1. Squares: Σ1 = D4(κ, ξ). Generically, breaking the isotropy of the lateral connec-

tions leads to a bifurcation of the D4 steady state into scalar steady states of type Esquares

(conjugate in Γ to S1 = (1, 1, 1, 1)) and pseudoscalar steady states of type Osquares (conjugate

in Γ to S2 = (1,−1, 1,−1)). See [5, Tables 5, 8, and 11, and Figure 3]. In addition to these two

types of steady states, it is possible for there to be other intermediate steady states. Details

are found in section 4.6.1. See Figures 6 (right) and 7 (right) for the cortical planforms and

Figures 10 (left) and 11 (left) for the associated retinal planforms.

2.4.2. Σ2 = D4(〈κ,
[
3
4
, 1

4
, π

4

]
ξ〉). The results for Σ2 equilibria are similar to those for Σ1

equilibria. See section 4.6.2 and Figure 13. None of these equilibria are scalar or pseudoscalar

states.

2.4.3. Stripes: Σ3 = 〈κ, ξ2, [0, θ2, 0]〉. We show that generically, breaking the isotropy

of the lateral connection leads to a bifurcation of this steady state into two states: a scalar

steady state of type Erolls (conjugate in Γ to R1 = (1, 1, 0, 0)) and a pseudoscalar steady

state of type Orolls (conjugate in Γ to R2 = (1,−1, 0, 0)). See [5, Tables 5, 8, and 11, and

Figures 2(c,d)]. In addition to these two types of steady states, it is possible for there to be

other intermediate steady states. Details are found in section 4.6.3. See Figures 6 (left) and

7 (left) for the cortical planforms and Figures 10 (center, right) and 11 (center, right) for the

associated retinal planforms.

2.4.4. Σ4 = 〈κξ2, [0, θ2, 0], [θ1, 0, πθ1]〉. Steady states corresponding to Σ4 persist as

steady states under symmetry-breaking perturbations of the system and are conjugate to

T1 = (1, 0, 0, 0). Details are found in section 4.6.4. See Figure 8 (center) for the cortical

planform and Figure 14 for the associated retinal planforms.

2.4.5. Rotating spirals: Σ5 = 〈κξ, [θ1, θ1, πθ1]〉. In section 4.4, we show that generi-

cally a branch of time-periodic rotating waves bifurcates in the fixed-point subspace of isotropy

subgroup Σ5. These rotating waves Z(t) persist when symmetry is broken to Γ and up to
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conjugacy have the form

Z(t) = [t,−t, 0](1, 0, 1, 0).

Details are found in section 4.6.5. See Figure 8 (right) for the cortical planform and Figure 15

for the associated retinal planform. This picture is a static image of a time-periodic rotating

spiral.

3. Hexagonal lattice planforms. In this section, we discuss the spatially doubly periodic

solutions that must emanate from the simplest (shortest wave vector) bifurcations of Euclidean

invariant differential equations restricted to a hexagonal lattice. Our findings include the

following:

1. There are (at least) 12 maximal isotropy subgroups in the isotropic case.

2. Three of these 12 have two-dimensional fixed-point subspaces.

3. Two of those three lead generically to rotating waves, and the third one can lead either

to equilibria or to time-periodic states.

4. Weak anisotropy forces two of the nine axial solutions to be time-periodic.

5. Pseudoscalar hexagons do not appear naturally as solutions on the hexagonal lattice

when weak anisotropy is present.

The group action in the smallest wave vector isotropic case is on a 12-dimensional space

as shown in Table 3. The maximal isotropy subgroups are listed in Table 4.

3.1. Representation theory of Γ̃. Without loss of generality, we assume that the hexag-

onal lattice L is generated by vectors

�1 =

(
1,

1√
3

)
and �2 =

(
0,

2√
3

)
.

Generators for the dual lattice L∗ are the unit length vectors

k1 = (1, 0) and k2 =
1

2
(−1,

√
3).

Let

k3 = −(k1 + k2) =
1

2
(−1,−

√
3).

Let FL be the space of functions a(x, φ) that are doubly periodic with respect to trans-

lations in L and π-periodic in φ. The full symmetry group whose bifurcations we analyze

is

Γ̃ = (D6+̇T2)+̇S1.
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The action of Γ̃ on FL is the one induced from the action of E(2)+̇S1 on R2 × S1 given in

(1.1) and (1.2).

We expect the simplest hexagonal lattice bifurcations to be from equilibria whose lineariza-

tions have kernels that are irreducible subspaces of FL, and we consider only bifurcations based

on dual wave vectors of shortest (unit) length. It follows from these assumptions that we may

assume that the critical eigenspace Wm consists of eigenfunctions of the form

a(x, φ) =
(
z1e

2imφ + w1e
−2imφ

)
e2πik1·x

+
(
z2e

2im(φ−2π/3) + w2e
−2im(φ−2π/3)

)
e2πik2·x

+
(
z2e

2im(φ+2π/3) + w2e
−2im(φ+2π/3)

)
e2πik3·x + c.c.,

(3.1)

where (z1, w1, z2, w2, z3, w3) ∈ C6. On this subspace, the action of the group Γ̃ is absolutely

irreducible. This statement is verified in a manner entirely analogous to that of (2.1). As

with the square lattice, we assume that m = 1 in our bifurcation analysis. The cases in which

m > 1 are identical once one divides by the kernel of the representation, and the case in which

m = 0 was considered in [5]. From now on, for m ≥ 1, we will identify Wm with C6 through

(3.1).

Lemma 3.1. The subspace W1 ⊂ FL decomposes into two nonisomorphic absolutely irre-

ducible representations of Γ: W1 = W+
1 ⊕W−

1 , where

W+
1 = {(u, u, v, v, w,w) | u, v ∈ C},

W−
1 = {(u,−u, v,−v, w,−w) | u, v ∈ C}.

The representation W+
1 is scalar, and the representation W−

1 is pseudoscalar. The proof

is similar to that of Lemma 2.1.

3.2. Group action onW1. A calculation leads to the group action onW1 given in Table 3.

Note that the action has a trivial kernel.

Table 3

Group action on (z1, w1, z2, w2, z3, w3) ∈W1 = C6; ξ, κ ∈ D6, 0 ≤ θ1, θ2 < 1, and 0 ≤ φ̂ < π.

Generators Action

ξ (w2, z2, w3, z3, w1, z1)

κ (w1, z1, w3, z3, w2, z2)

[θ1, θ2, 0] (e−2πiθ1z1, e
−2πiθ1w1, e

−2πiθ2z2, e
−2πiθ2w2, e

2πi(θ1+θ2)z3, e
2πi(θ1+θ2)w3)[

0, 0, φ̂
]

(e−2iφ̂z1, e
2iφ̂w1, e

−2iφ̂z2, e
2iφ̂w2, e

−2iφ̂z3, e
2iφ̂w3)
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Table 4

Hexagonal lattice maximal isotropy subgroups: u ∈ C; v = ei
π
6 . The general fixed-point subspace of

k-groups is R{(v3k, v3k, v7k, v11k, v11k, v7k)}.

Generators Fixed subspace Dim Normalizer

k = 0 κ, ξ R{(1, 1, 1, 1, 1, 1)} 1 [0, 0, π
2
]

k = 1 κ, [0, 0, π
6
]ξ R{(i, i,−v, v, v,−v)} 1 [0, 0, π

2
]

k = 2 κ, [0, 0, π
3
]ξ R{(1, 1,−v2, iv, iv,−v2)} 1 [0, 0, π

2
]

k = 3 κ, [0, 0, π
2
]ξ R{(i, i, i, i, i, i)} 1 [0, 0, π

2
]

k = 4 κ, [0, 0, 2π
3
]ξ R{(1, 1, iv,−v2,−v2, iv)} 1 [0, 0, π

2
]

k = 5 κ, [0, 0, 5π
6
]ξ R{(i, i, v,−v,−v, v)} 1 [0, 0, π

2
]

7 κξ3, [0, θ2, 0], [θ1, 0,−πθ1] R{(1, 0, 0, 0, 0, 0)} 1 [ 1
2
, 0, 0]

8 κ, ξ3, [0, θ2, 0], [
1
2
, 0, π

2
] R{(1, 1, 0, 0, 0, 0)} 1 [ 1

2
, 0, 0]

9 ξ2, κξ, [ 1
3
, 1

3
, 2π

3
] R{(1, 0, 1, 0, 1, 0)} 1 [0, 0, π

2
]

10 κξ, [θ1, θ1,−πθ1] (u, 0, u, 0, 0, 0) 2 [θ1,−θ1, 0]
11 κξ4, [θ1,−θ1,−πθ1] (u, 0, 0, u, 0, 0) 2 [θ1, θ1, 0]

12 κξ, ξ3, [ 1
2
, 1

2
, π

2
] (u, u, u, u, 0, 0) 2 [0,− 1

2
, π

4
]

The relations among the generators are as follows:

κξκ = ξ−1,

κ[θ1, θ2, φ̂] = [θ1,−θ1 − θ2,−φ̂]κ,

ξ[θ1, θ2, φ̂] = [−θ2, θ1 + θ2, φ̂]ξ.

(3.2)

Remark 3.1. It follows from the action of [0, 0, φ̂] and Lemma 3.1 that the action of Γ̃ on

C6 is absolutely irreducible.

3.3. Solutions corresponding to maximal isotropy subgroups. Up to conjugacy there are

(at least) 12 maximal isotropy subgroups of the action of Γ̃ onW1
∼= C6, and these are listed in

Table 4. We believe that it is unlikely that there are additional maximal isotropy subgroups,

but we have not been able to give a complete proof of this conjecture (see section 4.7). Nine

of the maximal isotropy subgroups are axial (including a family of six that are isomorphic

to D6); hence the Equivariant Branching Lemma [14] proves the existence (generically) of a

branch of equilibria for each of them.

The other three maximal isotropy subgroups have a two-dimensional fixed-point space.

Two of them have as their normalizer a circle group, and generically they lead to a rotating

wave just as in the square lattice Σ4 case. See section 4.4. The remaining one has Z4 as its

normalizer and can lead either to equilibria or to time-periodic discrete rotating waves, as

discussed in section 3.4.7.

The cortical and retinal planforms associated to each of these maximal isotropy subgroups

are presented in Figures 16–28. In these figures, we use the eigenfunctions associated to points

listed in Table 4. In addition, where conjugate points lead to different retinal images, we
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Table 5

Conjugacy classes of symmetry-broken states represented by the point V ∈ C6, where v = eiπ/6. Scalar

and pseudoscalar refer to states in [5]. ΣV ⊂ Γ is the isotropy group of the point V . � denotes the number of

conjugacy classes in Γ of each state.

k V Comment ΣV �

0 (1, 1, 1, 1, 1, 1) scalar equilibrium D6(κ, ξ) 1

(−1,−1,−1,−1,−1,−1) scalar equilibrium D6(κ, ξ) 1

1 (i, i,−v, v, v,−v) rotating wave D1(κ) 6

(v2, iv,−1, 1,−iv,−v2) rotating wave D1(κξ) 6

2 (1, 1,−v2, iv, iv,−v2) equilibrium D2(κ, ξ
3) 3

(−1,−1, v2,−iv,−iv, v2) equilibrium D2(κ, ξ
3) 3

3 (i, i, i, i, i, i) scalar equilibrium D3(κ, ξ
2) 2

(1,−1, 1,−1, 1,−1) pseudoscalar equilibrium D3(κξ, ξ
2) 2

4 (1, 1, iv,−v2,−v2, iv) equilibrium D2(κ, ξ
3) 3

(−1,−1,−iv, v2, v2,−iv) equilibrium D2(κ, ξ
3) 3

5 (i, i, v,−v,−v, v) rotating wave D1(κ) 6

(v2, iv,−iv,−v2,−1, 1) rotating wave D1(κξ
5) 6

Figure 16. Line field/thresholding of cortex/retinal images for planform k = 0.

graph the planforms associated to these conjugate points. (In the figure captions, we indicate

which group element produces the conjugacy.) Recall the discussion about retinal planforms

and conjugate cortical planforms in section 1. Finally, we note that movies (time-periodic

solutions) are associated to framed retinal images in Figures 17, 21, and 25–28.

3.4. The effects of weak anisotropy. Next we assume that the system is weakly anisotropic.

That assumption is equivalent to assuming weak symmetry-breaking in the equations and

generates more complicated dynamical descriptions corresponding to each maximal isotropy

subgroup. We list these in turn.

3.4.1. The family Σk+1 = D6(κ, [0, 0, kπ
6

]ξ), k = 0, . . . , 5. The results for these

states are summarized in Table 5, and the details are found in section 4.8.1. See Figures 16–

21.
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Figure 17. Line field/thresholding of cortex/retinal images for planform k = 1. Second and fourth columns

with ξ action; note that thresholded images with and without ξ action are identical. Movies are associated to

framed images.

3.4.2. Σ7 = 〈κξ3, [0, θ2, 0], [θ1, 0,−πθ1]〉. Steady states corresponding to Σ7 persist

as steady states under symmetry-breaking perturbations of the system and are conjugate

to T1 = (1, 0, 0, 0, 0, 0). Details are found in section 4.8.2. Note that the eigenfunction for

planform 7 is

cos(2φ+ 2πk1 · x),

whose maximum value is 1 for every x. It follows that sensible contouring cannot be obtained

directly from the linear eigenfunction, and we present nonthresholded line field pictures in

Figure 22. The same point is valid for the Σ4 solutions on the square lattice.

3.4.3. Σ8 = 〈κ, ξ3, [0, θ2, 0], [1
2
, 0, π

2
]〉. In the anisotropic case, there are two conjugacy

classes of equilibria corresponding to type Σ8, namely, (1, 1, 0, 0, 0, 0) and (1,−1, 0, 0, 0, 0).

These correspond to scalar and pseudoscalar rolls. Generically, there may be intermediate

equilibria, and all dynamics on this group orbit converge to one of these equilibria. Details

are found in section 4.8.3. See Figure 23.

3.4.4. Σ9 = 〈ξ2, κξ, [1
3
, 1

3
, 2π

3
]〉. The dynamics on this group orbit is complicated to

describe. We prove that there are at least two conjugacy classes of equilibria corresponding

to ±(1, 0, 1, 0, 1, 0). Details are found in section 4.8.4. See Figure 24.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_04.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_05.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_06.gif
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Figure 18. Line field/thresholding of cortex/retinal images for planform k = 2. (Bottom) line fields with ξ

action.

Figure 19. Line field/thresholding of cortex/retinal images for planform k = 3.

3.4.5. Σ10 = 〈κξ, [θ1, θ1,−πθ1]〉. In the isotropic case, solutions corresponding to the

maximal isotropy subgroup of type Σ10 can be expected to be a rotating wave, and the same

is true in the anisotropic case. Up to conjugacy the rotating wave is [θ1,−θ1, 0](1, 0, 1, 0, 0, 0).

Details are found in section 4.8.5. See Figure 25.

3.4.6. Σ11 = 〈κξ4, [θ1,−θ1,−πθ1]〉. In the isotropic case, solutions corresponding to

the maximal isotropy subgroup of type Σ11 can be expected to be a rotating wave, and the same

is true in the anisotropic case. Up to conjugacy the rotating wave is [θ1, θ1, 0](1, 0, 0, 1, 0, 0).

Details are found in section 4.8.6. See Figure 26.

3.4.7. Σ12 = 〈κξ, ξ3, [1
2
, 1

2
, π

2
]〉. When symmetry breaks, equilibria and discrete rotat-

ing waves are possible. See Krauskopf [18, 19] and sections 4.7.3 and 4.8.7. See Figures 27

and 28 for possible equilibrium planforms.
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Figure 20. Line field/thresholding of cortex/retinal images for planform k = 4.

Figure 21. Line field/thresholding of cortex/retinal images for planform k = 5. Second and fourth columns

with ξ action; note that thresholded images with and without ξ action are identical. Movies are associated to

framed images.

Note that in a system of PDEs (or in an integro-differential equation such as a Wilson–

Cowan equation), a typical solution will be a function of both space and time. In such systems,

a discrete rotating wave is a solution whose shape in space changes periodically in time; that

is, the associated planform at different times need not be symmetry-related. The qualitative

features of a movie of a discrete rotating wave are quite different from those of a (continuous)

rotating wave.

4. Proofs of lattice results. In this section, we verify the results stated in sections 2 and

3.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_07.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_08.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_09.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_10.gif
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Figure 22. Line fields of cortex/retinal images for planform 7. (Second and fourth panels) line fields with

ξ action. The maximum value of a(x, ·) is constant in x for these planforms, so thresholding is not relevant.

Figure 23. Line field/thresholding of cortex/retinal images for planform 8. Bottom with ξ action.

4.1. Verification of (2.1). Without loss of generality, we may assume that the planar

square lattice L is the integer lattice and that the dual lattice L∗ is generated by

k1 = (1, 0) and k2 = (0, 1).

Using Fourier series, we may write each function f ∈ FL as

f(x, φ) =
∑
m,k

zm,ke
2imφe2πik·x + c.c.,

where m ≥ 0, k ∈ Z2, and zm,k ∈ C. The functions corresponding to wave vectors of constant

length k, namely,

Vk =



∑

m,|k|=k
zm,ke

2imφe2πik·x + c.c.


 ,
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Figure 24. Line field/thresholding of cortex/retinal images for planform 9.

Figure 25. Line field/thresholding of cortex/retinal images for planform 10. Bottom with ξ2 action. Movies

are associated to framed images.

are Γ̃-invariant subspaces. In this paper, we consider only steady-state bifurcations whose

critical eigenspaces are irreducible subspaces in V1, that is, those eigenfunctions corresponding

to wave vectors of shortest length.

4.1.1. The irreducible subspaces of V1 ⊂ FL. The group Γ̃ contains a 3-torus T3

generated by translations y ∈ T2 and rotations φ̂ ∈ S1. For each k ∈ L∗ and m ∈ Z, the

two-dimensional subspaces

Wk,m = {ze2imφe2πik·x + c.c. : z ∈ C} ⊂ FL

are distinct irreducible representations of T3. Counterclockwise rotation ξ through angle π/2

and reflection κ across the horizontal axis generate Γ̃ over T3, and

θWk,m = Wθk,m and κWk,m = Wκk,−m

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_11.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_13.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_12.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_14.gif
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Figure 26. Line field/thresholding of cortex/retinal images for planform 11. Second and fourth columns

with ξ2 action. Movies are associated to framed images.

Figure 27. Line field/thresholding of cortex/retinal images for planform 12: (Top) u = 1 and (bottom)

u = 0.5i. Movies are associated to framed images.

for any θ ∈ SO(2). Finally,

W−k,−m = Wk,m.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_15.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_16.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_17.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_18.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_19.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_20.gif
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Figure 28. Line field/thresholding of cortex/retinal images for planform 12 with ξ2 action: (Top) u = 1

and (bottom) u = 0.5i. Movies are associated to framed images.

Now fix k = k1, and denote

Wm =
∑
γ∈D4

γWk1,m,

which is Γ̃-invariant. The subspace W0 is four-dimensional, and the subspaces Wm are eight-

dimensional when m > 0. Indeed, Wm consists of all functions of the form (2.1). For m > 0,

we identify a(x, φ) ∈ Wm with (z1, w1, z2, w2) ∈ C4.

Lemma 4.1. The subspace Wm ⊂ FL is an absolutely irreducible representation of Γ̃.

Proof. The case in which m = 0 is established by Lemma 3.1 in [5]. For m > 0, write

Wm = W+
m ⊕W−

m as a sum of even and odd functions of φ (that is, cos(2mφ) and sin(2mφ)).

The summands are absolutely irreducible and nonisomorphic (look at the action of κ) for

D4+̇T2 by Lemma 3.1 in [5]. Thus any matrix commuting with Γ̃L on Wm is block diagonal,

with each diagonal block being a real multiple of the identity. Now the extra S1-symmetry

forces the two diagonal blocks to be equal. (Consider specifically [0, 0, π4 ], which interchanges

W+
m and W−

m .)

4.2. Group action and isotropy subgroups. Fix m > 0. The action of Γ̃ is given in

Table 6, where we denote elements in the 2-torus T2 of translations by [θ1, θ2]. Recall that

0 ≤ θj < 1, since the lattice is 1-periodic, φ̂ is π-periodic, and a ∈ Wm given by (2.1) is

identified with (z1, w1, z2, w2) ∈ C4.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_21.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40988_22.gif
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Table 6

Group action on (z1, w1, z2, w2) ∈Wm = C4; ξ, κ ∈ D4, 0 ≤ θ1, θ2 < 1, and 0 ≤ φ̂ < π.

Generators Action

ξ (w2, z2, z1, w1)

κ (w1, z1, z2, w2)

[θ1, θ2, 0] (e2πiθ1z1, e
2πiθ1w1, e

2πiθ2z2, e
2πiθ2w2)

[0, 0, φ̂] (e−2imφ̂z1, e
2imφ̂w1, e

−2imφ̂z2, e
2imφ̂w2)

Table 7

u, v ∈ C, a, b ∈ R.

Normal form Generators Fixed subspace Dim

0 (0, 0, 0, 0) Γ̃ 0 0

1 (1, 1, 1, 1) κ, ξ R{(1, 1, 1, 1)} 1

2 (1, 1, 1,−1) κ,
[
3
4
, 1

4
, π

4

]
ξ R{1, 1, 1,−1} 1

3 (1, 1, 0, 0) κ, ξ2, [0, θ2, 0] R{(1, 1, 0, 0)} 1

4 (1, 0, 0, 0) κξ2, [0, θ2, 0], [θ1, 0, πθ1] R{(1, 0, 0, 0)} 1

5 (1, 0, 1, 0) κξ, [θ1, θ1, πθ1] {(u, 0, u, 0} 2

6 (1, 1, b, b) κ, ξ2 {(a, a, b, b)} 2

7 (1, 1,−b, b) κ,
[
0, 1

2
, 0
]
ξ2 {(a, a,−b, b)} 2

8 (i,−i,−i, i) κξ, ξ2 {(u, u, u, u)} 2

9 (1, b, 0, 0) κξ2, [0, θ2, 0] {(a, b, 0, 0)} 2

10 (1, 1, b, b) ξ2 {(u, u, v, v)} 4

11 (1, 1, a, b) κ {(u, u, a, b)} 4

12 (1, b, 1, b) κξ {(u, v, u, v)} 4

13 (1, 0, b, 0) [θ1, θ1, πθ1] {(u, 0, v, 0)} 4

14 1 C4 8

Note that the action always has a nontrivial kernel Z4m generated by the element

[
θ1, θ2, φ̂

]
=

[
1

2
,
1

2
,
π

2m

]
.

In order to simplify the presentation, we will not include this kernel explicitly in the isotropy

subgroups. Indeed, the bifurcation analysis is identical for all m ≥ 1. (Just factor out the

kernel.) The case in which m = 0 was considered in [5]. Hence, without loss of generality, we

assume that m = 1. The assumption that m = 1 does make a difference in the planforms—

but in a very controllable way. The case in which m ≥ 2 differs from m = 1 by the fact

that the activity function a(x, ·) restricted to the unit circle at x has period π/m instead of

π. Therefore, the maxima of this activity variable occur simultaneously at m points on that

circle rather than at a single point.

Using the group action given in Table 6, we can compute the lattice of isotropy subgroups
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(up to conjugacy) of the action of Γ̃ on W1. The results for m = 1 are given in Table 7.

We verify that up to conjugacy the maximal subgroups are those shown in Table 7. Let

z = (z1, w1, z2, w2). Our strategy is based on the fact that conjugate points have conjugate

isotropy subgroups. Moreover, it is convenient to note that multiplying z by a nonzero real

number does not change its isotropy subgroup. So we can conjugate z by elements of Γ̃ and

scale z to put z into a “normal form.” Once we have the normal form, we compute generators

for the isotropy subgroups of that normal form.

There is a useful remark that concerns conjugating z with 3-torus T3 = {[θ1, θ2, φ̂]}
elements: z can be conjugated by an element in T3 so that any three of its nonzero coordinates

are real and positive.

We discuss only maximal isotropy subgroups: cases 0 to 5. First, we classify the isotropy

subgroups of z when z has some of its coordinates equal to zero. If z = 0, then its isotropy

subgroup is Γ̃, which is case 0. If three of the coordinates of z are zero, then z is conjugate

to (1, 0, 0, 0), and we have case 4. If two of the coordinates of z are zero, then we can assume

after conjugacy that the other two coordinates are real and positive. After conjugacy, by

elements in D4 we can assume that the fourth coordinate and either the second or the third

coordinate is zero. Thus, after scaling, z has the normal form (1, 0, b, 0) or (1, b, 0, 0), where

b ≥ 1. If b = 1, then we have cases 5 and 3. (If b > 1, then we have cases 13 and 9, which

are not maximal.)

Next, we assume that all coordinates of z are equal in modulus. After scaling, we assume

that all coordinates have modulus one, and after conjugating by an element in T3 we can

assume that z = (1, 1, 1, e2πiρ). Observe that κz = (1, 1, 1, e−2πiρ). After conjugacy, it follows

that we may assume 0 ≤ ρ ≤ 1
2 . We consider three possibilities: ρ = 0, ρ = 1

2 , and 0 < ρ < 1
2 .

Note that ρ = 0 is z = (1, 1, 1, 1), which is case 1. When ρ = 1
2 , then z = (1, 1, 1,−1); the

isotropy subgroup is 〈κ, [34 , 1
4 ,

π
4 ]ξ〉 ∼= D4, which is case 2. Finally, when 0 < ρ < 1

2 ; the

isotropy subgroup is 〈[0, ρ, 0]ξ2, [ρ2 ,
ρ
2 ,

πρ
2 ]κξ〉, which is conjugate to 〈κξ, ξ2〉 by [0,−ρ

2 ,−πρ
4 ].

This is case 8, which is not maximal.

Finally, all z whose coordinates are nonzero and not of equal modulus have isotropy

subgroups that are not maximal.

4.3. Equivariants of Γ̃ acting on W1 in square lattice. Let F : C4 → C4 be a Γ̃-

equivariant polynomial mapping. We can write the form of F in terms of invariant generators

using standard invariant theory, and we do so in Theorem 4.1. The proof of this theorem uses

standard techniques and is not presented here. For background, see [14].

In complex coordinates, we can write F as

F = (Z1,W1, Z2,W2).(4.1)
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Using the D4-equivariance of F (specifically κ, ξ3, κξ3), we see that

W1(z1, w1, z2, w2) = Z1(w1, z1, z2, w2),

Z2(z1, w1, z2, w2) = Z1(z2, w2, w1, z1),

W2(z1, w1, z2, w2) = Z1(w2, z2, w1, z1).

(4.2)

In addition, Z1 must satisfy T3-invariance conditions

Z1(e
2πiθ1z1, e

2πiθ1w1, z2, w2) = e2πiθ1Z1(z1, w1, z2, w2),(4.3)

Z1(z1, w1, e
2πiθ2z2, e

2πiθ2w2) = Z1(z1, w1, z2, w2),(4.4)

Z1(z1, e
2πiφ̂w1, z2, e

2πiφ̂w2) = Z1(z1, w1, z2, w2)(4.5)

as well as

Z1(z1, w1, w2, z2) = Z1(z1, w1, z2, w2).(4.6)

Here we take as T3 generators the circles (θ1, 0, 0), (0, θ2, 0), and (φ̂/2, φ̂/2, πφ̂/2).

Theorem 4.1. The invariance conditions (4.3)–(4.5) and (4.6) imply that the polynomial Z1

has the form

Z1 = C(|z1|2, |w1|2, |z2|2 + |w2|2, i(|z2|2 − |w2|2), z1w1z2w2)z1

+ D(|z1|2, |w1|2, |z2|2 + |w2|2, i(|z2|2 − |w2|2), z1w1z2w2)w1z2w2,

where C and D are polynomials with real coefficients. Moreover, this form is unique.

4.4. Existence of time-periodic rotating waves. We claim that generically there is a

branch of time-periodic rotating wave solutions corresponding to the maximal isotropy sub-

group Σ5; moreover, the period of these solutions tends to infinity at the bifurcation point.

To verify these statements, we must use the Γ̃-equivariant polynomials on C4.

We assume that (4.1), with bifurcation parameter λ, is obtained by a center manifold

reduction so that the asymptotic dynamics of the differential equation is reproduced by (4.1).

Observe that (4.1) restricted to Fix(Σ5) is given by

du

dt
= Z1(u, 0, u, 0, λ)

= C(|u|2, 0, |u|2, i|u|2, 0, λ)u
=

(
cλλ+ (c1 + c3)|u|2 + c4i|u|2 + · · · )u,

(4.7)

where

C = c1|z1|2 + c2|w1|2 + c3(|z2|2 + |w2|2) + c4i(|z2|2 − |w2|2) + cλλ+ · · ·(4.8)
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and c1, c2, c3, c4, cλ are real constants. Write u = ρeiτ in polar coordinates, and write (4.7) as

phase amplitude equations (to third order) obtaining

dρ

dt
= (cλλ+ (c1 + c3)ρ

2)ρ,

dτ

dt
= c4ρ

2.

Assume that the eigenvalue crossing condition

cλ �= 0(4.9)

is valid. Then there exists an invariant circle for the dynamics (given by a zero to the amplitude

equation) at

λ = −c1 + c3
cλ

ρ2,

and the invariant is a periodic solution if the nondegeneracy condition

c4 �= 0

holds. Note that the frequency of the periodic solution is c4ρ
2/2π, which goes to zero at the

bifurcation point.

4.5. Stability of maximal isotropy solutions. The following computations were done us-

ing Mathematica for the equivariant F determined by Theorem 4.1, where

C(|z1|2, |w1|2, |z2|2 + |w2|2, i(|z2|2 − |w2|2), z1w1z2w2, λ)

= c1|z1|2 + c2|w1|2 + c3(|z2|2 + |w2|2) + c4i(|z2|2 − |w2|2) + cλλ+ · · ·(4.10)

D(|z1|2, |w1|2, |z2|2 + |w2|2, i(|z2|2 − |w2|2), z1w1z2w2, λ)

= d0 + dλλ+ · · · .

Table 8 describes necessary and sufficient conditions for the orbital asymptotic stability of

Γ̃-orbits of fixed points and periodic orbits corresponding to the maximal isotropy subgroups

of the action on the square lattice near bifurcation. This stability refers to perturbations in

the class of spatially periodic functions on the square lattice. These conditions were obtained

by computing the eigenvalues of the differential of a Γ̃-equivariant vector field (to lowest order

in the bifurcation parameter) and requiring that those eigenvalues that are not forced to be

zero by symmetry have negative real part.
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Table 8

Stability of maximal isotropy types for the square lattice; dZ/dt = F (Z, λ), with F determined by (4.10).

Numbering of isotropy groups is as in Table 7.

Group Solution Stability conditions

1 equilibrium c1 − c2 − d0 < 0 c1 + c2 ± (2c3 + d0) < 0 d0 > 0

2 equilibrium c1 − c2 + d0 < 0 c1 + c2 ± (2c3 − d0) < 0 d0 < 0

3 equilibrium c1 ± c2 < 0 −c1 − c2 + 2c3 ± d0 < 0

4 equilibrium c2 − c1 < 0 c3 − c1 < 0 c1 < 0

5 periodic c2 − c1 ± d0 < 0 c1 ± c3 < 0 cλ > 0 c4 
= 0

4.6. Effect of weak anisotropy on square lattice. The study of forced symmetry-breaking

requires the following general result.

Lemma 4.2. Let K ⊂ H be compact subgroups in O(n). Assume that the H-equivariant

vector field F : Rn → Rn has a normally hyperbolic, flow-invariant, H-invariant compact

manifold S contained in Fix(K). Let F ′ : Rn → Rn be a small H-equivariant perturbation of

F .

Then F ′ has a unique flow-invariant manifold S′ near S that is also H-invariant, contained
in Fix(K), diffeomorphic to S, and normally hyperbolic for F ′.

Proof. Normal hyperbolicity implies that any small perturbation of F (equivariant or not)

will have a unique flow-invariant set S′ that is close to (and diffeomorphic to) S. (See Hirsch,

Pugh, and Shub [15].)

Since the subspace Fix(K) is preserved by all H-equivariant vector fields, we can apply

the previous result to the vector fields restricted to Fix(K) and conclude that there is an

F ′-invariant set S′′ ⊂ Fix(K) near S. Uniqueness forces S′ = S′′. Similarly, uniqueness forces

S′ to be H-invariant. Let h ∈ H. Then h(S′) is also F ′-invariant and close to S (because

h(S) = S); hence h(S′) must coincide with S′.

4.6.1. Squares: Σ1 = D4(κ, ξ). Let S1 = (1, 1, 1, 1). The isotropy subgroup Σ1 of S1 is

axial, with fixed-point subspace V0 = R{S1}. The Equivariant Branching Lemma implies that

a generic Γ̃ bifurcation with kernel W1 has a branch of solutions Z(λ) = u(λ)S1, u(λ) > 0, in

V0 with symmetry Σ1. When discussing forced symmetry-breaking of this equilibrium, which

we assume to be normally hyperbolic, we can assume that u(λ) = 1.

The equilibria that are conjugate by a Γ̃-symmetry to S1 fill out the 3-torus

T3 = {(z1, w1, z2, w2) : |z1| = |w1| = |z2| = |w2|, z1w1z2w2 = 1},

and each point on T3 has the form [θ1, θ2, φ̂]S1. Recall that the isotropy subgroup of σv is
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Σσv = σΣvσ
−1. A short calculation shows that

[
θ1, θ2, φ̂

]
ξ = ξ

[
θ2,−θ1, φ̂

]
,[

θ1, θ2, φ̂
]
κ = κ

[
θ1,−θ2,−φ̂

]
.

It follows that

[
θ1, θ2, φ̂

]
ξ
[− θ1,−θ2,−φ̂

]
= ξ
[
θ2 − θ1,−θ2 − θ1, 0

]
,[

θ1, θ2, φ̂
]
κ
[− θ1,−θ2,−φ̂

]
= κ

[
0,−2θ2,−2φ̂

]
.

Thus, when symmetry breaks from Γ̃ to Γ, the isotropy subgroup of [θ1, θ2, φ̂]S1 is isomorphic

to Z4(ξ) unless φ̂ = 0, π4 ,
π
2 ,

3π
4 . The reason that φ̂ = ±π

4 are possibilities is that [12 ,
1
2 ,

π
2 ] is in

the kernel of Γ̃ acting on C4. In these exceptional cases, the isotropy subgroup of [θ1, θ2, φ̂]S1

is isomorphic to D4(κ, ξ).

Since dimFix(D4) = 1, it follows from Lemma 4.2 that both S1 and

S2 ≡
[
1

4
,
1

4
,
π

4

]
S1 = (1,−1, 1,−1)

remain as equilibria when small anisotropy is assumed. Points conjugate to S1 in Γ are scalar

squares (Esquares in [5]), and points conjugate to S2 in Γ are pseudoscalar squares (Osquares

in [5]).

The fixed-point subspace of Z4(ξ) is two-dimensional and consists of vectors of the form

(u, u, u, u). The intersection of this fixed-point subspace with the torus T3 is the circle where

|u| = 1. It follows by conjugacy that the flow of the vector field restricted to T3 when the

isotropy subgroup is conjugate to Z4 is on circles. Moreover, each circle has four equilibria,

points conjugate to ±S1 in Γ and points conjugate to ±S2. Depending on the exact form of

the anisotropy in model equations, it is possible for there to be additional equilibria on these

circles.

4.6.2. Σ2 = D4(κ,
[
3
4
, 1

4
, π

4

]
ξ). The verification that forced symmetry-breaking leads

to equilibria in this case is similar in spirit to that for Σ1 in section 4.6.1, although the details

are somewhat different. We can show that all points on the Γ̃ group orbit 3-torus of equilibria

have isotropy subgroup in Γ containing a group element conjugate to ξ2. This fact forces the

Γ-equivariant dynamics on the torus to be constrained to circles given by the action of φ̂.

Moreover, on each of these circles, there are eight points whose Γ isotropy subgroup contains

group elements conjugate to κ or κξ. These points are forced to remain as equilibria for

Γ-equivariant perturbations. Thus, as in the Σ1 case, the trajectories of the forced symmetry-

broken flow converge to equilibria.
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4.6.3. Rolls: Σ3 = 〈κ, ξ2, [0, θ2, 0]〉. The analysis of Σ3 steady states is similar to that

done in section 4.6.1 for Σ1; therefore, we just sketch the details.

Let R1 = (1, 1, 0, 0). The isotropy subgroup Σ3 is axial, with fixed-point space V0 =

R{R1}; hence generically a branch of steady states Z(λ) = u(λ)(1, 1, 0, 0) exists. Again, when

discussing forced symmetry-breaking, we may assume that u(λ) = 1.

The steady states conjugate to R1 in Γ̃ form two 2-tori that are conjugate by ξ. Since

this symmetry is not lost when we break symmetry from Γ̃ to Γ, it is enough to analyze one

of these tori. We focus on the torus given by the orbit of R1 under [θ1, 0, φ̂], the connected

component of Γ̃. This torus is contained in Fix([0, θ2, 0]) and has the form

T2 = {(z1, w1, 0, 0) : |z1| = |w1| = 1}.

The isotropy subgroups of these points are conjugate to either Σ3 or the index two sub-

group 〈ξ2, [0, θ2, 0]〉. The former leads to equilibria and the latter to flow-invariant circles on

T2. The equilibria are conjugate either to R1 (scalar rolls) or to R2 = (1,−1, 0, 0) (pseu-

doscalar rolls).

As before, each circle has at least four equilibria, points conjugate in Γ to ±R1 and ±R2.

Depending on the exact form of the anisotropy in model equations, it is possible for there to

be additional equilibria on these circles.

4.6.4. Σ4 = 〈κξ2, [0, θ2, 0], [θ1, 0, πθ1]〉. We claim that steady states corresponding

to Σ4 persist as steady states under symmetry-breaking perturbations of the system. Let

T1 = (1, 0, 0, 0). The isotropy subgroup Σ4 of T1 is axial and, by the Equivariant Branching

Lemma, leads generically to a branch of steady states Z(λ) = u(λ)T1 with symmetry Σ4.

The connected group orbit through T1 is the circle [θ1, 0, 0]T1. Since

Fix(〈κξ2, [0, θ2, 0]〉) = {(a, b, 0, 0) : a, b ∈ R}

intersects the circle in two points, these points are equilibria. Since points on this circle are

conjugate in Γ, it follows that all points on the circle are equilibria. There are three conjugate

circles of steady states obtained by applying κ, ξ, and ξκ.

4.6.5. Rotating spirals: Σ5 = 〈κξ, [θ1, θ1, πθ1]〉. In subsection 4.4, we showed that

generically a branch of time-periodic rotating waves bifurcates in the fixed-point subspace of

isotropy subgroup Σ5. We show that these rotating waves persist when symmetry is broken

to Γ.

Note that the connected group orbit that contains the rotating waves is the 2-torus

[θ1, θ2, 0](1, 0, 1, 0). Since the fixed-point subspace of κξ intersects the torus in a circle, it

follows that the flow on this torus is restricted to circles. Finally, the fact that [θ1,−θ1, 0]
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normalizes the isotropy subgroup of (1, 0, 1, 0) forces the flow on the circles to be a rotating

wave. Since these statements rely only on elements in Γ, it follows that the solutions remain

rotating waves even after a symmetry-breaking perturbation.

4.7. Maximal isotropy groups for the hexagonal lattice. In this section, we will find

maximal isotropy groups for the hexagonal lattice action. Namely, we will describe vectors

Z = (z1, w1, z2, w2, z3, w3) ∈ C6 such that ΣZ is a maximal isotropy group.

We will look at the cases determined by the number of nonzero elements of Z. Since we

are interested only in the maximal isotropy groups, the following lemma is useful.

Lemma 4.3. If ΣZ is a maximal isotropy group, then there is a vector Z
′ such that ΣZ = ΣZ′

and all nonzero entries of Z ′ have the same absolute value.

Proof. Denote 0 = max{|zi|, |wi|} > 0, and let Z ′ be the element obtained from Z by

setting to zero all entries whose absolute value is not equal to 0. Then, each element σ ∈ Γ̃

that fixes Z fixes Z ′ as well (since the action of Γ̃ at most permutes the set of absolute values

of the entries of Z; see Table 3); that is, ΣZ ⊂ ΣZ′ . If ΣZ is maximal, then the inclusion has

to be equality.

Denote by N(Z) the number of nonzero entries of Z. By the previous lemma, we can

assume that each nonzero element has absolute value equal to 1. Notice that the action of D6

either preserves the zi- and wi-positions or interchanges them. Moreover, the pairs (zi, wi)

are never “broken up.”

By the notation tσ for an element of Γ̃, we mean that t = [θ1, θ2, φ̂] ∈ T3 and σ ∈ D6. We

use the numbering of isotropy groups given in Table 4.

N(Z) = 1. Use D6 to make z1 �= 0, and then apply θ1 to obtain z1 > 0. This gives case 7.

N(Z) = 2. Up to the action of D6, there are three possibilities for the position of the

nonzero elements. We then use T3 to make the entries positive (hence equal):

(a) Z = (1, 1, 0, 0, 0, 0) is case 8.

(b) Z = (1, 0, 1, 0, 0, 0) is case 10.

(c) Z = (1, 0, 0, 1, 0, 0) is case 11.

N(Z) = 3. Again, we use the action of D6 to bring the nonzero elements to the “leftmost”

positions, followed by T3 to make them positive (hence equal). There are four cases:

(a) Z = (1, 0, 1, 0, 1, 0) is case 9.

(b) Z = (1, 0, 1, 0, 0, 1): let tσ ∈ ΣZ . Note that the only element of D6 that preserves the

nonzero positions is the identity; hence σ = 1. The only element t ∈ T3 that preserves

these positions is the identity as well; hence ΣZ is the trivial group.

(c) Z = (1, 1, 1, 0, 0, 0): let tσ ∈ ΣZ . Then σ = 1, and t ∈ T3 has to be t1 = [12 ,
1
2 ,

π
2 ] or

the identity; hence ΣZ = 〈t1〉 ⊂ Σ12 (from case 12), and hence ΣZ is not maximal.
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(d) Z = (1, 1, 0, 1, 0, 0): let tσ ∈ ΣZ . Then σ = 1, and t ∈ T3 has to be the identity as

well.

N(Z) = 4. After applying D6, there are three possibilities for the nonzero positions. We

can also make three entries equal to 1 by using a T3-element.

(a) Z = (1, 1, 1, e2πiρ, 0, 0): if tσ ∈ ΣZ , then σ is one of ξ3, κξ, κξ4, or 1. We conclude

that ΣZ = 〈[12 , 1
2 ,

π
2 ], [0,−ρ, 0]ξ3, [−ρ

2 ,−ρ
2 ,

πρ
2 ]κξ〉. This is conjugated to case 12 by

[0,−ρ
2 ,

πρ
4 ].

(b) Z = (1, 0, 1, 0, 1, e2πiρ): if tσ ∈ ΣZ , then σ = κξ or 1. κξZ = (1, 0, 1, 0, 1, e−2πiρ),

and, if Z has a nontrivial stabilizer, then t has to be a multiple of [13 ,
1
3 ,−π

3 ]. Thus

ΣZ ⊂ Σ10 (from case 10) and hence is not maximal.

(c) Z = (1, 0, 0, 1, 1, e2πiρ): if tσ ∈ ΣZm, then σ = κξ4 or 1, and t = [θ1,−θ1,−πθ1] for a

particular value of θ1; hence ΣZ ⊂ Σ11 (from case 11).

N(Z) = 5. Such points have a trivial isotropy group.

N(Z) = 6. Since such points have a trivial stabilizer in T3, the projection of ΣZ to D6 is

one-to-one. Thus there is a group isomorphism σ ∈ G 	→ σ̃ = tσσ ∈ ΣZ , where G ⊂ D6.

Note that if s ∈ T3, then s(tσσ)s
−1 = (tσs(σs

−1σ−1))σ. Thus we can reduce tσ by any

element in the range of s ∈ T3 	→ s(σs−1σ−1) ∈ T3. The action of D6 by the conjugation of

T3 is given by relations (3.2).

We classify first the isomorphisms D6 ↪→ Γ̃, up to conjugacy. Since the action of ξ on

[θ1, θ2] does not have 1 as an eigenvalue, one can reduce tξ to [0, 0, φ̂]. Thus ξ̃ = [0, 0, φ̂]ξ. The

action of κ has eigenvalue −1 in the φ̂-direction. Hence, by conjugating with an element of

T3 in this eigenspace (which commutes with ξ), we can simultaneously reduce tκ to [θ1, θ2, 0].

Let us now impose the relations of D6. ξ̃6 = 1 implies 6φ̂ = 0 (mod π), and the relation

κ̃2 = 1 implies θ1 = 0 (mod 1) because κ̃2 = [2θ1,−θ1, 0]. Finally, κ̃ξ̃κ̃ξ̃ = 1 implies θ2 = 0

(mod 1) because κ̃ξ̃κ̃ξ̃ = [−θ2, θ2, 0]. In conclusion, up to conjugacy, there are six inclusions

D6 ↪→ Γ̃, those given in cases k=0, . . . ,5. (These cannot be conjugated by an element of T3

because the φ̂-component of ξ̃ is not altered by such a conjugacy.)

It remains to establish that there are no finite maximal isotropy subgroups that are iso-

morphic to a proper subgroup of D6 and whose fixed-point subspace consists of vectors all of

whose entries are nonzero. We conjecture that this statement is true, but we have not been

able to prove the result.

4.7.1. Some cubic Γ̃-equivariants. The computation of the general Γ̃-equivariant on C6 is

quite complicated. Below we show that generically the dynamics on the two-dimensional fixed-

point subspaces of Σ10 and Σ11 involves rotating waves and that the dynamics on Fix(Σ12)

can involve discrete rotating waves. To verify these statements, we need only show that

certain cubic order terms in the Taylor expansion of a typical Γ̃-equivariant are nonzero. In
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this subsection, we list explicitly a few of the cubic Γ̃-equivariants, namely, those that are

sufficient to verify these statements.

Since the action of Γ̃ on C6 is absolutely irreducible (see Remark 3.1), the only linear

Γ̃-equivariant is the identity map. Since
[
0, 0, π2

]
acts as −I on C6, there are no nonzero

quadratic Γ̃-equivariants.

Since D6 acts transitively on the coordinates of C6, it follows that (cubic) equivariants

are determined by their first coordinates. We claim that

(|z2|2 + |z3|2)z1, i(|z2|2 − |z3|2)z1, (z2w2 + z3w3)w1, |z1|2z1

(|w2|2 + |w3|2)z1, i(|w2|2 − |w3|2)z1, i(z2w2 − z3w3)w1

(4.11)

are the first coordinates of Γ̃-equivariants on C6. This assertion can be verified using the

explicit action given in Table 3. Note that it is only necessary to check equivariance with

respect to the action of [θ1, θ2, φ̂] and κξ3.

4.7.2. Rotating waves. The verification that the maximal isotropy subgroups Σ10 and

Σ11 lead to rotating waves on the hexagonal lattice is identical to the verification that the

isotropy subgroup Σ5 on the square lattice leads to rotating waves, as shown in section 4.4.

All that needs to be shown is that there is a cubic equivariant whose restriction to Fix(Σ10)

is i|u|2u. For example, we may take the equivariant whose first coordinate is i(|z2|2 −|z3|2)z1.

Similarly, the equivariant whose first coordinate is i(|w2|2 − |w3|2)z1 restricts to i|u|2u on

Fix(Σ11). The group orbit along which the rotating wave travels is given by the normalizer of

the isotropy subgroup Σ, and that information is given in Table 4.

4.7.3. Discrete rotating wave: Σ12 = 〈κξ, ξ3, [1
2
, 1

2
, π

2
]〉. Any Γ̃-equivariant vector field

restricted to Fix(Σ12) ∼= C is Z4-equivariant since N(Σ12)/Σ12
∼= Z4. See Table 4. It follows

that the restricted vector field has the form

f(u) = A(|u|2, u4)u+B(|u|2, u4)u3,(4.12)

where A and B are complex-valued functions. To cubic order

f(u, λ) = (λ+ a|u|2)u+ bu3,

where λ, a, b ∈ C. In fact, absolute irreducibility of the action of Γ̃ implies that λ ∈ R. For

λ �= 0, we rescale time t so that λ = 1. If b �= 0, then after rescaling u to αu, where α ∈ C, we

can assume that b = 1 and that λ is unchanged. Krauskopf [18, 19] classified the dynamical

states that the cubic truncation can exhibit for all b and λ; these states include equilibria and

time-periodic orbits even when λ = 1. For periodic states, see [18, p. 1086, Figure 12 (between

regions 14 and 15)]. Normal hyperbolicity of these solutions guarantees that the equilibria
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and periodic states persist as solutions in (4.12). Note that |z1|2z1 and i(|z2|2−|z3|2)z1 are the

first coordinates of Γ̃-equivariants on C6 whose restrictions to Fix(Σ12) are |u|2u and i|u|2u.
To complete this proof, we need to find Γ̃-equivariant cubics that restrict to u3 and iu3 on

Fix(Σ12). The first coordinates of such cubics are (z2w2 + z3w3)w1 and i(z2w2 − z3w3)w1.

4.8. Effect of weak anisotropy on hexagonal lattice. We now present the details of the

effect of forced symmetry-breaking on each of the 12 types of solutions that correspond to

maximal isotropy subgroups on the hexagonal lattice.

The strategy is the same as in section 2.4: given a (relative) equilibrium of a Γ̃-equivariant

flow, consider its orbit under the connected component of Γ̃, a 3-torus. This set (which

is a torus of dimension at most 3) is invariant under the flow. Assuming that this set is

normally hyperbolic, Lemma 4.2 guaranties that small Γ-equivariant perturbations of the

flow still admit a nearby invariant set, diffeomorphic to that of the unperturbed flow. Since

this diffeomorphism can be made Γ-equivariant, we can analyze the effect of breaking the φ̂-

symmetry on the unperturbed torus itself. We base our analysis on symmetry considerations,

namely, intersections of this torus with fixed-point spaces. These determine flow-invariant

sets: when these are points, they are equilibria, whereas if they are higher-dimensional, then

one expects that generically the flow is nontrivial. This approach is used by Lauterbach and

Roberts [20] in their analysis of forced symmetry-breaking.

We use two assumptions to draw our conclusions: the flow-invariant toral sets described

above are generically normally hyperbolic for a Γ̃-equivariant flow, and, after breaking the

isotropy, the Γ-invariant flow is generically nontrivial whenever the Γ-symmetry on the in-

variant torus allows it.

Note that normal hyperbolicity is generic. For the case of the square lattice, we computed

the general form of a Γ̃-equivariant flow and concluded that, for various parameter choices, the

invariant sets corresponding to the five maximal isotropy subgroups can each be attractive.

See section 4.5. We expect the same to be true in the case of the hexagonal lattice. However,

the computations are tedious, and we did not perform them.

To address the other assumption, we must either compute the general form of the Γ-

equivariant perturbation of a Γ̃-equivariant vector field and show that it permits vector fields

that are nonzero on the sets under consideration or show that certain Γ-equivariant vector

fields on the toral sets introduced above can be extended to Γ-equivariant vector fields on C6.

4.8.1. The family Σk+1 = D6(κ, [0, 0, kπ
2

]ξ), k = 0, . . . , 5. Each of these subgroups

is axial, with the fixed-point subspace spanned, respectively, by

vk = (v3k, v3k, v7k, v11k, v11k, v7k), v = ei
π
6 .
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In the isotropic case, the flow-invariant group orbit is a 3-torus T3
k obtained by applying

[θ1, θ2, φ̂] to the point vk. When the anisotropy is small, there still exists a flow-invariant set

close to the 3-torus described above. The flow on this set can be understood by analyzing the

isotropic case. In the following, we consider Γ-equivariant flows on this 3-torus. To simplify

notation, we sometimes drop the reference to k.

Each of these 3-tori is foliated by 2-tori T
φ̂
= T

k,φ̂
that are swept out by the action of

[θ1, θ2, 0] on [0, 0, φ̂]vk. By [θ1, θ2]-equivariance, the flow on these 2-tori is parallel. Certain of

the 2-tori T
φ̂
are forced by Γ-symmetry to be flow-invariant; we call them critical. Generically,

other than the critical 2-tori, there are only finitely many other 2-tori that are flow-invariant.

We expect the flow between the invariant 2-tori to be transverse to the noninvariant T
φ̂
’s.

If k �= 1, 5, the invariant 2-tori consist of fixed points, and on the 3-torus T 3
k the flow is

along the curves [θ1, θ2] = constant. For k = 1, 5, the flow on the invariant 2-tori is generically

expected to be nontrivial (and parallel, as discussed above). For each critical torus, the

direction of the flow can be determined explicitly. See Table 9.

Table 9

Conjugacy classes of critical Tφ̂’s and flows on them. When flow is nontrivial, the direction of flow [θ1, θ2] is

given. When equilibrium is scalar or pseudoscalar, that is denoted by W±
1 . � denotes the number of conjugacy

classes in Γ of each critical torus, and v = [0, 0, φ̂]vk is the point where the isotropy subgroup Σv ⊂ Γ is

computed.

k φ̂ [θ1, θ2] or W
±
1 Σv φ̂ [θ1, θ2] or W

±
1 Σv �

0 0 W+
1 D6(κ, ξ)

π
2

W+
1 D6(κ, ξ) 1

1 0 [−2θ2, θ2] D1(κ)
π
12

[−θ2, θ2] D1(κξ) 6

2 0 D2(κ, ξ
3) π

2
D2(κ, ξ

3) 3

3 0 W+
1 D3(κ, ξ

2) π
4

W−
1 D3(κξ, ξ

2) 2

4 0 D2(κ, ξ
3) π

2
D2(κ, ξ

3) 3

5 0 [−2θ2, θ2] D1(κ)
π
12

[θ1, 0] D1(κξ
5) 6

We now present the details needed to derive the information in Table 9. For σ ∈ Γ, we are

interested in the intersection of Fix(σ) with the 3-torus T3
k swept out by vk under the action

of [θ1, θ2, φ̂].

This intersection is nontrivial only if the isotropy subgroup of a point in T3
k contains

σ. However, these isotropy subgroups are easy to compute because we know the isotropy

subgroup of vk:

Σvk = 〈κ, ξ̃〉 ∼= D6,

where ξ̃ =
[
0, 0, kπ6

]
ξ.

Hence the isotropy subgroup of [θ1, θ2, φ̂]vk is given by [θ1, θ2, φ̂]Σvk [−θ1,−θ2,−φ̂]. It
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follows from (3.2) that for σ̃ = κεξ̃p ∈ Σvk (ε ∈ {0, 1}, p = 0, . . . , 5),

[θ1, θ2, φ̂]σ̃[−θ1,−θ2,−φ̂] =

[
(I−Aσ)

(
θ1

θ2

)
, 2εφ̂+ (−1)ε

pkπ

6

]
σ,(4.13)

where σ = κεξp and Aσ is the action by conjugation of σ ∈ D6 on [θ1, θ2] (see (3.2)), and

κ[θ1, θ2] = [θ1,−θ1 − θ2]κ,

ξ[θ1, θ2] = [−θ2, θ1 + θ2]ξ.

Hence

Aκ =

(
1 0

−1 −1

)
, Aξ =

(
0 −1

1 1

)
.

For σ = κεξp and 0 ≤ η1, η2 ≤ 1, we conclude that

Fix([η1, η2, 0]σ) ∩ T3
k = {[θ1, θ2, φ̂]vk : θ1, θ2, φ̂ satisfies (4.15), (4.16)},(4.14)

where

(I−Aσ)

(
θ1

θ2

)
=

(
η1

η2

)
,(4.15)

2εφ̂+ (−1)ε
pkπ

6
= 0 (mod π).(4.16)

Each of these intersections is flow-invariant and one-dimensional unless it is empty or T3
k (as

one can check by computing the Aσ’s). We now consider separately the two cases, determined

by whether or not k is relatively prime to 6.

k = 1, 5. Equation (4.16) cannot be satisfied if ε = 0; hence the intersections are trivial

for σ = ξp, p �= 0. For ε = 1, (4.16) gives 2φ̂ = pkπ
6 (mod π); note that different values of p

give different values of φ̂, and hence different elements of Γ produce disjoint intersections with

T3
k. These are the critical 2-tori. Since I−Aκξp has rank one, (4.15) gives a flow-invariant line

in the corresponding T
φ̂
.

k = 0, 2, 3, 4. Setting ε = 1 and p = 0, . . . , 5, we find the finite set of critical φ̂-values from

(4.16). Choose a value p �= 0 such that pk ≡ 0 (mod 6). Then, for σ = ξp, the intersection

(4.14) is given by circles with constant [θ1, θ2], because the rank of I−Aκξp is equal to 2.

Since these flow-invariant circles intersect each T
φ̂
transversely, the flow has to be trivial on

the invariant T
φ̂
’s. Note that Aσ gives the only faithful two-dimensional representation of D6.

This explains the values of rank(I−Aσ).
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We decide now which critical 2-tori are conjugate by Γ. (Since the field is Γ-equivariant,

the action of Γ permutes the invariant 2-tori T
φ̂
.) Relation (4.13) shows that

κεξp
′
T
φ̂
= Tψ̂, where ψ̂ = (−1)ε

(
φ̂− p′kπ

6

)
(mod π).

Solving (4.16) with ε = 1 for the critical values of φ̂, we see that for each k there are two

Γ-conjugacy classes of critical tori T
φ̂
in T3

k.

4.8.2. Σ7 = 〈κξ3, [0, θ2, 0], [θ1, 0,−πθ1]〉. Equilibria of type Σ7 appear in circles.

When symmetry breaks, we see that (±1, 0, 0, 0, 0, 0) must remain as equilibria, since these

points form the intersection of Fix(κξ3) with the circle (z1, 0, 0, 0, 0, 0), where |z1| = 1. Since

[θ1, 0, 0] acts transitively on the circle, all points on the circle are equilibria.

4.8.3. Σ8 = 〈κ, ξ3, [0, θ2, 0], [1
2
, 0, π

2
]〉. Equilibria of type Σ8 lie on the 2-torus (z1, w1, 0,

0, 0, 0), where |z1| = |w1| = 1. The following group elements act on this torus:

[θ1, 0, 0](z1, w1) = (e−2πiθ1z1, e
−2πiθ1w1),

κ(z1, w1) = (w1, z1),

ξ3(z1, w1) = (w1, z1),

κξ3(z1, w1) = (z1, w1).

Note that Fix(D2) intersects the 2-torus at two points (1, 1) and (−1,−1). Thus these two

points are fixed in the anisotropic case. Moreover, Fix(κ) is the circle z1 = w1 on the torus,

and it must be flow-invariant. Since [θ1, 0, 0] acts on that circle, the points on the circle are

conjugate and must also be fixed points of the flow.

Next note that Fix(κξ3) consists of four points (±1,±1). Thus the circle generated by

[θ1, 0, 0] through (1,−1) also consists of fixed points. Finally, note that Fix(ξ3) is a circle

perpendicular to the diagonal (z1, z1) and is also flow-invariant. Thus [θ1, 0, 0]-symmetry

implies that the dynamics on the 2-torus is along circles perpendicular to the diagonal and

that each such circle has four equilibria (two pairs of conjugate equilibria).

We can assume that (up to symmetry) in the anisotropic case there are two kinds of equi-

libria corresponding to type Σ8, namely, (1, 1, 0, 0, 0, 0) and (1,−1, 0, 0, 0, 0). These correspond

to scalar and pseudoscalar rolls.

4.8.4. Σ9 = 〈ξ2, κξ, [1
3
, 1

3
, 2π

3
]〉. The group orbits for equilibria of type Σ9 are 3-tori

modeled by |z1| = |z2| = |z3| = 1. In the anisotropic case, there are seven flow-invariant circles

on this T3 and two fixed points. The fixed points are given by Fix(D3(ξ
2, κξ)) = ±(1, 1, 1).

Fix(ξ2) gives one of the circles z1 = z2 = z3, and each of Fix(κξ), Fix(κξ3), and Fix(κξ5)

gives two invariant circles. Although the dynamics on this group orbit seems complicated to

describe, we know that we will get at least two fixed points corresponding to ±(1, 0, 1, 0, 1, 0).
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4.8.5. Σ10 = 〈κξ, [θ1, θ1,−πθ1]〉. In the isotropic case, solutions corresponding to the

maximal isotropy subgroup of type Σ10 can be expected to be a rotating wave, since its

fixed-point subspace is two-dimensional and the normalizer of the isotropy subgroup acts as

a circle on this fixed-point subspace. See section 4.7.2. We claim that the same is true in the

anisotropic case.

Observe that the group orbit of solutions is the 2-torus (z1, 0, z2, 0, 0, 0), where |z1| = 1 =

|z2|. Observe that

κξ(z1, z2) = (z2, z1).

Note that [θ1, θ2, 0] acts transitively on the 2-torus so that the flow on the 2-torus is a linear

flow. Finally, note that Fix(κξ) = {(z1, z1)} is a circle ρ1 + ρ2 = 0, where zj = e2πiρj . So this

circle (and all circles parallel to it on the 2-torus) are flow-invariant and rotating waves.

4.8.6. Σ11 = 〈κξ4, [θ1,−θ1,−πθ1]〉. The analysis of the maximal isotropy subgroup

of type Σ11 is identical to that of Σ10, and, in the anisotropic case, group orbits are 2-tori

foliated by flow-invariant traveling waves. Note that the invariant circles Fix(κξ4) are parallel

to the main diagonal z1 = w2.

4.8.7. Σ12 = 〈ξ3, κξ,
[
1
2
, 1

2
, π

2

]〉. We now describe what happens to the discrete rotating

wave associated to the isotropy subgroup Σ12 (discussed in section 4.7.3) when symmetry-

breaking terms are added. The main mathematical issue is that Fix(Σ12) is no longer flow-

invariant when symmetry-breaking terms are added. Since the symmetry group of the discrete

rotating wave is finite, the action of the connected component of Γ̃ on this periodic solution

yields an invariant 4-torus, which is preserved by normal hyperbolicity. However, the three-

dimensional invariant subspace

W = Fix(〈ξ3, κξ〉) = {(u, ū, ū, u, x, x) | u ∈ C, x ∈ R} ⊃ Fix(Σ12)

survives symmetry-breaking. It is straightforward to check that the intersection of the 4-

torus with W is the original periodic solution. Therefore, the periodic state will survive small

symmetry-breaking terms and remain in W .
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Optimal Low Thrust Trajectories to the Moon∗

John T. Betts† and Sven O. Erb‡

Abstract. The direct transcription or collocation method has demonstrated notable success in the solution of
trajectory optimization and optimal control problems. This approach combines a sparse nonlinear
programming algorithm with a discretization of the trajectory dynamics. A challenging class of
optimization problems occurs when the spacecraft trajectories are characterized by thrust levels that
are very low relative to the vehicle weight. Low thrust trajectories are demanding because realistic
forces, due to oblateness, and third-body perturbations often dominate the thrust. Furthermore,
because the thrust is so low, significant changes to the orbits require very long duration trajectories.
When a collocation method is applied to a problem of this type, the resulting nonlinear program is
very large, because the trajectories are long, and very nonlinear because of the perturbing forces.

This paper describes the application of the transcription method to compute an optimal low
thrust transfer from an Earth orbit to a specified lunar mission orbit. It is representative of the
SMART-1 or “Small Missions for Advanced Research in Technology” of the ESA scientific program
[J. Schoenmaekers, J. Pulido, and R. Jehn, Tech. report S1-ESC-RP-5001, European Space Agency,
1998]. The spacecraft is deployed from an Ariane-5 into an elliptic Earth centered park orbit. The
goal is to insert the spacecraft into a lunar orbit that is polar and elliptic and has its pericenter
above the south pole. The spacecraft utilizes a solar electric propulsion system. The goal is to
compute the optimal steering during the orbit transfer, which takes over 200 days, so that the fuel
consumption is minimized.

The vehicle dynamics are defined using a modified set of equinoctial coordinates, and the trajec-
tory modeling is described using these dynamics. A solution is presented that requires the solution
of a sparse optimization problem with 211031 variables and 146285 constraints. The trajectory
we present requires two very long thrust arcs, and, consequently, the overall mission duration is
much shorter than multiburn trajectories. Issues related to the numerical conditioning and problem
formulation are discussed.

Key words. optimal control, sparse nonlinear programming, orbit transfer
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1. Overview of the problem. The European Space Agency (ESA) has introduced a
project called “Small Missions for Advanced Research in Technology,” or SMART-1, as a
part of their program [17]. A prime objective of SMART-1 is to demonstrate the use of solar
electric propulsion (SEP) as a key technology for scientific deep space missions. In addition
to the significant hardware challenges associated with this technology, low thrust trajectories
lead to challenging mission design problems. Our goal in this paper is to describe an ap-
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proach for solving low thrust trajectory problems in general and illustrate the technique for
the SMART-1 mission.

The motion of a spacecraft can be described by a system of second order ordinary differ-
ential equations,

r̈ + µ
r

r3
= ad,(1.1)

where the radius, r = ‖r‖, is the magnitude of the inertial position vector r, and µ is the
gravitational constant. In this formulation, we define the vector ad as the disturbing accel-
eration. This representation for the equations of motion is referred to as Gauss’s form of
the variational equations. The Gauss form of the equations of motion isolates the disturbing
acceleration from the central force gravitational acceleration. Note that when the disturbing
acceleration is zero, ‖ad‖ = 0, the fundamental system (1.1) is just a two-body problem. The
solution of the two-body problem can of course be stated in terms of the constant orbital
elements. For low thrust trajectories, this formulation is appealing because we expect ‖ad‖
to be “small,” and, consequently, we expect that the solution can be described in terms of
“almost constant” orbital elements. In order to exploit the benefits of the variational form of
the differential equations (1.1), it is necessary to transform the Cartesian state into an appro-
priate set of orbit elements. Classical elements exhibit singularities for zero eccentricity and
inclinations of 0◦ and 90◦. Furthermore, the semimajor axis changes discontinuously for orbits
with eccentricity equal to one. To eliminate these deficiencies, a modified set of equinoctial
orbit elements is described in [6] based on the work in [19]. The equinoctial dynamics are
summarized in section 2.1.

Equation (1.1) formalizes a key modeling concept that can be exploited for our applica-
tion. Specifically, we consider that the dominant acceleration µr/r3 can be attributed to the
gravitational acceleration of the primary body. All other quantities are considered disturbing
accelerations and are included in ad. In our example,

ad = δg + δq + δT,(1.2)

where δg is the acceleration caused by Earth oblateness (section 2.2), δq is the acceleration
attributed to secondary bodies (section 2.3), and δT is the acceleration produced by the
thrust (section 2.4). For our application, it is important to switch from an Earth centered
(geocentric) coordinate frame to a Moon centered (selenocentric or lunicentric) system.

The complete Earth-Moon trajectory can be modeled using three distinct phases as illus-
trated in Figure 1 and summarized as follows:

Phase 1: Geocentric burn. Earth as the primary body, Sun and Moon as secondary
bodies, including Earth oblateness, and thrust, i.e., δg �= 0, δq �= 0, and δT �= 0.
Phase 2: Geocentric coast. Earth as the primary body, Sun and Moon as secondary
bodies, including Earth oblateness, with no thrust, i.e., δg �= 0, δq �= 0, and δT = 0.
Phase 3: Selenocentric burn. Moon as the primary body, Sun and Earth as secondary
bodies, ignoring Earth oblateness, with thrust, i.e., δg = 0, δq �= 0, and δT �= 0.

It should be emphasized that all three phases include the gravitational acceleration for the
Earth, Sun, and Moon. It is not necessary to quantify the distinction between a “perturbing”
force and the “dominant” force—something that is difficult to achieve in the Earth-Moon
system.
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tı t1 t2 tf

Phase 1

Geocentric Burn

Phase 2

Geocentric Coast

Phase 3

Selenocentric Burn

Figure 1. Earth-Moon transfer trajectory.

2. Equations of motion.

2.1. Translational dynamics in modified equinoctial coordinates. The dynamics of the
system can be described in terms of the state variables

zT = [yT, w] = [p, f, g, h, k, L,w] ,(2.1)

where y is the vector of equinoctial coordinates and w is the weight. The control variables

uT = [ur, uθ, uh](2.2)

define the orientation of the thrust in a rotating radial frame given by (2.16).

Using the modified equinoctial elements, we can state the equations of motion for a vehicle
with constant thrust as

ẏ = A(y)∆ + b,(2.3)

ẇ = −T/Isp,(2.4)

0 = ‖u‖ − 1.(2.5)

The equinoctial dynamics are defined by the matrix

A =




0 2p
ξ

√
p
µ 0√

p
µ sinL

√
p
µ

1
ξ{(ξ + 1) cosL + f} −

√
p
µ
g
ξ {h sinL− k cosL}

−
√

p
µ cosL

√
p
µ

1
ξ{(ξ + 1) sinL + g}

√
p
µ
f
ξ {h sinL− k cosL}

0 0
√

p
µ
s2 cosL

2ξ

0 0
√

p
µ
s2 sinL

2ξ

0 0
√

p
µ

1
ξ{h sinL− k cosL}




(2.6)

and the vector

bT =
[

0 0 0 0 0
√
µp
(
ξ
p

)2 ]
,(2.7)
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where

ξ = 1 + f cosL + g sinL,(2.8)

r =
p

ξ
,(2.9)

α2 = h2 − k2,(2.10)

χ =
√

h2 + k2,(2.11)

s2 = 1 + χ2.(2.12)

The equinoctial coordinates y are related to the Cartesian state (r,v) according to the ex-
pressions

r(y) =




r
s2

(
cosL + α2 cosL + 2hk sinL

)
r
s2

(
sinL− α2 sinL + 2hk cosL

)
2r
s2

(h sinL− k cosL)


 ,(2.13)

v(y) =




− 1
s2

√
µ
p

(
sinL + α2 sinL− 2hk cosL + g − 2fhk + α2g

)
− 1
s2

√
µ
p

(− cosL + α2 cosL + 2hk sinL− f + 2ghk + α2f
)

2
s2

√
µ
p (h cosL + k sinL + fh + gk) .


 .(2.14)

As a result of this transformation, the disturbing acceleration vector ad in (1.1) is replaced
by

∆ = ∆g + ∆q + ∆T(2.15)

with a contribution due to oblate Earth effects ∆g, another caused by the secondary bodies
∆q, and a third caused by thrust ∆T . The disturbing acceleration is expressed in a rotating
radial frame whose principle axes are defined by

Q =
[

ir iθ ih
]

=
[

r
‖r‖

(r×v)×r
‖r×v‖‖r‖

r×v
‖r×v‖

]
.(2.16)

As stated, (2.3)–(2.5) are perfectly general and describe the motion of a point mass when
subject to the disturbing acceleration vector ∆. Notice that when the disturbing acceleration
is zero, ∆ = 0, the first five equations are simply ṗ = ḟ = ġ = ḣ = k̇ = 0, which implies that
the elements are constant. During a coast phase when there is no thrust, ∆T = 0, (2.4) and
(2.5) are not needed to model the dynamics, although we do include the other perturbations,
i.e., ∆ �= 0. A more complete derivation of the equinoctial dynamics can be found in [6].

2.2. Gravitational disturbing acceleration. Oblate gravity models are typically defined
in a local horizontal reference frame, that is,

δg = δgnin − δgrir,(2.17)
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where

in =
en − (e�n ir)ir

‖en − (e�n ir)ir‖(2.18)

defines the local North direction with en = (0, 0, 1). A reasonably accurate model is obtained
if the tesseral harmonics are ignored and only the first four zonal harmonics are included in
the geopotential function. In this case, the oblate Earth perturbations to the gravitational
acceleration are given by

δgn = −µ cosφ

r2

4∑
k=2

(ae
r

)k
P ′
kJk,(2.19)

δgr = − µ

r2

4∑
k=2

(k + 1)
(ae

r

)k
PkJk,(2.20)

where φ is the geocentric latitude, ae is the equatorial radius of the Earth, Pk(sinφ) is the
kth order Legendre polynomial with corresponding derivative P ′

k, and the zonal harmonic
coefficients are given by Jk.

Finally, to obtain the gravitational perturbations in the rotating radial frame, it follows
that

∆g = QTδg.(2.21)

2.3. Secondary body acceleration. It has been demonstrated in [6] that secondary bodies
introduce the perturbing acceleration

δq = −
n∑
j=1

µj

[
dj
d3
j

+
sj
s3
j

]
,(2.22)

where sj is a vector from the primary body to the secondary body j, with gravitational
constant µj , and

dj = r − sj(2.23)

is a vector from the secondary body to the vehicle. The calculation of the gravitational
disturbances due to the other bodies can be achieved directly from (2.22). However, Battin [2]
has shown that this calculation is prone to cancelation because of the significantly different
size of the terms involved. Instead, he suggests defining the function

F (qk) = qk

[
3 + 3qk + q2

k

1 + (
√

1 + qk)3

]
,(2.24)

where
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qk =
rT(r − 2sk)

sTk sk
.(2.25)

Substituting (2.24)–(2.25) into (2.22) yields

δq = −
n∑
k=1

µk
d3
k

[r + F (qk)sk] .(2.26)

Finally, to obtain the acceleration of the perturbing bodies in the rotating radial frame, it
follows that

∆q = QTδq.(2.27)

The calculation of the n-body perturbing forces requires an ephemeris which specifies the
position and velocity of the Moon and all planetary objects as a function of time. For this
purpose, we have used the Jet Propulsion Laboratory (JPL) Ephemeris [18], DE 405, supplied
electronically via the URL http://ssd.jpl.nasa.gov/horizons doc.html. The JPL ephemeris
is provided as a set of FORTRAN subroutines that reads a large tabular data file. For
improved computational efficiency, a Hermite cubic interpolant was created to approximate the
ephemeris for the duration of the mission. This Hermite evaluation approach is approximately
three times faster than the JPL evaluation procedure because it avoids repeated input/output
(I/O) operations on the tabular data. This computational speedup is extremely important
because the ephemeris is evaluated so often (3,604,637,090 times for our solution). We also
ensure continuity and differentiability in the planetary position and velocity.

2.4. Thrust acceleration—burn arcs. To this point, the discussion has concentrated on
incorporating perturbing forces due to secondary bodies and oblate Earth effects. Of course,
the third major perturbation is the thrust acceleration defined by

∆T =
goT

w
u,(2.28)

where T is the maximum thrust. In general, the direction of the thrust acceleration vector,
which is defined by the time varying control vector u(t) = (ur, uθ, uh), can be chosen arbitrarily
as long as the vector has unit length at all points in time, which is achieved using the path
constraint (2.5). The magnitude of the thrust is of course related to the vehicle weight
according to (2.4), where g0 is the mass to weight conversion factor, and the specific impulse
of the motor is denoted by Isp. Defining the thrust direction using the vector u(t) and path
constraint ‖u(t)‖ = 1 is particularly well suited for missions that involve steering over large
portions of the trajectory, as illustrated in [7], because ambiguities in the pointing direction
are avoided. Specifying the thrust direction by two angles (e.g., yaw and pitch) which are
treated as control variables is not unique since the angles α = α0 ± 2kπ all yield the same
direction. In contrast, there is a unique set of control variables u corresponding to any thrust
direction.

http://ssd.jpl.nasa.gov/horizons_doc.html
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3. The boundary conditions.

3.1. Initial conditions. The nominal launch window opens on December 20, 2002 at
23:18:48. For our trajectory, we define a reference epoch at midnight on December 20, 2002,
which corresponds to a Julian date of 2452629.5. More precisely, we define all trajectory times
with respect to this reference epoch and, in particular, the beginning of phase 1 according to

T = 2452629.5 + tı.(3.1)

The spacecraft mass at the beginning of the mission is 350 kg, and it utilizes a single PPS-1350
Hall-plasma thruster with a force of 73.19 mN and an exhaust velocity of 16.434 km/s. The
parameters of the nominal geocentric transfer orbit (GTO) established after deployment from
an Ariane-5 are

semimajor axis (km) a 24661.144
eccentricity e .716227925
inclination (deg) ı 7.0
argument of perigee (deg) ω 178.
ascending node free.

Since the classical orbital elements are related to the modified equinoctial elements (cf. [6]),
we can impose equivalent initial conditions directly in terms of the equinoctial elements as
follows:

pı = p,(3.2) √
f2
ı + g2

ı = e,(3.3) √
h2
ı + k2

ı = tan
[ ı
2

]
,(3.4)

gıhı − fıkı = e sin [ω] tan
[ ı
2

]
,(3.5)

fıhı + gıkı ≤ 0,(3.6)

where p = a
(
1 − e2

)
and quantities evaluated at the initial time are denoted by the subscript

“ı” as in pı = p(tı).

3.2. Final conditions. The target orbit around the Moon is polar (in the lunar coordinate
system) and elliptic and has its pericenter above the south pole. The parameters of the desired
lunar orbit are

radius of perilune (km) rp 2738.
radius of apolune (km) ra 11738.
inclination (deg) ı 90.
argument of perilune (deg) ω 270.
ascending node free.

As before, the classical orbital elements define a corresponding set of final conditions on
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the equinoctial elements

pf = p,(3.7) √
f2
f + g2

f = e,(3.8) √
h2
f + k2

f = tan

[
ı

2

]
,(3.9)

gfhf − ffkf ≤ 0,(3.10)

ffhf + gfkf = e cos [ω] tan

[
ı

2

]
,(3.11)

where p = a
(
1 − e2

)
, a = 1

2 (rp + ra), and e = (ra − a)/a. We assume that the final time tf
for phase 3 (and the mission) is free, and quantities evaluated at the final time are denoted
by the subscript “f” as in pf = p(tf).

3.3. Intermediate conditions. Because the complete transfer is modeled using three
phases, conditions must be imposed at the phase boundaries. Clearly, we must have con-
tinuity in the state across the phase boundaries. For reasons to be described in section 6, we
impose these continuity conditions in Cartesian coordinates. For the trajectory illustrated in
Figure 1, we denote the left side of the phase 1 boundary by t−1 . Similarly, the right side of
the boundary is denoted by t+1 . Thus we require

r[y(t−1 )] = r[y(t+1 )],(3.12)

v[y(t−1 )] = v[y(t+1 )],(3.13)

where r[y(t−1 )] is the Cartesian position vector evaluated at the end of phase 1, and r[y(t+1 )]
is the position vector at the beginning of phase 2. The Cartesian position and velocity vectors
can be evaluated using the relations (2.13) and (2.14).

In like fashion, we also require continuity in the position and velocity across the phase 2
boundary. However, at the phase 2 boundary the dynamics also switch from a geocentric to a
selenocentric frame. First, we define the orientation of the lunar Cartesian frame with respect
to the Earth centered inertial (ECI) system. We have defined the lunar z-axis perpendicular
to the lunar orbit plane; the lunar x-axis is along the intersection of the lunar orbit with the
equatorial plane, and the y-axis forms a right-hand system. The transformation is defined by

Qem =
[

im jm km
]
,(3.14)

where

km =
rm × vm

‖rm × vm‖ ,(3.15)

im =
km × ke

‖km × ke‖ ,(3.16)

jm =
km × im

‖km × im‖ ,(3.17)
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and kT
e = (0, 0, 1) defines the ECI z-axis. The position rm and velocity vm of the Moon in

the ECI frame are defined at the reference epoch. Now if we apply this transformation to the
definition (2.23), the linkage conditions across the phase 2 boundary are

QT
em

{
r[y(t−2 )] − s(t−2 )

}
= r[y(t+2 )],(3.18)

QT
em

{
v[y(t−2 )] − ṡ(t−2 )

}
= v[y(t+2 )].(3.19)

The position and velocity of the Moon relative to the Earth, namely, s(t−2 ) and ṡ(t−2 ), can
be computed from the ephemeris. As before, the Cartesian coordinates of the vehicle can be
computed from the equinoctial state using (2.13) and (2.14).

And finally, since there is no weight change during the coast phase, we also require

w(t−1 ) = w(t+2 ).(3.20)

4. Optimal control algorithm. The method used to solve the optimal control problem is
referred to as a collocation or direct transcription algorithm [3, 4, 5, 6, 7, 8], as implemented
in the SOCS software [1] (http://www.boeing.com/phantom/socs/). There are three basic
operations performed in the method:

Direct transcription. Transcribe the optimal control problem into a nonlinear pro-
gramming (NLP) problem by discretization.
Sparse NLP. Solve the sparse NLP using sequential quadratic programming (QP); i.e.,

1. solve a sparse QP to estimate the NLP solution;
2. if the solution is acceptable, terminate; otherwise, update the NLP solution esti-

mate, and solve a new QP subproblem.
Mesh refinement. Assess the accuracy of the approximation (i.e., the finite dimensional
problem), and if necessary refine the discretization, and then repeat the optimization
steps.

The basic idea of a transcription method is to replace the optimal control problem by
its finite dimensional counterpart via discretization. All approaches divide a phase into ns
segments

tI = t1 < t2 < · · · < tM = tF ,(4.1)

where the points are referred to as node, mesh, or grid points. Define the number of mesh
points as M ≡ ns + 1. Let us introduce the notation zk ≡ z(tk) to indicate the value of the
state variable at a grid point. In like fashion, denote the control at a grid point by uk ≡ u(tk).
In addition, the control variable at the midpoint of an interval is denoted by uk ≡ u(t) with
t = 1

2(tk + tk−1). To be consistent, we also denote the right-hand sides of the differential
equations by fk ≡ f [z(tk),u(tk),p, tk]. For the Hermite–Simpson discretization, the NLP
variables are

xT = (z1,u1,u2, . . . ,uM , zM ,uM ).(4.2)

The state equations (2.3)–(2.4) are approximately satisfied by setting the defects

ζk = zk+1 − zk − hk
6

(
fk + 4fk+1 + fk+1

)
,(4.3)

http://www.boeing.com/phantom/socs/
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where

zk+1 =
1

2
(zk + zk+1) +

hk
8

(fk − fk+1),(4.4)

fk+1 = f

(
zk+1,uk+1, tk +

hk
2

)
,(4.5)

to zero for k = 1, . . . , ns. The right-hand sides of the differential equations (2.3)–(2.4) are
given by fk ≡ f [z(tk),u(tk),p, tk]. The step size is denoted by

hk = τk(tF − tI) = τk∆t,(4.6)

where ∆t ≡ (tF − tI) with constants 0 < τk < 1 chosen so that the grid points are located at
fixed fractions of the total phase duration.

5. Objective function. The overall mission objective is to maximize the vehicle weight
in the lunar mission orbit, which is equivalent to minimizing the fuel consumed during the
transfer. One major hurdle of a low thrust trajectory is just satisfying the constraints, and this
subject will be discussed more fully in section 6. A technique for dealing with this is to pose
a more “relaxed” optimization problem. First, we relax the constraint on the semiparameter
of the final orbit which determines the orbit energy; i.e., instead of (3.7) we impose

pf ≥ p.(5.1)

We also introduce an impulsive velocity change at the end of phases 1 and 2. Let us
introduce new variables � and ϕ and then define

∆v1 = �1 −ϕ1,(5.2)

∆v2 = �2 −ϕ2,(5.3)

subject to the bounds

�1 ≥ 0,(5.4)

�2 ≥ 0,(5.5)

ϕ1 ≥ 0,(5.6)

ϕ2 ≥ 0.(5.7)

It is straightforward to incorporate the impulsive velocity change into the trajectory definition
by simply altering the phase linkage conditions (3.13) and (3.19), respectively, as follows:

v[y(t−1 )] = v[y(t+1 )] − ∆v1

= v[y(t+1 )] − (�1 −ϕ1),(5.8)

QT
em

{
v[y(t−2 )] − ṡ(t−2 )

}
= v[y(t+2 )] − ∆v2

= v[y(t+2 )] − (�2 −ϕ2).(5.9)

Recalling that ‖x‖1 =
∑

k |xk|, observe that the magnitude of the velocity change is

‖∆v1‖1 + ‖∆v2‖1 = eT [�1 + ϕ1 + �2 + ϕ2] ,(5.10)
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where eT = (1, 1, 1). We are now ready to define the composite objective function:

J = −wf

wı

+ ρ

[
‖∆v1‖1 + ‖∆v2‖1 +

1

p
(pf − p)

]

= −wf

wı

+ ρT [�1 + ϕ1 + �2 + ϕ2] +
ρ

p
(pf − p),(5.11)

where ρT = ρeT, wı = w(tı), wf = w(tf), and pf = p(tf).

It is worth emphasizing the important features of the problem formulation. First, the
“real” problem requires maximizing the final weight wf subject to the “real” constraints (3.7),
(3.13), and (3.19). Clearly, the “real” constraints will be satisfied by the relaxed formulation
provided ‖∆v1‖1 = ‖∆v2‖1 = 0 and pf = p. The composite objective function includes these
contributions as a penalty term. Since the composite objective utilizes a penalty which is
“exact” [11], the “real” problem and the “relaxed” problem have the same solution provided
the (finite) scalar penalty weight ρ ≥ ‖λ‖∞, where λ is the vector of Lagrange multipliers for
the sparse NLP subproblem. For our results, we set ρ = 105. However, why not treat ∆v1

and ∆v2 as variables directly? By introducing the slack variables � and ϕ along with the
nonnegativity bounds (5.4)–(5.7), we treat the constraints ‖∆v1‖1 = ‖∆v2‖1 = 0 without
introducing a nondifferentiable function! Of course, the NLP algorithm could treat all con-
straints this way. The SNOPT algorithm [12] uses this technique, where � and ϕ are called
elastic variables. However, because the number of constraints is large for our application, we
have chosen to introduce slack variables in a very selective manner. Finally, since all of the
penalty terms appear linearly in the composite objective function, the Hessian matrix is not
altered from the original problem. Fortunately, this formulation also leads to a very natural
physical interpretation which we can exploit when constructing an initial guess as described
in section 6.

At this point, it is worth discussing the issue of local versus global solutions. It is well known
that orbit transfers often have many locally optimal solutions. For example, in Zondervan,
Wood, and Caughy [21], optimal trajectories that are “geometrically similar” to impulsive
solutions are obtained using many low thrust burns, and comparable results are described by
Redding and Breakwell [15]. The multiple burn concept for this mission has been investigated
by Schoenmaekers, Horas, and Pulido [16]. In essence it is more fuel efficient to use many
(short duration) burns than one long duration burn. Unfortunately, there is a penalty for
enhanced fuel efficiency—mission duration. Multiple burn transfers take longer to perform,
and this can have significant impact on other aspects of the mission design. Thus, to be
more precise about our results, the trajectory we present is a minimum fuel transfer using two
burns. In fact, we also demonstrate that it is close to a minimum time two burn transfer.

6. Getting started. As with any iterative method, it is necessary to supply an initial
guess. For a collocation method this means the analyst must supply the NLP variables (4.2)
as well as the associated grid distribution (4.1). In general the direct transcription method
outlined in section 4 is quite robust, and this is one of the more desirable features of the
algorithm. In fact, for many problems it suffices to supply a guess that is a simple linear
function between the boundary conditions. Unfortunately, this is not true for our application.
The dynamics are very nonlinear, the problem size is large, and there are many local solutions.
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Thus it is critical to construct a guess which is “in the ball-park.” We describe how an initial
guess was constructed for our results. It should be emphasized that there is nothing unique
about our heuristics, and it is quite possible that better alternatives could be used to get
started.

The initial guess procedure assumes that the thrust should be along the velocity vector in
either a posigrade or retrograde direction. The posigrade direction is given by

û = QT v(y)

‖v(y)‖ .(6.1)

Using this approximation, the disturbing acceleration caused by the thrust from (2.28) is just

∆̂T (y) =
goT

w
û,(6.2)

which can be substituted into the original system of DAEs (2.3)–(2.5) to yield a system of
ordinary differential equations:

ż =

[
ẏ
ẇ

]
=

[
A(y)∆̂(y) + b

−T/Isp

]
= f(z).(6.3)

For our application, it is likely that the orbits will be highly eccentric during portions of the
trajectory, and this has implications for the construction of an initial guess. In particular,
since the velocity near periapsis of an orbit is much larger than near apoapsis, we would like to
choose an initial guess with grid points distributed to reflect this asymmetry. In other words,
we would like a guess with many grid points near periapsis and few near apoapsis. To achieve
this goal, let us treat the variable L in (2.1) as the independent variable. Since

ż =
dz

dL

dL

dt
= f(z),(6.4)

we can write

dz

dL
= f(z)

[
dL

dt

]−1

=
1

f6(z)
f(z),(6.5)

and this transformation is valid provided dL
dt > 0. Since the true longitude L is an angle in

the orbit plane, it is reasonable to choose grid points such that the angles are equidistributed;
i.e.,

Lk = Lı +
(k − 1)

(M − 1)
(Lf − Lı)(6.6)

for k = 1, . . . ,M , where Lı and Lf are the initial and final values for L, and M is the number
of grid points on the phase. Observe that grid points with equidistributed angles do not
produce grid points equidistributed in time. In fact, this approach will cluster many grid
points near periapsis, with few near apoapsis. Figure 12 illustrates the initial asymmetric grid
distribution on each phase as a solid region. Let us now describe the steps used to construct
the initial guess.
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Step 1. Guess a value for the parameter ra(t1), the apogee radius at the end of phase 1.
Numerically integrate the equations of motion (6.3) from tı = 0 with the park orbit initial
conditions given in section 3.1. Terminate phase 1 when the apogee radius is equal to ra(t1).
Propagate the coast phase for one year (i.e., to T̂ = tı + 1 (yr.)). The goal is to locate a
point on this trajectory such that the spacecraft is “close” to the Moon and is likely to be
captured by the lunar gravity. To quantify “close,” we simply measure the distance from
the spacecraft to the Moon. For a capture condition, we would like the velocity vector to be
directed toward the Moon with a small value for the lunar eccentricity. So, every hour during
the coast, compute the distance to the Moon dm, the eccentricity relative to the Moon em,
and the flight path angle relative to the Moon. If the trajectory is approaching the Moon (has
a negative flight path angle), then save the time t̂2, with the smallest value for the quantity
φ = w1e

2
m + w2(dm − d̂m)2. The weights w1 and w2 and target distance d̂m are not critical

since our goal is to achieve a “good” trajectory that goes near the Moon. We repeat this
process for a series of different target radius values ra(t1). This “brute force” sweep over the
parameter space can be automated easily and requires very little computation time. For our
example, we found ra(t1) ≈ 437500(km) at a burnout time of t̂1 = 159.999(days), and the
closest approach time was t̂2 = 170.791(days). A variable order, variable stepsize, Adams
predictor-corrector integration algorithm was used to propagate the trajectory. When step 1
is completed, we have a guess for the phase times t̂1 and t̂−2 as well as the corresponding states
ẑ(t̂1) and ẑ(t̂−2 ).

Step 2. Next we focus entirely on the selenocentric portion of the trajectory—phase 3.
Here we assume that the thrust is strictly retrograde; i.e., we replace (6.1) by ũ = −û.
Using the specified lunar orbit conditions given in section 3.2, we integrate backward from
the final time to solve the ordinary differential equations (6.3). Specifically, we solve a small
optimization problem with four variables and one constraint. The final values for weight, time,
longitude of the ascending node, and true anomaly are treated as variables; i.e., we define an
NLP with xT = (wf , tf ,Ωf , νf). The trajectory is propagated backward from tf to t̂+2 . Of
course the time at the beginning of phase 3 is the same as the time at the end of phase 2;
i.e., t̂+2 = t̂−2 . The weight computed from the reverse trajectory propagation must match the
value at the end of phase 1, leading to the single constraint c(x) = w(t̂+2 ) − w(t̂−1 ) = 0. We
would like to choose the variables so that the state at the end of phase 2 is close to the state
at the beginning of phase 3; consequently, we minimize

φ =
[
r(t̂−2 ) − r(t̂+2 )

]
T
[
r(t̂−2 ) − r(t̂+2 )

]
+
[
e(t̂−2 ) − e(t̂+2 )

]2
.(6.7)

Just as in step 1, this small optimization problem can be solved quickly, and it defines a guess
for the third phase which is a good approximation to the selenocentric spiral trajectory. Note
that this iteration defines a reasonable orientation for the mission orbit.

Step 3. A reasonable guess for phase 1 is constructed in step 1, and step 2 yields a good
guess for phase 3. Finally, let us construct a guess that couples phases 1 and 3. Here we treat
the position and time at the end of phase 1 and the beginning of phase 3 as fixed quantities.
Again, define a small problem with three variables and three constraints. Specifically, treat
the velocity at the beginning of phase 2 as variables; i.e., x = v(t̂+1 ). We choose these values
so that the position at the end of phase 2 matches the initial position for phase 3; in other
words, we impose the constraints c(x) = r(t̂−2 ) − r(t̂+2 ) = 0. This (Lambert’s) problem has
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Figure 2. Optimal trajectory animation.

a solution provided we allow impulsive velocity increments at the phase boundary. It also is
consistent with the composite objective function defined by (5.11).

Step 4. After completing the first three steps of our initialization procedure, reasonable
values for the state and control variables are available at all phase boundaries; i.e., we have
computed guesses for (y, w,u, t) at tı, t̂

−
1 , t̂+1 , t̂−2 , t̂+2 , and tf . The final step in the initializa-

tion process requires computing values for these quantities at grid points between the phase
boundaries. For this we numerically integrate the transformed equations (6.5) using a variable
order, variable stepsize integrator to construct values that are equidistributed with respect
to L, as in (6.6). For our numerical results, we constructed an initial grid with 18 points
per revolution during phase 1 and 54 points per revolution during phases 2 and 3. The total
number of grid points for the initial guess (prior to mesh refinement) was 3310.

7. Numerical results.

7.1. Minimum fuel two burn transfer. Figure 2 presents an animation of the optimal
trajectory.

Figure 3 illustrates the optimal trajectory in an Earth centered Cartesian coordinate
system. The position of the Moon at the end of phase 1 is illustrated with a solid circle,
and the corresponding position of the vehicle at the same time is shown with a solid triangle.
At the end of phase 2, the Moon and vehicle are plotted with an open circle and a triangle,
respectively. The orbit of the Moon during the third phase is plotted with a dashed line, and
the final position is shown with a diamond symbol. For comparison, Figure 4 illustrates the
trajectory used as an initial guess. The coarse discretization grid is clearly evident in this
plot. Figure 5 shows the trajectory during the third (selenocentric) phase. Because this figure
illustrates the motion relative to the Moon, it clearly shows the spiral nature of the lunar
orbit insertion. Figure 6 illustrates the solution in a rotating selenocentric frame. Specifically,
this frame is centered at the Moon with the x-axis pointed toward the Earth and the z-axis
normal the lunar orbit. The individual equinoctial elements are plotted in Figure 7, and
the corresponding values of the classical orbit elements are illustrated in Figure 8. Figure 9
illustrates the three components of the control vector u which define the optimal steering used

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/40908_01.mpg
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Table 1
Optimal trajectory at phase boundaries.

tı t1 t2 tf
t(day) -.442651 160.969 167.799 201.284

‖rE‖(km) 9522.7 313142.6 423616.2 369095.6
‖rL‖(km) 387718.2 126246.0 103270.7 4267.2
w(kg) 350.000 287.891 287.891 275.006

Table 2
Mesh refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 3310 413 239 89481 592095777 5.0012×10−2 4.2000×104

2 4940 837 835 293454 2898445158 2.7758×10−3 6.8547×104

3 5162 14 12 4290 44277090 2.0359×10−4 1.6547×103

4 5384 6 4 1481 15942965 4.5207×10−5 9.7732×102

5 6949 6 4 1481 20578495 3.2154×10−5 1.6215×103

6 12427 4 2 779 19358929 1.7178×10−7 5.9152×103

7 16285 3 1 428 13938676 1.3623×10−8 7.4684×103

Total 16285 1283 1097 391394 3604637090 1.2818×105

during the transfer. In Figure 10, we plot the angle

θ = arccos
[
uTû

]
,(7.1)

where the posigrade direction is given by (6.1). This shows that the optimal steering deviates
significantly from the posigrade direction in phase 1 and significantly from the retrograde
direction in phase 3. This figure also demonstrates how much the solution differs from the
initial guess. Figure 11 illustrates the transition from the Earth’s sphere of influence to the
Moon’s. We show the distance from the Earth, the distance from the Moon, and the orbital
energy. The distribution of the grid points for the initial guess is illustrated in Figure 12 with
a solid gray region, and the final mesh distribution is plotted with a solid line. The final weight
was 275.006 kg, which was achieved at insertion into the lunar orbit at tf = 201.284 days.
It is interesting to observe that the optimal duration of the coast was 6.83 days, presumably
to achieve the correct phasing for lunar orbit insertion. Table 1 summarizes the optimal
trajectory parameters.

The performance of the SOCS algorithm on this problem is presented in Table 2. The
overall problem required seven mesh refinement iterations, with each iteration summarized by
a single row in Table 2. The initial coarse grid had 3310 grid points. The first NLP solution
was obtained after 413 gradient evaluations (NGC), and 239 Hessian evaluations (NHC). The
first and second derivatives were computed using sparse finite differences and required a total
of 89481 function evaluations (NFE). Since each function evaluation requires the calculation
of the right-hand sides of the DAEs (2.3)–(2.5) at the grid points, the total number of right-
hand side evaluations (NRHS) was 592,095,777. After the first NLP subproblem is solved, the
discretization accuracy ε is computed, and in this case it was 5.0012×10−2. The CPU time
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Figure 3. Optimal trajectory ECI frame.

required to solve the first NLP was 4.2000×104 seconds on a DEC Alpha with 8 Gbytes of
memory. Since the discretization accuracy was not sufficiently small, the mesh was refined
by adding grid points using the procedure described in [7]. This larger problem had 4940
grid points, and the NLP problem was then solved in an additional 6.8547×104 CPU seconds.
This mesh refinement procedure was repeated seven times with the final grid containing 16285
points. Notice that as the mesh is refined the solution of the NLP subproblems becomes easier
even though the problem size increases. There are two major reasons for this. First, the
initial guess for each problem is constructed by interpolating the solution from the previous
(coarse) grid. Consequently, as the mesh is refined the NLP initial guess becomes better and
better. Furthermore, the sparse NLP algorithm utilizes a full finite difference approximation
to the Hessian matrix, and consequently the NLP exhibits quadratic convergence. Quadratic
convergence is extremely important because the final NLP has 211031 variables and 146285
constraints active at the solution, which means that the size of the projected Hessian matrix
is 64746. Because a full Newton method is used by SOCS, the final large NLP was solved with
only one QP subproblem (NHC = 1). In contrast, a quasi-Newton method would require over
64746 iterations to solve an NLP subproblem of this size.

7.2. Minimum time two burn transfer. The preceding section presented the minimum
fuel two burn transfer. For comparison we also computed a minimum time two burn transfer.
It is straightforward to modify the formulation since the composite objective (5.11) is replaced
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Figure 4. Initial guess trajectory ECI frame.

Table 3
Minimum fuel versus minimum time solutions.

tı t1 t2 tf
Min fuel t(day) -.442651 160.969 167.799 201.284
Min time t(day) .445787 163.015 165.171 198.384

Min fuel w(kg) 350.000 287.891 287.891 275.006
Min time w(kg) 350.000 287.445 287.445 274.665

Table 4
Mesh refinement summary (minimum time transfer).

k M NGC NHC NFE NRHS ε Time (sec)

1 3310 277 226 80840 534918280 3.4766×10−2 1.3512×104

2 4736 34 32 11331 107293239 5.6377×10−4 4.0090×103

3 5064 691 689 242192 2452194000 3.6902×10−4 6.7454×104

4 6045 8 6 2183 26385921 9.0421×10−5 2.0105×103

5 6105 4 2 779 9509253 1.7918×10−5 8.4666×102

6 10726 5 3 1130 24237370 6.5944×10−7 3.6719×103

7 10958 70 68 23958 524991654 6.5509×10−6 2.9613×104

8 11884 4 2 779 18512935 1.8837×10−7 4.0347×103

9 14611 3 1 428 12505732 3.7902×10−8 4.7744×103

Total 14611 1096 1029 363620 3710548384 1.2993×105
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Figure 5. Phase 3 of optimal trajectory, rotated selenocentric frame.

0

100

200

300

400

500

-150
-100

-50
0

50
100

150
200

-100

-50

0

50

100

x [10
3  km]

y [10 3
 km]

z 
[1

03  k
m

]

SMART initial state
SMART at end of phase 1
SMART at end of phase 2

Figure 6. Optimal trajectory in rotating selenocentric frame.



162 JOHN T. BETTS AND SVEN O. ERB

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

Time [d]

pm
ee

 [k
m

]

0 50 100 150 200

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [d]

fm
ee

 [−
]

0 50 100 150 200

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [d]

gm
ee

 [−
]

0 50 100 150 200

0

0.5

1

1.5

2

Time [d]

hm
ee

 [−
]

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [d]

km
ee

 [−
]

0 50 100 150 200
0

1

2

3

4

5

x 10
4

Time [d]

Lm
ee

 [d
eg

]

Figure 7. Equinoctial elements during transfer.



OPTIMAL LOW THRUST TRAJECTORIES TO THE MOON 163

0 50 100 150 200
−1

0

1

2

3

4

x 10
5

Time [d]

se
m

i m
aj

or
 a

xi
s 

[k
m

]

0 50 100 150 200
0

0.5

1

1.5

2

Time [d]

ec
ce

nt
ric

ity
 [−

]

0 50 100 150 200

−300

−200

−100

0

100

200

300

Time [d]

in
cl

in
at

io
n 

[d
eg

]

0 50 100 150 200

−300

−200

−100

0

100

200

300

Time [d]

ar
gp

 [d
eg

]

0 50 100 150 200

−300

−200

−100

0

100

200

300

Time [d]

as
cn

od
 [d

eg
]

0 50 100 150 200
0

1

2

3

4

5
x 10

4

Time [d]

tr
ue

 a
no

m
al

y 
[d

eg
]

Figure 8. Classical elements during transfer.
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by

J = ρ0(tf − tı) + ρT [�1 + ϕ1 + �2 + ϕ2] +
ρ

p
(pf − p),(7.2)

where ρ0 is a scale factor which we set to 1/200 (days). All other equations remain unchanged.
In Table 3, the results of the minimum fuel transfer are compared with those for a minimum

time transfer. Observe that the total mission duration was reduced from 201.727 days to
197.938 days, a reduction of 3.789 days. Most of this time saving can be attributed to the
shorter coast (phase 2). Figure 13 illustrates the minimum time trajectory. It is also interesting
to note that the minimum time transfer is accomplished with a rather small penalty in fuel
consumed, i.e., an additional .341 kg. Table 4 summarizes the performance of the SOCS

algorithm for this minimum time transfer.

8. Remarks. It is worthwhile comparing the results and methods described in this paper
with those appearing elsewhere. In [16], Schoenmaekers, Horas, and Pulido summarize their
results:
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Using a pragmatic engineering approach without applying optimization
techniques, fuel efficient transfer trajectories have been constructed for the
SMART-1 Moon mission, by combining low thrust and multiple Moon swing-
by’s. The transfer duration is about 17 months. The fuel demand for a 350 kg
launch mass ranges from 54.3 kg to 60.9 kg depending on the launch date.

Our optimal solution requires 14–21 kg more fuel but is considerably shorter in duration
(10.3 months). This difference can be attributed to the many burns used in the trajectories
in [16]. Clearly other mission design considerations must be used to trade fuel consumption
for mission duration. The propulsive force we used does not include thrust degradation caused
by limitations on the spacecraft power system. Although this information was not available
to us, it could easily be incorporated into the trajectory dynamics and would alter the results.
In short, our results differ from [16] because we

• used large-scale optimization methods but
• did not use multiple burns and
• did not model thrust degradation.

On the other hand, the method we have described can easily accommodate multiple burns
and thrust degradation.

There are a number of key points with regard to the method itself. A number of au-
thors have used equinoctial coordinates to define the dynamics (cf. [2, 9, 10, 13, 14, 19, 20]).
Furthermore, there are many trajectory optimization tools in use, including, CHEBYTOP,
VARITOP, SEPTOP, SECKSPOT, and HillTop. In contrast to these tools, the optimiza-
tion method we described is a direct method (i.e., does not require adjoint equations) and is
quadratically convergent for very large scale problems (i.e., n ≥ 100000). The approach we
have presented is unique because it combines

• a large-scale, quadratically convergent, direct optimization method with
• nonlinear dynamics using equinoctial coordinates.

9. Summary and conclusions. This paper describes the solution of an optimal low thrust
trajectory problem from an Earth to lunar orbit. The dynamics incorporate gravitational
perturbations from the Sun, Moon, and Earth as well as oblate Earth effects. Furthermore,
the method we present can readily accommodate other significant modeling effects (e.g., thrust
degradation) without difficulty. The numerical method exploits the use of a large sparse
NLP algorithm in conjunction with a collocation technique to approximate the differential
equations. The overall approach is quadratically convergent, robust, and applicable to a wide
variety of nonlinear dynamic systems.
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Abstract. A two-step strategy is proposed for the computation of singularities in nonlinear PDEs. The first
step is the numerical solution of the PDE using a Fourier spectral method; the second step involves
numerical analytical continuation into the complex plane using the epsilon algorithm to sum the
Fourier series. Test examples include the inviscid Burgers and nonlinear heat equations as well as
a transport equation involving the Hilbert transform. Numerical results, including Web animations
that show the dynamics of the singularities in the complex plane, are presented.

Key words. nonlinear PDEs, complex singularities, Fourier spectral methods, Padé approximation, epsilon
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1. Introduction. Many nonlinear PDEs have solutions that become singular in finite time.
Examples are the inviscid Burgers equation,

ut +
1

2
(u2)x = 0,(1.1)

which exhibits shocks [6], and the nonlinear heat equation,

ut − uxx − u2 = 0,(1.2)

which exhibits a pole-type blow-up [3].
A less familiar equation that also displays blow-up is

ut − νuxx + (H(u)u)x = 0,(1.3)

where ν is a positive constant and H is the Hilbert transform. (A singular integral operator,
the Hilbert transform may also be defined implicitly by (2.5) below. For more details, as well
as the physical significance of (1.3), we refer to [2].)

In the last decade or two, it has been recognized that the analytic structure of the solutions
u(x+iy, t) in the complex plane may aid in the understanding of the formation of singularities.
Among the first authors to explore this were Bessis and Fournier [6], who have studied (1.1)
subject to a generic initial condition (given in (4.1) below). In particular, they showed that the
solution has branch point singularities that move in the complex plane. The shock is formed
when these singularities reach the real axis. This work was extended in various directions in
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[15]. Similarly, the blow-up in (1.3) can be explained by complex poles moving onto the real
axis [2]. We do not know of any similar study of (1.2).

This paper addresses the numerical computation of the singularity structure of PDEs such
as (1.1)–(1.3). The procedure we propose here is intended primarily as an aid to visualize
the dynamics of the singularities. (Do they move at a constant speed toward the real axis, or
do they accelerate? What trajectories do they follow in the complex plane?) The secondary
goal, not achieved quite yet, is to classify the singularities. (Are they poles, and if so, of what
order? Branch points, perhaps? Essential singularities?)

The proposed strategy is as follows.

Step 1. Use a numerical method to solve the PDE up to a time near
breakdown.

Step 2. Then use numerical analytic continuation to extend the
computed solution into the complex plane.

In the first step, we use the Fourier spectral method for the space discretization combined
with a method-of-lines integration with respect to the time variable. We apply the second
step at each level of the time integration; i.e., given the numerical solution at a particular
time-step, we continue that solution into the complex domain. This allows us to trace the
movement of the singularities as a sequence of snapshots of the complex plane. The analytic
continuation of Step 2 is done via the epsilon algorithm, which is an efficient way of computing
certain Padé approximations, as will be discussed below.

Both spectral methods and Padé approximations are well-established computational tools,
and we do not claim to make any new contributions to either the theory or the application
of these techniques. The combination of these two tools, however, seems not to have been
explored to good effect in the field of PDEs. We believe it is this combination that allows one
to see singularity dynamics in a problem such as (1.2) that we suspect may not have been
noted before.

We briefly contrast our procedure with some approaches found in the literature.
There exists, of course, a large body of work devoted to the computation of singular

solutions of PDEs. In the case of the Burgers equation (1.1), one thinks of shock-capturing
and shock-fitting techniques [10, sect. 8.4–8.5], and in the case of nonlinear diffusion equations
such as (1.2), there exist various adaptive techniques based on scale invariance [5] or moving
grids [9]. The methods discussed in this paper do not aim to compete with these methods.
(For example, to compute blow-up in (1.2), the method described in [5] is designed to track
the blow-up solution until it reaches values of 1012 or more—we do not go much beyond 102

in this paper.) Instead, our interest here is in the behavior of singularities in the complex
plane and particularly in the manner in which they approach the real axis.

Regarding computational studies of complex singularities of ODEs, we refer to [8] and
the references therein. As for PDEs, a common approach is to complexify the time variable
and then look for singularities in the complex t-domain. One example is the study reported
in [14], in which Padé approximation was used to study singularity formation in a fluid flow
problem. Another study of this type is [17], which includes a test problem similar to (1.2).

The tracing of singularities in the complex x-domain was reported in [15], with reference
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to the viscous and dispersive Burgers equations. This was done by numerically integrat-
ing a Calogero-type dynamical system, an approach more problem-specific than the general
procedure suggested here.

The paper with the philosophy most similar to ours is probably [16]. These authors use, as
we do, a Fourier spectral method to solve the PDE. To obtain information on the nature and
location of the singularity, however, they examine the rate of decay of the Fourier coefficients.
By fitting an exponential model to these coefficients, they were able to correctly characterize
the singularities that give rise to shock formation in (1.1). However effective this procedure
may be, it enables one to characterize only the nearest singularity to the real axis. It reveals
no information on any singularities farther out, which our procedure will do if the singularity
structure is not too complicated. Also, since our procedure computes the solution directly in
the complex domain, we consider it a more appropriate tool for visualizing the dynamics of
the singularities.

The outline of the paper is as follows. In the next section, we describe the computational
details of our procedure. In sections 3 and 4, we apply the procedure, respectively, to the
model problems (1.3) and (1.1). Here we use explicit theoretical solutions to test the reliability
of the procedure. Then, in section 5, we tackle a problem involving (1.2) with apparently no
known explicit solution.

2. Numerical procedure. We shall consider solutions of (1.1)–(1.3) that are periodic in x.
(Other types of boundary conditions, which will not be addressed here, will require different
techniques.) A natural choice for solving (1.1)–(1.3) is therefore the Fourier spectral method.
Assuming 2π-periodicity in x, the method is based on the truncated Fourier series

u(x, t) ≈
N∑

n=−N
an(t)e

inx.(2.1)

The Galerkin approximation of (1.1), for example, is then given by the following nonlinear
dynamical system that governs the evolution of the Fourier coefficients [10]:

dan
dt

+
1

2
in

∑
j+k=n

|j|,|k|≤N

ajak = 0, |n| ≤ N.(2.2)

The corresponding discretizations of (1.2) and (1.3) are, respectively,

dan
dt

+ n2an −
∑
j+k=n

|j|,|k|≤N

ajak = 0(2.3)

and
dan
dt

+ νn2an − n
∑
j+k=n

|j|,|k|≤N

sgn(j) ajak = 0.(2.4)

In deriving (2.4), we have used the fact that the Hilbert transform satisfies [2]

H(einx) = i sgn(n) einx.(2.5)
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Systems (2.2)–(2.4) can be integrated by most ODE solvers. (This is the so-called method
of lines.) The solution provides approximations to u(x, t) in the form of the truncated Fourier
series (2.1).

A more efficient alternative to the spectral Galerkin method for nonlinear problems is
the spectral collocation or pseudospectral method; see [10]. As efficiency was not a concern
here—the numerical analytic continuation procedure described below is more expensive than
the solution of the PDE—we used the full spectral method.

Relatedly, nothing prevents one from using discretizations based on finite difference or
finite element methods. When approximate values u(xj , t) are available at equidistant nodes
xj at any time t, an inverse discrete Fourier transform (DFT) will provide the approximate
coefficients an(t) in (2.1). These coefficients are all we need for the next phase of the procedure.

Once the approximation (2.1) is available at a given t, the next step is to continue this
solution analytically into the complex plane. A direct summation is doomed to fail for two
reasons. First, the truncated Fourier series (2.1) is an entire function and will not reveal any
singularity structure. Second, numerical analytic continuation is ill conditioned. Indeed, with
z = x+ iy,

N∑
n=−N

an(t)e
inz =

N∑
n=−N

an(t)e
−nyeinx,(2.6)

and any error in the coefficients an(t) gets amplified exponentially as |y| −→ ∞.
Both of these problems may be overcome to a degree by converting the truncated Fourier

series (2.1) to a Fourier–Padé approximant [1, p. 382]. We digress briefly to give some details
of Padé approximation, first for power series and then for Fourier series.

Consider the power series

f(z) =
∞∑
k=0

ckz
k.(2.7)

The [L,M ] Padé approximation to this series, if it exists, is defined as the rational function

rL,M (z) =
a0 + a1z + · · ·+ aLz

L

1 + b1z + · · ·+ bMzM
(2.8)

with the property that
f(z)− rL,M (z) = O(zL+M+1).

Here we shall use only approximants with L = M .
The same idea may be applied to Fourier series [1, p. 382]. Consider

u(z) ≈
N∑

n=−N
ane

inz;

when z = x is real, this would be an approximate solution to a PDE such as (1.1)–(1.3) at
a specific time t. By defining w = eiz and v = e−iz, the Fourier series on the right may be
expressed as

u(z) ≈
N∑
n=0

anw
n +

N∑
n=0

a−nvn − a0.
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Both power series on the right may now be converted to Padé approximants. (Note that, since
z may be complex, the two series are not necessarily conjugate, and they have to be converted
independently.) Assuming N is even, this gives

u(z) ≈ r 1
2
N, 1

2
N (w) + s 1

2
N, 1

2
N (v)− a0,(2.9)

where r 1
2
N, 1

2
N (z) and s 1

2
N, 1

2
N (z) are both rational functions of the form (2.8) that satisfy

r 1
2
N, 1

2
N (w) =

N∑
n=0

anw
n +O(wN+1), s 1

2
N, 1

2
N (v) =

N∑
n=0

a−nvn +O(vN+1).

Expression (2.9) is the formula we shall use to extend (2.1) into the complex plane.
In connection with computational matters, we note that computing the coefficients in the

numerator/denominator polynomials of (2.8) is an ill-conditioned problem [1, p. 38]. Com-
puting function values of rM,M (z) for a given z, however, seems to be better conditioned. The
latter may be done efficiently with Wynn’s epsilon algorithm, the details of which may be
found in [1, p. 73] and the references therein. (We remark that the epsilon algorithm may
too become unstable near poles of intermediate rational functions computed as part of the
process. Remedies were suggested by Wynn, but we found no need to implement them in our
computations.)

The epsilon algorithm is also known as a sequence accelerator theoretically equivalent to
the Shanks transformation and the repeated application of Aitken’s ∆2 extrapolation process
[1, p. 67]. It may be used as a series accelerator as well when applied to the sequence of partial
sums of series such as (2.7). In this manner, it can be used to sum a power series outside
its circle of convergence [1, p. 75]. Indeed, when we apply the epsilon algorithm to a Fourier
series, our goal is to evaluate it outside its strip of analyticity.

It remains to investigate the singularity structure of (2.9). For qualitative purposes, a
visual representation of u(z) in the complex plane often suffices—see, for example, Figures
3.1, 4.1, and 5.2. Here we should warn, however, against the possibility of spurious poles
and defects in Padé approximation; see [1, sect. 2.2]. However, as these authors also point
out, these phenomena are transient in nature, so as N is increased, they tend to appear and
disappear. In our situation, it may also happen that a “pole” appears at a particular time
level t but then disappears at the next level. This is a clue that it is almost surely a spurious
phenomenon that can be ignored.

A quantitative investigation requires that one is able to locate and characterize the singu-
larities. What we propose next assumes that the singularities are poles. The modification for
algebraic branch points will be discussed below, but other types of singularities (logarithmic
branch points, essential singularities) will require different techniques.

To locate the pole, we use brute force, by applying a numerical maximization search to
the objective function

f(z) = log |u(z)|.(2.10)

Plots such as Figures 3.1 and 5.2 may be used to determine good initial guesses for the search.
To compute the order of the pole, the principle of the argument may be used [13, p. 278]:

1

2πi

∫
C

u′(z)
u(z)

dz = Z(u)− P (u).(2.11)
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Here it is assumed that u is analytic and nonzero at each point of a simple closed positively
oriented contour C, and inside C the only singularities of u are poles. Z(u) and P (u) are,
respectively, the number of zeros and poles (counting multiplicity) of u inside C.

For computational purposes, we choose C to be the circle

C : z = z0 + reiθ, 0 ≤ θ ≤ 2π,

where the center, z0, is the computed location of a pole. Assuming that the radius, r, is
sufficiently small to exclude all zeros and all other poles of u inside C, we may compute the
order of the pole at z0 according to

P (u) = − r

2π

∫ 2π

0
g(z0 + reiθ)eiθ dθ.

Here we have defined the logarithmic derivative of u by g(z) = u′(z)/u(z).
The integral may be approximated by the K-panel trapezoidal rule (which, for periodic

integrands such as this, is the same as a rectangle rule and a very accurate method for
evaluating the integral [18])

P (u) ≈ − r

K

K∑
j=1

g(z0 + re2πij/K)e2πij/K .(2.12)

In practice, some trial and error is required to choose K and particularly r. (If r is too
small and z0 is not very accurate, the circle C may exclude the actual pole, and z0 may be
classified, incorrectly, as a point of analyticity. On the other hand, if r is too large, a zero or
a different pole of u may be enclosed by C.) For the computations reported below, we have
settled, after experimenting on known functions, on the values K = 128, r = 0.05.

The above discussion applies to poles. If the singularity is an algebraic branch point, i.e.,
u(z) ∼ C(z − z0)

α as z −→ z0, the integral on the left side of (2.11) may also be used to
compute α. In this case, the right side of (2.11) should be interpreted as a winding number.
For further details, we refer to [13, Ch. 4], where alternative methods for computing winding
numbers are also suggested.

The last point to discuss is the computation of the logarithmic derivative g. There seem
to be three possible methods. The first is to continue into the complex plane the function
u(z), defined by its truncated Fourier series (2.1), and independently also its derivative

u′(z) ≈
N∑

n=−N
(in)ane

inz.

The function g(z) = u′(z)/u(z) can then be computed pointwise at each required z.

A better alternative seems to be to express g(x) (on the real axis) as

u′(x)
u(x)

≈
N∑

n=−N
cne

inx.(2.13)
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The left side can be evaluated at equidistant nodes xj , and hence the cn can be computed
with an inverse DFT. Once the cn are known, the right side can be continued analytically into
the complex plane by formula (2.9). In this method, only one Fourier series is analytically
continued—not two. We have experimented with test functions such as u(z) = (a − sin z)α,
and the second method was more accurate in predicting the value of α. Therefore, in the
experiments reported below, the second method was used.

The third alternative is similar to the second method. Instead of using the inverse DFT
to compute the cn from (2.13), this may be done by deconvolution. As this approach avoids
aliasing errors, it might be more accurate than the second method, but we have not tested it.

We now turn to numerical tests of these algorithms. The details of our implementations
are as follows.

The epsilon algorithm was implemented in Matlab 6. To allow efficient interactive ex-
perimentation, it was necessary to optimize the code. In Matlab, this means vectorization;
i.e., when the epsilon algorithm is applied to a series such as (2.7), it is not done pointwise
for each z, but instead our code handles z as an array.

The systems of ODEs (2.2)–(2.4) were implemented with N = 50 throughout. This means
that the rational functions used in (2.9) were of degree 25 in both numerator and denominator.
The convolution sums in (2.2)–(2.4) were computed with the Matlab function conv. The
time integration was done with ode45, a Runge–Kutta algorithm with adaptive time-steps.
The optimization of (2.10) was done with the function fminsearch, which is based on a
Nelder–Mead simplex (direct search) method. In all experiments, we used default tolerance
parameters in both ode45 and fminsearch.

3. Numerical experiment I. Since an explicit solution was readily available for (1.3), we
chose it as our first test. This solution is

u(x, t) = σ + ν
1− %2e2σt

1 + %2e2σt − 2%eσt cosx
,(3.1)

with σ and % arbitrary positive constants [2]. The singularities are simple poles, located at

z = 2nπ ± i(σt+ log %), n = 0,±1,±2, . . . .(3.2)

When % < 1, these poles move toward the real axis, which they reach at t = −(log %)/σ. At
that instant, the solution blows up on the real axis.

The first row of graphs in Figure 3.1 shows the evolution (3.1) for parameter values σ = 1,
% = 1/e, and ν = 0.1; times t = 0.3, 0.3, 0.9; and space interval x ∈ [−π, π]. Blow-up occurs
at t = 1.

In the first step of our procedure, we have integrated (2.4) using the same set of parameter
values and picking the initial condition from (3.1) by setting t = 0. The numerical solution
(not shown) was virtually indistinguishable from the theoretical one displayed in the first row
of Figure 3.1.

Next, we continued the numerical solution into the complex plane with the epsilon algo-
rithm as described in section 2. The second row of figures in Figure 3.1 shows the computed
values of |u(z, t)| in the complex domain z = x + iy, x ∈ [−π, π], y ∈ [0, 1]. (Here and in
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Figure 3.1. Evolution of (1.3) subject to the initial condition (3.1) (with t = 0). The first row shows |u(x, t)|
for various t, and the second row shows |u(z, t)| in the upper half-plane for the same values of t, as computed
numerically with the procedures suggested in this paper. The white circles represent the actual locations of the
poles as computed from the theoretical solution (3.1).

[Animation (2.3MB)]

Table 3.1
Location and classification of the pole shown in Figure 3.1.

Time Exact location of pole Computed location of pole P (u)

0.3 0.7i −2.9604e-08 + 7.0000e-01i 9.9995e-01 + 1.8376e-05i
0.6 0.4i 6.8126e-09 + 4.0000e-01i 9.9999e-01 + 5.1559e-06i
0.9 0.1i −1.1751e-11 + 1.0000e-01i 9.9994e-01 + 2.6968e-05i

the figures below, interpolated shading on a 51 × 51 grid was used.) Since the solution is
symmetric with respect to the real axis, only the upper half-plane is shown.

In the color map of the figure, red indicates large values and blue small. The red dot
therefore represents the pole, which can be seen moving downward. Its conjugate (not shown)
moves in the upward direction, and the two poles coalesce on the real axis at t = 1. This is
when the solution u(x, t) blows up on the real axis.

To see how well the epsilon algorithm succeeds in locating the poles, we drew white circles,
the centers of which represent the actual position of the poles computed by (3.2). Clearly there
is excellent agreement.

For a quantitative investigation into the nature of the singularity, we used the classification

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_01.gif
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algorithm described by (2.10)–(2.12). In Table 3.1, we give the approximate position of the
singularity as well its estimated order, P (u). These results confirm that the singularity is
indeed a pole of order one and that it travels at the right speed.

The next example provides a more stringent numerical test. It involves a branch point
singularity.

4. Numerical experiment II. In [6], the singularity structure of the Burgers equation
(1.1) was investigated with reference to the pedagogical initial condition

u(x, 0) = x3 − x/t∗,(4.1)

with t∗ a positive constant.
The authors showed that u(z, t) has two square root singularities, placed symmetrically

on the imaginary axis with respect to the origin. These singularities move from z = ±i∞ at
t = 0 toward the real axis, where they meet at t = t∗; this is when the shock occurs. The
authors proceeded to characterize a three-sheeted Riemann surface that provides an analytic
path across the jump of the shock.

As the initial condition (4.1) is not periodic in x, the results of [6] cannot be used as a
check on our scheme. Instead, we have derived what appears to be a new periodic solution
to (1.1). We have not seen this solution, which involves Lambert’s W -function, mentioned
anywhere in the literature.1

Consider the initial condition

u(x, 0) = eix.(4.2)

By using the implicit solution to (1.1), namely, u = f(x− ut), one gets

u = eixe−iut,

or, by defining w = iut,
wew = iteix.

By comparison, the Lambert function, w = W (z), solves the equation wew = z. One concludes
that

u = (1/it)W (iteix),(4.3)

which is the desired 2π-periodic explicit solution.
In the computations below, the W -function was computed withMatlab’s Symbolic Tool-

box, which is based on the Maple computer algebra system. (It can also be computed with
Mathematica, where the W -function is known as ProductLog.)

The singularity structure of the W -function has been analyzed in [12], and we summarize
as follows. The function W (z) is multivalued, with an infinite number of branches. Only one
of these, designated the principal branch, is analytic at z = 0. The principal branch and two
other branches share an order 2 branch point at z = −1/e. The branch cut dividing these
branches is the subset of the real line from −∞ to −1/e. We refer to [7] for a picture of the
three-sheeted Riemann surface as well as the Maple code that will generate it.

1Reference [12] reviews several applications in which the W -function features, but (1.1) is not among
them. In addition, an Internet search in MathSciNet using the keywords “Burgers” and “Lambert” yielded no
meaningful hits. Neither did we find our solution in the older table [4].



180 J. A. C. WEIDEMAN

Figure 4.1. Evolution of the Burgers equation (1.1) subject to the initial condition (4.2). The first row
shows |u(x, t)| for various t, and the second row shows |u(z, t)| in the lower half-plane for the same values of t,
as computed from the explicit solution (4.3). The third row shows numerical approximations to the middle row
using the procedure suggested in this paper.

[Animation (2.2MB)]

Transplanting this information to the solution of the Burgers equation, we conclude that
in order to satisfy the initial condition (4.2), the principal branch of W should be selected in
the solution (4.3). This solution has branch points at z, where iteiz = −1/e, or

z = (4n+ 1)π2 + i(1 + log t), n = 0,±1,±2, . . . .

Unlike the situation corresponding to the initial condition (4.1), these singularities are of
logarithmic and not algebraic type. The corresponding branch cuts are lines parallel to the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_02.gif
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imaginary axis, extending from the branch points down to infinity. The branch points ap-
proach the real axis from below and with negative acceleration. The axis is reached at t = 1/e,
at which time the solution to the Burgers equation becomes singular at x = π/2 (mod 2π) on
the real line.

The first row of Figure 4.1 shows the evolution of |u(x, t)|, computed according to (4.3)
on x ∈ [0, 2π] for t = 1/(3e), 2/(3e), 1/e. The latter time corresponds to the appearance of a
singularity, as can be seen in the top right figure.

The second row of figures in Figure 4.1 shows the corresponding values |u(z, t)| in the
complex domain z = x+iy, x ∈ [0, 2π], y ∈ [−1.5, 0]. Note that the top boundary in each figure
represents the real axis: in the upper half-plane, the solution is analytic and uninteresting and
is therefore not displayed here. The needle-like structure at x = π/2 represents the branch
cut that moves upward. When it hits the real axis, the singularity is formed.

The first two rows of figures in Figure 4.1 were computed using the theoretical expression
(4.3). Turning to numerical approximations, we integrated (2.2) using the Fourier spectral
method. The numerical solution (not shown) was virtually indistinguishable from the ana-
lytical solution shown in the top row of Figure 4.1 (even at t = 1/e, the time the singularity
appears on the real axis).

Next, the numerical solution was extended into the complex plane with the epsilon algo-
rithm. The result is shown in the third row of figures in Figure 4.1.

As expected, the epsilon algorithm has difficulty approximating the branch cut. The
singularity appears as a string of poles located where the branch cut should have been.2 This
is typical behavior for Padé approximants; see, for example, [1, p. 47]. Nonetheless, the
singularity is located on the correct line (x = π/2, y < 0) and approaches the real axis at the
right speed.3

5. Numerical experiment III. Our final set of numerical experiments comes from the
class of nonlinear heat equations. Let σ and % be constants, and consider the function

u(x, t) =
e5/3 (σ−t)+2 ix

(
ie5/6 (σ−t)+ix + %

)2 ,(5.1)

which is 2π-periodic and solves the PDE

ut − 1

6
uxx + u2 + u = 0.(5.2)

The mechanism of blow-up is a pole of second order that reaches the real axis. With the
parameter choice that will be used below, namely, σ = 1 and % = 1, the location of this pole
is given by

z =
π

2
+

5

6
(1− t) i

2It is interesting to note that when a viscous term νuxx is added to (1.1), then the branch cut is also
replaced by a series of poles [15].

3A better way to approximate functions with branch point singularities is the quadratic Padé method [1,
p. 376], but this will have to wait for future studies.
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(plus 2π-periodic copies). The blow-up occurs at t = 1, and its profile is qualitatively similar
to the blow-up shown in Figure 3.1.

The semidiscretization of the PDE (5.2), which is similar to (2.3), was integrated as
described in section 2. The initial condition was obtained by setting t = 0 in (5.1). The
resulting numerical solution was analyzed by the scheme discussed at the end of section 2, by
means of which the singularities were tracked and classified. The output, shown in Table 5.1,
confirms that the singularity was located accurately, and there remains little doubt that it is
indeed a pole of order 2.

Table 5.1
Location and classification of the pole of (5.1)–(5.2).

Time Exact location of pole Computed location of pole P (u)

0.3 π/2 + 7/12 i 1.5708e+00 + 5.8333e-01i 2.0000e+00 + 2.3495e-06i
0.6 π/2 + 1/3 i 1.5708e+00 + 3.3333e-01i 2.0000e+00 + 1.1298e-08i
0.9 π/2 + 1/12 i 1.5708e+00 + 8.3333e-02i 2.0000e+00− 1.4816e-08i

Having gained a measure of confidence in the proposed strategy, we are now ready to
explore some uncharted territory. This is the PDE (1.2), subject to the initial condition

u(x, 0) = cosx.(5.3)

Although several explicit solutions to ut = uxx + f(u) are known (see, e.g., [11] and the
references therein), we could not find a solution to (1.2) that is both periodic in x and displays
finite time blow-up. Hence (5.3) was chosen somewhat arbitrarily as an initial condition. Note
that it is an entire function, so any singularities will have to start at infinity.

There exists a vast literature on blow-up phenomena in diffusion equations such as this;
for a survey, see [3]. The majority of these studies is concerned, however, with questions of if
and where blow-up occurs and what the profile of the solution is near blow-up. They do not
address the dynamics of complex singularities at intermediate times, as is our intention here.

We started by integrating the semidiscrete system (2.3), and its solution, which exhibits
a blow-up singularity near (x, t) = (0, 3.17), is shown in Figure 5.1. Initially the mechanism
of diffusion dominates, as can be seen in the fact that the amplitude of the cosine curve is
damped. At the same time, however, the mean of the solution profile increases, and at some
point it becomes so large that the mechanism of nonlinearity becomes dominant. Shortly after
this, blow-up occurs.

The corresponding analytical continuation is shown in Figure 5.2, on the domain z = x+iy,
x ∈ [−π, π], y ∈ [0, 5]. (Again, only the upper half-plane is shown, owing to symmetry.) The
plot suggests a conjugate pair of pole-like singularities that start at z = ±∞ i and speed
toward the real axis, where they meet at the time of blow-up. At a superficial glance, the
singularities appear to be isolated poles, but by replotting the figure on a log-scale it becomes
evident that the singularity structure is more complicated. Based on the asymptotic estimates
cited in [3], [9], we conjecture that the singularity structure is similar to that of | log z|/z2

near the point of blow-up. Our methods cannot yet classify such singularities.

To examine this behavior more closely, we computed approximate locations of the sin-
gularities as described in section 2. The computations suggest that these singularities are
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Figure 5.1. Computed solution of (1.2), subject to the initial condition (5.3), on x ∈ [−π, π] for values of
t = 0(0.525)3.15. (The figure on the right was clipped at u = 8 to reveal more detail.)

[Animation (2.7MB)]

located on the imaginary axis, z = ± y i. Figure 5.3 shows y as a function of t. (The thin red
curve in the figure represents an asymptotic estimate that will be discussed below.)

Unlike the case of the nonlinear heat equation (5.1)–(5.2), the singularities here do not
move at a constant speed but instead follow the S-shaped curve seen in Figure 5.3. The
singularities start at z = ± i∞ and approach the real axis rapidly. They decelerate as they
do so, however, and near t = 0.5 they (surprisingly, in our opinion) reverse direction. Near
t = 1 the acceleration toward the real axis turns positive again, which causes the singularities
to reverse direction once more—this time roughly at t = 2. From this point, the singularities
zoom onto the real axis rapidly, and blow-up occurs near t = 3.17. We suspect the phases of
negative and positive acceleration toward the real axis may have to do, respectively, with the
smoothing effect of the diffusion operator vs. the focusing effect of the nonlinearity.

Even though our principal aim was not the computation of the solution very close to
blow-up, it is nevertheless interesting to check these computations against known asymptotic
results. We quote one typical result, due to Galaktionov and coworkers, that appears to be
applicable to the present situation.

Near the blow-up point x = 0, the solution to (1.2) is locally given by

u(x, t) ∼
(
(T − t) +

x2

8| log(T − t)|

)−1

, t −→ T,(5.4)

where T is the blow-up time [3], [5], [9].

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_03.gif
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Figure 5.2. The solution of (1.2), subject to the initial condition (5.3). Values of |u(z, t)| are shown in the
upper half-plane, as computed numerically with the procedure suggested in this paper.

[Animation (2.7MB)]

Note. This estimate is usually derived for the Cauchy problem or Dirichlet boundary
conditions, not periodic conditions, and it is always assumed that the initial condition is
positive-valued, which (5.3) is not. Numerical investigations have led us to believe, however,
that the estimate (5.4) may be applicable to the present situation as well.

The estimate (5.4) implies that the solution has pole-like singularities near

z = ± y i, where y =
√
8(T − t)| log(T − t)|.(5.5)

In order to compare this estimate with our numerical approximations, a good estimate of the
blow-up time T is required. We computed this by tracking the singularity with the “event”
facility available inMatlab’s ODE suite. This yielded the approximation T = 3.17395. With
this value of T , we plotted the theoretical asymptotic curve y = y(t) defined by (5.5) as the
thin red curve in Figure 5.3. For a quantitative comparison, we also list in Table 5.2 the
computed and asymptotic values of y for a few values of t near T .

It should be understood that comparisons such as these represent a challenge to the Fourier
method, as any spectral method loses accuracy rapidly as the singularities approach the real
axis. Nevertheless, we regard the agreement between numerics and asymptotics shown here
as satisfactory.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39830_03.gif
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Figure 5.3. Imaginary part of the singularity, z = y i, shown in Figure 5.2, as a function of t. The thin
red curve represents the asymptotic estimate (5.5), with T = 3.17395.

Table 5.2
Comparison of the computed and asymptotic locations of the singularity of (1.2), subject to (5.3). The

asymptotic estimate is defined by (5.5), with T = 3.17395.

Time t Computed y Asymptotic y

3.171 0.43 0.37
3.172 0.34 0.31
3.173 0.24 0.23

6. Conclusions. Based on the numerical evidence presented here, we feel the proposed
strategy should be considered successful. In the three PDEs where explicit solutions were
available, the singularity dynamics were tracked accurately (provided one realizes that a series
of poles on a straight line is an attempt to approximate a branch cut, as was the case with the
Burgers equation). Even for the nonlinear heat equation (1.2), where no closed form solution
was available, we believe the comparisons with known asymptotic results were acceptable.

There is, of course, room for improvement. We have used a basic Fourier spectral method
combined with the standard adaptive Runge–Kutta method as coded in Matlab’s ode45

function. This proved adequate in our computations where we made no attempt to follow
the singularity to maxu = 1012 or so. For better singularity tracking close to blow-up, the
Fourier method should be replaced by one of the adaptive methods discussed in [3], [5], and
[9]. The details of how to combine these methods with analytic continuation have yet to be
worked out, however.

A referee also pointed out that the local error control of ode45 may be inadequate in the
proximity of blow-up, and, in addition, the semidiscrete system may be stiff, so it might be ad-
vantageous to switch to a stiff solver. In response to this, we triedMatlab’s ode15s function,
which executed a little faster but otherwise did not change any of our results appreciably.

Another avenue for improvement is to switch from linear to quadratic Padé approxima-
tions. This should enable one to track and classify branch point singularities better; recall the
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footnote on page 181.
Related to this point is the fact that in all our model problems, the singularities were well

isolated—and only one or two of them near the real axis. If the singularity structure is more
complicated, nobody knows what Padé approximants and the epsilon algorithm will do. (For
an example of how complicated singularity structure can get, we refer to [8].) In addition,
the epsilon algorithm and Padé approximations are beset with risks, such as spurious poles,
defects, ill-conditioning, and numerical instabilities. We certainly do not wish to minimize
the difficulties associated with numerical analytic continuation, and users of these methods
are advised to interpret all results judiciously.

Notwithstanding these words of caution, we are sufficiently pleased with the results ob-
tained here to continue the investigation.
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A Simply Stabilized Running Model∗
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Abstract. The spring-loaded inverted pendulum (SLIP), or monopedal hopper, is an archetypal model for
running in numerous animal species. Although locomotion is generally considered a complex task
requiring sophisticated control strategies to account for coordination and stability, we show that
stable gaits can be found in the SLIP with both linear and “air” springs, controlled by a simple
fixed-leg reset policy. We first derive touchdown-to-touchdown Poincaré maps under the common
assumption of negligible gravitational effects during the stance phase. We subsequently include and
assess these effects and briefly consider coupling to pitching motions. We investigate the domains
of attraction of symmetric periodic gaits and bifurcations from the branches of stable gaits in terms
of nondimensional parameters.

Key words. legged locomotion, spring-loaded inverted pendulum, periodic gaits, bifurcation, stability
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1. Introduction. Locomotion, “moving the body’s locus,” is among the most fundamen-
tal of animal behaviors. A large motor science literature addresses gait pattern selection [1],
energy expenditure [2], underlying neurophysiology [3], and coordination in animals and ma-
chines [4]. In this paper, we explore the stabilizing effect of a very simple control policy on a
very simple running model.

Legged locomotion is generally considered a complex task [5] involving the coordination of
many limbs and redundant degrees of freedom [6]. In [7], Full and Koditschek note that “loco-
motion results from complex, high-dimensional, non-linear, dynamically coupled interactions
between an organism and its environment.” They distinguish locomotion models simplified for
the purpose of task specification (templates) from more kinematically and dynamically accu-
rate representations of the true body morphology (anchors). A template is a formal reductive
model that (1) encodes parsimoniously the dynamics of the body and its payload transport ca-
pability, using the minimum number of variables and parameters, and (2) advances an intrinsic
hypothesis concerning the control strategy underlying the achievement of this task. Anchors
are not only more elaborate dynamical systems grounded in the morphology and physiology
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of an animal, but they must also admit the imposition of control policies that result in the
realization of the lower dimensional template dynamics. In this context, Full and Koditschek
suggest that the spring-loaded inverted pendulum (SLIP) model might reasonably provide a
template for sagittal plane motions of the center of mass (COM) of such diverse species as
six-legged trotters (cockroaches), four-legged trotters (dogs), two-legged runners (humans and
birds), and hoppers (kangaroos). The validation of the SLIP template is based on similarities
of ground reaction forces and kinetic and potential energies between these animals running
at steady state and the SLIP model with suitably adjusted parameters (see [8]; for a review,
see [9]). Details of the anchor system such as pitching motion or multiple leg impacts lead to
small deviations from the SLIP predictions, which can be quantified by a more detailed error
analysis (see [10] and the references therein).

In related work, McGeer [11] and, more recently, Ruina and colleagues [12, 13] have
designed, analyzed, and built passive walking machines that are entirely uncontrolled yet
produce stable gaits. These differ from SLIP-type machines in that their rigid legs incur
impacts at touchdown, and stable gaits emerge from a balance between energy supplied by
motion down an inclined plane and energy losses due to impacts. Their mathematical models
are significantly more complicated than the SLIP, and only limited analyses are possible.
Similarly, a recent study of Mombaur et al. [14] relies on numerical optimization methods to
find the “most stable” periodic gaits of a four-degree-of-freedom hopper endowed with a massy
leg and a circular foot. They apply feedforward actuation via programmable leg length and hip
torque and note that damper forces and impact losses “may promote stability.” In contrast,
the SLIP machines investigated in this paper are conservative and operate at constant energy;
no friction forces are present, and no impact occurs at touchdown (see section 2 for details of
the model).

Models as simple and (relatively) analytically tractable as the SLIP can address two key
questions: how much energy and how much information are needed to sustain a gait? With
regard to the second question, many researchers (e.g., [4, 15, 6]) implicitly assume that even
if “passive dynamic” periodic gaits exist, they are (highly [4]) unstable. A surprising answer
to both questions, motivated by hypotheses proposed in [16], was found by Schmitt and
Holmes [17, 18, 19, 20] for the mechanics of a lateral leg spring (LLS) model (essentially a
SLIP without gravity or flight phases), which describes horizontal plane motions of a rigid
body equipped with a pair of massless springy legs that are lifted when leg force drops to
zero, are swung forward, and are set down at fixed angles relative to the body. They showed
that, even without energy dissipation, the LLS model can exhibit stable periodic gaits. Liftoff
events alone trigger the swing phases: continuous (neural) sensing is not required, and stability
derives from angular momentum trading from step to step. Moreover, recent experiments [21]
have suggested that rapidly running insects do employ such mechanical reaction forces to
make heading corrections.

In this paper, we demonstrate and, under simplifying assumptions, prove that stable
periodic gaits exist in very simply controlled SLIP models over a physically useful range of
parameter values. Specifically, we show that a liftoff-event-triggered reset of the leg angle
during flight to achieve a touchdown angle fixed at the same value for each stance phase
(hereafter, fixed-leg reset) suffices for stability. Such self-stabilized SLIP gaits have already
appeared in the literature [10, Figure 2], where periodic SLIP trajectories were compared to
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experimental data, although their stability properties were not discussed. Our present work
also complements a recent paper of Seyfarth et al. [22], in which parameter ranges for stable,
symmetric, periodic SLIP gaits are found by numerical simulation and are compared with
data from human running. Here we derive analytical results, perform detailed bifurcation
and parameter studies (including a second, nonlinear spring model), explain mechanisms
responsible for stable gaits, and elucidate limits to fixed-leg reset stability. We relate our
results to [22] where appropriate and summarize the relationship between that and the present
work in section 5.

Our main results may be summarized as follows. Using conservation laws and simple
geometric relations, we produce closed form approximations (explicit up to the evaluation
of a quadrature integral) for the touchdown-to-touchdown Poincaré map and the “stability
eigenvalue” of its fixed point for a simplified version of the model; see (2.20), (2.24), and
Figures 7 and 11. These allow us to plot branches of stable and unstable periodic gaits
(Figures 8 and 13) and to understand how the domains of attraction of the stable gaits
depend upon parameters. Particular spring laws appear only in the quadrature. We believe
that such explicit approximations have not previously appeared; moreover, exact Poincaré
maps, requiring only numerical evaluation of the leg sweep angle during stance, are implicit in
our derivation. An appropriate notion of stability for such piecewise-holonomic systems [23]
is that of partial asymptotic stability. Due to energy conservation and rotational invariance
(in the case of coincident “hip joint” and mass center), one or three of the eigenvalues of the
linearized Poincaré map are necessarily unity, leaving a single “stability eigenvalue” that may
lie within or outside the unit circle. Thus, at best, the orbits are only Liapunov or neutrally
stable.

The paper is organized as follows. In section 2, we set up the general rigid body model and
then focus on an integrable case, in which pitching motions decouple and gravity is neglected
during the stance phase (2.1). This allows us to derive explicit stride-to-stride (Poincaré)
maps and obtain expressions characterizing periodic gaits, their stability, and bifurcations.
Apart from illustrations, this is all done for general leg-spring laws. We then give convincing
numerical evidence that stable gaits persist under the inclusion of gravity during stance (2.2)
and under coupling to pitching motions (2.3). In section 3, we illustrate our results using the
classical Hooke’s law spring (3.1) and a progressively hardening compressed air spring (3.2).
In section 4, we reformulate the equations of motion in nondimensional variables and include
gravity during stance, thereby clarifying the effects of parameter variations and the resulting
range of behaviors exhibited by the model. Finally, section 5 summarizes the work and notes
possible extensions.

This work has two main goals: to better understand animal locomotion and to stimulate
and enable the creation of “bio-inspired” robots. A significant part of locomotion research
is driven by the desire to exploit the advantages of legged robots as opposed to wheeled and
tracked vehicles. Nature suggests (and engineers are increasingly concerned to demonstrate)
that legged robots can operate over a greater range of environmental and surface conditions,
combining dexterity with mobility and efficiency; cf. [24, 10]. In addition, machines that use
ballistic flight phases do not require continuous support paths [5].

A natural extension of the work presented here is the design of control algorithms that
enlarge the rather small basin of attraction of the SLIP with a constant leg touchdown angle
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Figure 1. The hopping rigid body (a), and the stance and flight phases comprising a full stride (b).

control [25]. A globally attracting “low attention” feedback controller was proposed in [26]
by making the leg angle trajectory time-dependent during flight. However, this controller was
based on a numerically precomputed leg trajectory and required velocity sensing. This raises
the question of how much sensing is required to obtain “large” basins of attraction. A first step
in this direction was undertaken in [27], where a necessary condition for the stability of fixed
points for arbitrary leg angle trajectories was formulated in terms of the sensor requirements
at liftoff. We will further explore this issue in a forthcoming paper [28]. Control enters the
present paper only as the fixed feedforward leg placement strategy used at touchdown to define
the hybrid switching condition.

2. The model: Equations of motion. Figure 1(a) illustrates our parametrization of the
SLIP model as a schematic representation for the stance phase of a running (or hopping)
biped with at most one foot on the ground at any time. This model incorporates a rigid body
of mass m and moment of inertia I, possessing a massless sprung leg attached at a hip joint,
H, a distance d from the COM, G. The figure depicts the attitude or pitch angle θ, the angle
ψ formed between the line joining foothold O to the COM and the vertical (gravity) axis, and
the distance ζ from foothold to the COM. The quantity

η =
√

d2 + ζ2 + 2dζ cos (ψ + θ)(2.1)

measures the (compressed) leg-spring length: the distance between O and the hip pivot H.
We take frictionless pin joints at O and H. The body is assumed to remain in the vertical
(sagittal) plane, and its state at any point in time is defined by the position of G, (xG, yG)
referred to a Cartesian inertial frame, and the pitch angle θ; during stance we will also use
the generalized polar coordinates ζ, ψ, based at the foothold O, and θ. (Note that ψ increases
clockwise, while θ increases counterclockwise.) Unlike many earlier studies of the SLIP, we
consider a rigid body with distributed mass and allow pitching motions,1 although in the
present paper we focus our attention upon the uncoupled case d = 0 and assume θ ≡ 0, thus
largely restricting ourselves to the point mass case.

1A bipedal walker with the above-described leg and body geometry with arbitrary radial force in the leg
and arbitrary hip torque was considered in [29] in the context of feedback control. However, the investigation
did not include gaits with flight phases.
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A full stride divides into a stance phase, with foothold O fixed, the leg under compression,
and the body swinging forward (ψ increasing), and a flight phase in which the body describes
a ballistic trajectory under the sole influence of gravity. The stance phase ends when the
spring unloads; the flight phase then begins, continuing until touchdown, which occurs when
the landing leg, uncompressed and set at a predetermined angle β, next contacts the ground.
See Figure 1. This defines a hybrid system in which touchdown and liftoff conditions mark
transitions between two dynamical régimes.

Recalling previous robotics research [30] and looking ahead to control studies [28], β could
be adjusted from stride to stride (necessitating at least intermittent active neural feedback),
but here it will be taken as a fixed parameter. The “fixed leg reset angle” policy of stated
interest might be implemented with respect either to the body or to the inertial frame. In the
first case, touchdown occurs when the hip reaches the height η0 sin(β − θ) and in the second
case when the hip reaches the height η0 sinβ. Liftoff occurs automatically when the spring
force drops to zero, requiring no sensing, but in any physical implementation, even a fixed-leg
reset policy requires some state information to initiate the swing phase (e.g., a contact sensor
in the foot or force sensor in the spring).

The kinetic energy of the body is

T =
1

2
m(ζ̇2 + ζ2ψ̇2) +

1

2
Iθ̇2,(2.2)

and its potential energy is

Vtot = mgζ cosψ + V (η (ζ, ψ, θ)) ,(2.3)

where V = Vspr denotes the spring potential. Forming the Lagrangian L = T −V and writing
∂V/∂η = Vη, we obtain the equations of motion for the stance phase:

ζ̈ = ζψ̇2 − g cosψ − Vη (η)

mη
(ζ + d cos (ψ + θ)) ,

ζψ̈ = −2ζ̇ψ̇ + g sinψ + d
Vη (η)

mη
(sin (ψ + θ)) ,

θ̈ = dζ
Vη(η)

ηI
sin (ψ + θ) .(2.4)

The equations of motion during the flight phase are simply the ballistic COM translation and
torque-free rotation equations, which may be integrated to yield

xG (t) = xLO + ẋLOt, yG (t) = yLO + ẏLOt− 1

2
gt2, θ (t) = θLO + θ̇LOt,(2.5)

where (xG, yG) denotes the COM position and θ the pitch angle, and the superscripts LO
refer to the system state at liftoff.

2.1. The case d = 0 neglecting gravitational effects in stance. If the leg is attached at
the COM (H ≡ G), then d = 0, ζ ≡ η, the stance phase dynamics simplifies to the “classical”
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SLIP, and the pitching equation decouples:

ζ̈ = ζψ̇2 − g cosψ − Vζ (ζ)

m
, ζψ̈ = −2ζ̇ψ̇ + g sinψ,

θ̈ = 0 ⇒ θ (t) = θ (0) + θ̇ (0) t.(2.6)

The third equation describes the conservation of angular momentum of the body about its

COM: Iθ̇
�
= pθ = const.

Neglect of gravity in stance yields an integrable system [31]. A detailed analysis of the
validity of this approximation for different spring potentials was performed in [32] using Hamil-
tonian instead of Lagrangian formalism. This simplification was shown to be too crude over
a large range of running gaits, and several closed form approximations to the stance phase
dynamics were proposed, although existence and stability of periodic solutions that can arise
from concatenation of stance and flight phases were not investigated. Despite the limited
accuracy of the gravity-free approximation, we adopt it here in order to gain an analytical
understanding of periodic gaits. We will subsequently compare these results to numerical
simulations of the full stance dynamics with gravity and show that analogous bifurcation
structures persist in the physically more accurate model.

Neglecting gravity, the first two equations of (2.6) simplify to

ζ̈ = ζψ̇2 − Vζ (ζ)

m
, ζψ̈ = −2ζ̇ψ̇.(2.7)

The second of these equations expresses the conservation of the moment of linear momentum

of the COM about the foot: mψ̇ζ2 �
= pψ = const. The first equation is, therefore, integrable:

ζ̈ =
p2
ψ

m2ζ3
− Vζ (ζ)

m
⇒ mζ̈ζ̇ =

p2
ψ

mζ3
ζ̇ − Vζ (ζ) ζ̇ ⇒

H
�
=

(
mζ̇2

2
+

p2
ψ

2mζ2
+ V (ζ)

)
= const.(2.8)

Indeed, in the absence of dissipative forces, the total energy, which coincides here with the
HamiltonianH = T+V = E, is conserved. The original three degrees of freedom reduce to one
due to the conservation of moment of linear momentum pψ and body angular momentum pθ
individually. The phase portrait during stance is then given by the level sets of H in the region
ζ ≤ η0; Figure 2 illustrates this for a linear spring and also includes comparisons to solutions of
the full system (2.6), including gravity. Three cases are shown, with different stiffness/gravity
ratios characterized by the nondimensional parameter γ = kη0

mg ∈ [10, 100]. As expected [33,
34], the integrable portraits are perturbed by the inclusion of gravity, but orbits retain the same
qualitative characteristics. Leg stiffnesses estimated for human running, for example, give
γ ∈ (10, 21) [35, 36] (although Seyfarth et al. propose significantly higher values (γ ∈ (25, 70);
cf. [22, Fig. 2A]). Errors approach 20% at the lower end of this range at midstance (near ζ̇ = 0
in Figure 2(c)) but are smaller at liftoff. Extensive simulation experience confirms that errors
decrease with increasing γ (or k) for initial conditions away from the extremes of the physically
interesting operating regimes; see [32] for a careful discussion of such modeling errors; also see
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Figure 2. Solutions of the integrable system (2.7) (solid) and the full (d = 0) system (dashed) in the stance
phase: m = 1, η0 = 1.5, β = π/4 with linear spring stiffnesses k = 654 (γ = 100) (a), k = 163.5 (γ = 25) (b),
and k = 65.4 (γ = 10) (c). Dimensional units, unless otherwise stated, are MKS.

section 2.2 and Figure 4 below. Moreover, for orbits reflection-symmetric about midstance for
which ψ(t) is an odd function, such as the periodic gaits to be found below, the net angular
impulse delivered during each stance phase is zero so that, while pψ is not conserved, it does
regain its touchdown value at liftoff. This also tends to minimize errors.

In principle, we can integrate (2.8), first solving for time in terms of ζ and then inverting
and solving for ζ(t) and ψ(t). In particular, the quadrature determining the angle swept by
the leg may be written as ∆ψ(vn, δn) =

∫ τ
0

pψ
mζ2dt, where vn and δn denote the COM velocity

magnitude and direction relative to horizontal at the nth touchdown instant. Hence the
moment of linear momentum for the nth stance phase may be computed as pψ = mη0vn sin(β−
δn). Then, from conservation of energy (2.8), we have

ζ̇ =

√
2

m
(E − V (ζ))− p2

ψ

m2ζ2
⇒ dt =

m dζ√
2m (E − V (ζ))− p2

ψ

ζ2

(2.9)

so that the sweep angle may then be expressed as the quadrature

∆ψ (vn, δn) = 2

∫ η0

ζb

η0vn sin(β − δn) dζ

ζ2

√
v2
n − 2V (ζ)

m − η2
0v

2
nsin

2(β−δn)
ζ2

.(2.10)

Here we have set E = 1
2mv2

n, corresponding to the initial energy at touchdown, and ζb ≤ η0

denotes the midstride (compressed) leg length.
Computations of ∆ψ in specific cases of a linear spring and an “air spring” with potential

V (η) = c
2

(
1
η − 1

η0

)2
are given in [17]. Schwind and Koditschek [32] develop an approximate
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expression for this quadrature and compare it with both the exact integral and the analogous
stance sweep angle including gravitational effects. In the present paper, we illustrate the
general model again with a linear Hooke’s law spring but adopt a different version of the
nonlinear air spring model—specifically, that used in [37, 32]. While this potential, V (η) =
c
2(

1
η2 − 1

η2
0
), results in an inverse cubic force law of the form − c

η3 that is nonzero at touchdown

and liftoff, energy is conserved since the leg lengths are the same (η = η0), and velocities are
continuous. The explicit sweep angle expression for this law is given in Appendix A. For
the linear spring, V (ζ) = k

2 (η − η0)
2 = k

2 (ζ − η0)
2, and we have ∆ψ = 2 sin(β−δ)√

k̃
D(k̃;β − δ),

where k̃ =
kη2

0
mv2

n
and the function D(k̃;β − δ) involves elliptic integrals [17, Appendix A.1.2].

The stance phase dynamics described above must be composed with the ballistic dynamics
of the flight phase of (2.5), and the overall dynamics and the stability of this piecewise-
holonomic system [31] are best described via Poincaré or return maps [34]. It is convenient to
choose as generalized coordinates to describe the map the magnitude of touchdown and liftoff
velocities vTDn and vLOn , respectively, and the relative angles δTDn and δLOn between the velocity
vectors and the horizontal datum; see Figure 1b. The full map is obtained by composition of
the stance phase map

Pst :

[
vTDn
δTDn

]
�→
[

vLOn
δLOn

]
(2.11)

and the flight map

Pfl :

[
vLOn
δLOn

]
�→
[

vTDn+1

δTDn+1

]
(2.12)

as

P = Pfl ◦ Pst :

[
vTDn
δTDn

]
�→
[

vTDn+1

δTDn+1

]
.(2.13)

Since Iθ̇ = Iθ̇0 = const implies that θ(t) = θ0 + θ̇0t, and at touchdown in the first protocol
the leg is placed at a fixed angle relative to the body, to obtain “sensible” periodic gaits we
henceforth assume θ̇ = θ̇0 = 0. In this case, since d = 0 and θ ≡ 0, there is no distinction
between the two leg placement protocols.

We now describe the maps in detail, deriving explicit formulae. We shall frequently
drop the superscript TD and write vTDn = vn and δTDn = δn, it being understood that
(vn, δn) �→ P (vn, δn) denotes the touchdown-to-touchdown map.

2.1.1. Stance phase map. The spring is fully extended and stores no potential energy
at the beginning or the end of each stance phase. Choosing the reference height for zero
gravitational energy at y = η0 sinβ, the energy at touchdown is therefore purely kinetic,
ETD
n = 1

2m(vTDn )2, while at liftoff the energy has in general a gravitational component,
ELO
n = 1

2m(vLOn )2 +mgη0 (sin (β +∆ψ)− sinβ), the last term being positive, zero, or nega-
tive. Appealing to overall energy conservation ELO

n = ETD
n , the liftoff velocity is therefore

vLOn =
√

v2
n + 2gη0 (sinβ − sin (β +∆ψ)).(2.14)

As noted earlier, if the spring is sufficiently stiff so that gravity is negligible, the moment
of linear momentum pψ is conserved throughout stance in what is effectively a central force



A SIMPLY STABILIZED RUNNING MODEL 195

problem [31]: pψ = mrn × vn = mrLOn × vLOn . Since |rn × vn| = η0vn sin(δn − β) and
|rLOn × vLOn | = η0v

LO
n sin(δLOn − π +∆ψ + β), we obtain

δLOn = π −∆ψ − β + sin−1

(
vn
vLOn

sin(δn − β)

)
.(2.15)

However, since gravity is ignored in the sweep angle computation of (2.10), for consistency we
must also ignore it in assigning a liftoff velocity magnitude in (2.15) and set vLOn = vn so that
(2.15) simplifies to

δLOn = δn + π −∆ψ(vn, δn)− 2β,(2.16)

as in the LLS computations of [17]. Thus the effects of gravity are included in computing
liftoff velocity magnitude (2.14) but not in approximating liftoff velocity direction (2.16). This
“mixed approximation” has the advantage of retaining global energy conservation. Equations
(2.14)–(2.16), with (2.10), specify Pst. Note that (2.14), along with a (numerical) calculation
of the leg sweep angle ∆ψ and the change in pψ due to gravitational moment, defines the
exact stance phase map including gravity. We use this in section 4.

We note that pψ is reset on each touchdown and that this “trading” of angular momentum
from stride to stride will be responsible for asymptotic stability; cf. [17].

2.1.2. Flight phase and overall Poincaré map P . Using similar arguments based on
conservation of energy,

ELO
n =

1

2
m(vLOn )2 +mgη0 (sin (β +∆ψ)− sin (β)) = ETD

n+1 =
1

2
m(vTDn+1)

2,

and on conservation of linear momentum in the horizontal direction,

vLOn cos(δLOn ) = vTDn+1 cos(δ
TD
n+1),(2.17)

we find the flight phase map. For convenience, both maps are specified here:

Pst :

[
vLOn
δLOn

]
=

[ √
v2
n + 2gη0 (sinβ − sin (β +∆ψ))

δn + π −∆ψ − 2β

]
,(2.18)

Pfl :

[
vn+1

cos (δn+1)

]
=



√
(vLOn )2 + 2gη0 (sin (β +∆ψ)− sinβ)

vLOn
vn

cos(δLOn )


 .(2.19)

The last equation should more properly read vTDn+1 cos(δ
TD
n+1) = vLOn cos(δLOn ), but provided

β and η0 remain constant, conservation of energy enforces, without approximations, that
vn+1 = vn because the energy at the beginning and the end of each full stance + flight stride
is entirely kinetic. The flight map is only implicitly defined, and it is not evident that one
can find an expression in terms of vLOn , δLOn above, especially because ∆ψ = ∆ψ (vn, δn) is a
complicated function of the touchdown conditions; see (2.10). Nonetheless, using vn+1 = vn,
the full map simplifies considerably:

P :

[
vn+1

cos (δn+1)

]
=

[
vn√

1− 2gη0

v2
n

(sin (β +∆ψ)− sinβ) cos (δn + π −∆ψ − 2β)

]
.(2.20)
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Figure 3. The first column shows the function ∆ψ computed for a linear spring with k = 100,m =
1, η0 = 1.5, and β = 1.25. For cases (a) through (d), we set v̄ = 1.75, 3.5, 5, and 6, respectively. The conditions
∆ψ = π−2β (dotted) and ∆ψ = π

2
−β (dashed) are also shown. The second column shows the left-hand (dotted)

and right-hand (solid) sides of inequality (2.26): see sections 2.1.4–2.1.5. The third column shows β and ∆ψ in
physical space: solid lines indicate angles at touchdown (β) and liftoff (β+∆ψ). When β+∆ψ < π−∆ψ− 2β
(cases (a) and (b)), the body leaves the ground at an angle closer to vertical than at touchdown. Note that
(2.26) is violated for part of the domain in (d).

This expression is explicit apart from the sweep angle ∆ψ(vn, δn), which must be computed
from the quadrature of (2.10). Only here does the specific spring potential enter; the rest of
the expression for P is derived purely from conservation laws and stance and flight path
geometry. Note that, although we have approximated ∆ψ and hence Pst by neglecting the
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effect of gravitational torque in changing the COM angular momentum about the foot, the
overall composed map P conserves energy, as would the exact solutions of (2.6).

We postpone quantitative analyses of specific spring potentials to sections 3–4; however,
we note that analysis of special cases and numerical evidence indicates that for linear and
stiffening springs, ∆ψ has a single maximum. This will suffice for the analysis of the present
section. In particular, it is clear that for δn = β − π/2 (glancing contact), τ = ∆ψ = 0,
and for δn = β (running directly into the leg), ∆ψ = 0. Thus ∆ψ = 0 at both limits of
the admissible δ range, while for any vn �= 0, ∆ψ > 0 ∀ δn ∈ (β − π/2, β), so there must
be at least one maximum. We suspect that any physically reasonable spring law will give a
∆ψ with a unique maximum. The left column of Figure 3 shows ∆ψ for the linear spring
evaluated numerically for several v̄ values; they are indistinguishable from those obtained via
the analytical expressions of [17].

We remark that, in view of energy conservation and the resulting constancy of vn, (2.20)
defines a one-dimensional map for the touchdown angle δn. One could specify the system’s
state in terms of any other convenient variable, such as the COM height at the apex, which
was the choice adopted in [22]; cf. Figure 3(A) of that paper. We prefer to use the touchdown
angle and retain the velocity as a second state variable so that, when d �= 0, we may more
conveniently couple in the attitude dynamics in terms of θ and θ̇, as was done for yawing
motions in the LLS models of [17, 19]. Also, as demonstrated below, branches of periodic
orbits and their domains of attraction are conveniently presented in terms of δn (cf. Figure 8).

2.1.3. Periodic gaits. The simplest sustained forward motions, in which the hopper main-
tains a constant average forward speed and lands with the same angle between the velocity
vector and the horizontal datum on each step, are period one orbits given by vn+1 = vn and
δn+1 = δn. As we see from (2.20), the first condition is always satisfied, whereas the second
condition holds if and only if ∆ψ (vn,δn) = π − 2β.

To verify this, we first check sufficiency. Let ∆ψ(vn,δn) = π − 2β. Then sin (β +∆ψ) −
sinβ = sin (π − β)− sinβ = 0, and the map (2.20) reduces to

P :

[
vn+1

cos (δn+1)

]
=

[
vn

cos (δn)

]
.(2.21)

At touchdown following a flight phase, δn ∈ [0, π] (for both locomotion directions). In that
range, cos δn is invertible; hence δn+1 = δn.

Now let δn+1 = δn. For sustained forward motion, ∆ψ(vn, δn) ∈ [π/2 − β, π − β] and
δLOn ∈ [0, π/2]. Assume ∆ψ(vn, δn) > π − 2β. Then δLOn = δn + π − ∆ψ − 2β < δn and
cos δLOn > cos δn ∀δn, δLOn ∈ [0, π/2]. Also, β + ∆ψ > π − β and sin(β + ∆ψ) < sin(π − β)
∀β ∈ [0, π/2] and ∀∆ψ ∈ [π/2− β, π− β] ⇒ sin (β +∆ψ)− sinβ < 0 ∀β ∈ [0, π/2]. Hence we
conclude that

cos (δn+1) >

[
1− 2gη0

v2
n

(sin(β +∆ψ)− sinβ)

] 1
2

cos(δn) > cos(δn),(2.22)

which is a contradiction. A similar argument holds for ∆ψ(vn, δn) < π − 2β. Therefore,
∆ψ(vn,δn) = π− 2β is also necessary. Hence δLOn = δn, and in the gravity-free approximation
with d = 0, all one-periodic gaits are reflection-symmetric about midstance [38].
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Note that, within limits to be determined below, vn+1 = vn = v̄ can be chosen arbitrarily,
and the expression ∆ψ (v̄, δn) = π−2β can be solved to obtain the fixed point that we denote
by δ̄. Here we appeal to the fact that a parabolic segment of the flight trajectory can always
be matched to connect reflection-symmetric stance phases (i.e., those having δLOn = δn; see
Figure 1), yielding a fixed point of P . Thus, there is a one-parameter (v̄-) family of steady
periodic gaits for each β and all other parameters fixed. Also see [17] and Figure 8.

We may linearize the general expression (2.20) at a fixed point of the map to obtain the
Jacobian matrix

DP |δn=δ̄ =

[
1 0

−
(
1 + gη0 cosβ cot δn

v̄2

)
1−

(
1 + gη0 cosβ cot δn

v̄2

)
∂∆ψ
∂δn

]∣∣∣∣∣
δn=δ̄

,(2.23)

the eigenvalues of which are λ1 = 1 and

λ2 = 1−
(
1 +

gη0cosβ cot δn
v̄2

)
∂∆ψ

∂δn

∣∣∣∣
δn=δ̄

.(2.24)

The first eigenvalue, λ1, lies on the unit circle, corresponding to conservation of energy, but
|λ2| may take values either greater than or less than 1. We require δ̄ ∈ (0, β) and β ∈ (0, π2 )
for physically admissible gaits; thus the quantity in parentheses in (2.24) is strictly positive,
and a key factor in determining λ2 is the sign of ∂∆ψ

∂δn
. If ∂∆ψ

∂δn
< 0, then |λ2| > 1, and the

fixed point is unstable; if ∂∆ψ
∂δn

> 0, |λ2| may be less than or greater than 1, and stability or
instability may ensue [39, 34] (see below).

As in [17], recognizing that energy is conserved, stability can only be partially asymp-
totic, since perturbations in the direction of the eigenvector of λ1 neither grow nor decay. As
noted at the close of section 2.1.1, both here and in [17], the physical mechanism for stabi-
lization appears to be the trading of angular momentum from stride to stride. As noted by
Ruina [23] (cf. [40]), such piecewise-holonomic systems can yield asymptotic stability much
like nonholonomically constrained conservative systems [41].

2.1.4. Domain of definition of P . We must recall that the map was derived under the
tacit assumption that unimpeded leg motion is possible over the entirety of the configuration
space of the kinematic model. This is not true in general, as the toe must not be allowed to
penetrate the ground. The touchdown angle β is held constant, and since the spring has a
fixed length at rest η0, the hip height at touchdown is also fixed: yTD = η0 sinβ. For a gait
to exist, this height must be reached during the flight phase, i.e., yGmax ≥ η0 sinβ; otherwise,
the hopper will “stumble.” Integrating the ballistic equations (2.5), the time of flight to reach
the apex is tmax = vLOn sin δLOn /g, and the maximum height is given by (2.5):

yGmax = yG (tmax) = η0 sin (β +∆ψ) +
(vLOn sin δLOn )2

2g
.

Hence the map P is defined if and only if

sin2 δLOn ≥ 2gηo (sinβ − sin (β +∆ψ))

v2
n + 2gη0 (sinβ − sin (β +∆ψ))

(2.25)
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or, using (2.16),

sin2 (δn + π −∆ψ − 2β) ≥ 2gηo (sinβ − sin (β +∆ψ))

v2
n + 2gη0 (sinβ − sin (β +∆ψ))

.(2.26)

Inequality (2.26), which may be implicitly written in the form

f (v̄, δn;β, η0, g,m, V (·)) ≥ 0,

specifies the domain of definition of P (admissible values of (v̄, δn)) for each choice of physical
parameters (β, η0, g,m) and spring potential V . It appears difficult to give explicit bounds,
but we observe that, when max∆ψ (v̄, δn) ≥ π−2β and reflection-symmetric stance paths with
δn = δ̄ exist, we have sin (β +∆ψ) = sin (π − β), and the right-hand side of (2.26) vanishes.
For physically relevant gaits, δ̄ ∈ [0, β] and β < π

2 ; hence the left-hand side is strictly positive
at fixed points unless δ̄ = 0. However, since the spring remains compressed during stance,

providing a positive radial force, we see that d2ζ
dψ2 > 0, which implies d2ŷ

dx̂2 > 0, where x̂ and ŷ
are the axes of a rotated orthogonal coordinate system that has its ŷ-axis aligned with the
symmetry axis of the COM path. Hence the COM path is convex (cf. Figure 1), and δ̄ = 0
cannot be a fixed point. (The COM path need not be convex when gravity is included; indeed,
one may find orbits with δTDn < 0.) The second column of Figure 3 shows the two sides of
inequality (2.26).

We may therefore conclude via continuous dependence on initial data that the domain of
definition of P contains open sets around each fixed point, and, if |λ2| < 1 (resp., > 1), local
asymptotic stability (resp., instability) holds in the usual sense.

2.1.5. Bifurcations and stability of fixed points of P . To introduce the range of dy-
namical behaviors of P and better understand its domain of definition, we consider four
representative cases depending on the maximum sweep angle ∆ψmax:

(a) ∆ψmax < π
2 − β;

(b) π
2 − β < ∆ψmax < π − 2β;

(c) π − 2β < ∆ψmax and (2.26) is satisfied everywhere;
(d) π − 2β < ∆ψmax and (2.26) is not satisfied everywhere.

When ∆ψmax ≤ π/2 − β, the leg is vertical or directed forward at liftoff, so δLOn+1 > δn
and the direction of locomotion reverses once δLOn > π/2, even though the map may be well
defined; see Figures 3(a) and 6(a).

For π/2 − β < ∆ψmax < π − 2β, a domain appears in which ψLO
n = ψTD

n + ∆ψmax > 0
and continuing forward motion is possible. However, the hopper still lifts off and touches
down “more vertically” on each step until it eventually bounces backward in this case, too; see
Figures 3(b) and 6(b). Indeed, from (2.16) we have δLOn = δn+π−∆ψ−2β, and by assumption

(b) δLOn > δn. From (2.17) we know that cos(δn+1) =
vLOn
vn

cos(δLOn ). Now δLOn ∈ (0, π2 ), and
the cosine function is monotonically decreasing. Since the hip position at liftoff is higher than
at touchdown, the body has gained gravitational energy at the expense of kinetic energy. This

means that vLOn < vn, and therefore cos δn+1 = vLOn
vn

cos δLOn < cos δLOn < cos δn. However,
this implies that δn+1 > δn. Thus, starting with an initial angle δn, after the stance phase,
δLOn > δn, and after the flight phase, δn+1 > δLOn > δn. Hence succeeding touchdown angles
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increase until progress is reversed; the dynamics is globally unstable, and the Poincaré map
has no fixed points.

Cases (c) and (d) are of greater physical interest. In (c), inequality (2.26) is satisfied
everywhere, so the domain of definition covers the interval [β − π/2, β]. Moreover, two fixed
points exist, one of which may be stable, while the other (with higher values of δ̄) is unstable.
These fixed points appear in a saddle-node bifurcation [34] at a critical speed v = vSN .
Indeed, for the smaller δ̄ fixed point, ∂∆ψ

∂δn
> 0 (see Figure 3(c)), δ̄ > 0 ⇒ cot δ̄ > 0, and

λ2 = 1− (1 + gη0 cosβ cot δ̄
v̄2 )∂∆ψ

∂δn

�
= 1− a∂∆ψ

∂δn
. For the parameter values chosen here, a ≈ 3 > 0;

thus for ∂∆ψ
∂δn

∈ (0, 2
3), −1 < λ2 < 1, and we have established asymptotic stability. More

generally, since the term ∂∆ψ
∂δn

= 0 when ∆ψmax = π − 2β, by continuous dependence on

parameters ∂∆ψ
∂δn

is necessarily arbitrarily small for nearby parameter values, implying stability

of the fixed point with smaller δ̄ in a neighborhood of the saddle-node bifurcation point. See
Figures 3(c) and 6(c).

In case (d), ∆ψmax ≥ π−2β, but the map P is not everywhere defined: Figure 3(d) shows
that inequality (2.26) fails in the interior of [β−π/2, β]. A gap opens between the fixed points
and while a (stable) fixed point still exists to the left of the gap, many orbits, including that
shown in Figure 6(d), enter the gap and “stumble.”

We now summarize key aspects of the behaviors described above. More detailed analyses
for specific spring potentials are given in sections 3–4.

Saddle-node bifurcation. As noted above, a saddle-node bifurcation occurs between regimes
(b) and (c). Specifically, for parameter values such that

∆ψmax

(
v̄SN , δ̄SN

)
= π − 2β and

∂∆ψ

∂δn

∣∣∣∣
(v̄SN ,δ̄SN)

= 0,(2.27)

the fixed points coalesce, and λ2 = 1. For fixed physical parameters and v̄ < v̄SN , no
fixed points exist, and periodic gaits are impossible; for a (possibly small) range of velocities
v > v̄SN , a stable fixed point exists, corresponding to symmetric one-periodic gaits. See
Figures 7 and 11.

Gaps. Increases in v̄ and the consequent increases in the sweep angle ∆ψmax lead to a
violation of (2.26), giving birth at a second critical speed v̄ = v̄GP to a gap—an interior
domain in which the map is not defined. With further increases in v̄, the gap progressively
expands to occupy a larger interval between the fixed points; see, e.g., Figure 8. Gaps may
also appear in the range δn < 0 for values of v̄ small enough that ∆ψmax < π − 2β, although
these are of less physical importance, since sustained gaits do not exist in this range (below
v̄SN ). See the discussion of section 3.1 and Figure 7.

Period doubling. We recall expression (2.24) for the second eigenvalue of DP :

λ2 = 1−
(
1 +

gη0 cosβ cot δn
v̄2

)
∂∆ψ

∂δn

∣∣∣∣
δn≡δ̄

.(2.28)

The quantity in parentheses is strictly positive for δn = δ̄ ∈ (0, β) (symmetric periodic gaits),
and ∂∆ψ

∂δn
|δn=δ̄ is zero at the saddle-node bifurcation at v̄ = v̄SN and thereafter positive at

the stable fixed point of P . This suggests that, as the magnitude of ∂∆ψ
∂δn

|δn=δ̄ increases with
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increasing v̄, λ2 may pass through −1. For general (differentiable) maps, the instability arising
from crossing the unit circle at λ2 = −1 represents a loss of stability via period-doubling and
the birth of a period two orbit [34].

Explicit computations are awkward due to the difficulty of evaluating the sweep angle
quadrature (2.10), but we may estimate λ2 and hence obtain a sufficient condition for period-
doubling to occur at high velocities v̄ by appealing to the limiting behavior of the ∆ψ as
v̄ → ∞. In the next section and in Appendix B, we estimate ∆ψ(v̄, δn) and the fixed-point
location δn = δ̄ in terms of the small parameter 1

v̄ . This permits us to calculate ∂∆ψ
∂δn

|f.p. in
this limit, which in turn yields the estimate

λ2 = −1− η0 cosβ [4mg + V ′(η0 sinβ)]

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(2.29)

Since V (η) is decreasing on the interval (0, η0) for physically reasonable spring laws, the
condition λ2 = −1 can indeed be met. Indeed, to guarantee it, bearing in mind the fact
that for “low” v̄ = v̄SN , λ2 = +1, it suffices to require [4mg + V ′(η0 sinβ)] > 0 so that λ2

approaches −1 from below as v̄ → ∞, having previously passed down through −1. Thus one
would expect period-doubling to occur for relatively soft springs or touchdown angles close to
90o, e.g., for kη0(1 − sinβ) < 4mg in the case of the linear spring of section 3.1. However,
we recall that the approximate computation of the sweep angle employed in this section is
carried out under the assumption that spring forces dominate gravitational effects, whereas
(2.29) indicates that they should be comparable for period-doubling. Evidently, the true
behavior of λ2 depends in a subtle manner on the precise spring law and the other physical
parameters.

Nonetheless, numerical evidence suggests that period-doubling does occur for reasonable
parameter values and, moreover, that it can occur at relatively low speeds. This observation
corrects the misleading claim in [22]: “Bistable solutions do not exist as only symmetric contact
phases may result in a periodic movement pattern (Schwind, 1998),” and “More recently,
Schwind (1998) showed that for a running spring-mass system only symmetric stance phases
with respect to the vertical axis might result in cyclic movement trajectories.”2 Figure 9 shows
an example of an attracting period two orbit born in such a bifurcation. Also see section 3.2.
We remark that we have not found period-doubling for the Hooke spring with gravity in
stance, since whenever we observe λ2 ≤ −1, the gap has already opened, which destroys any
attracting behavior (see also Figure 3(A) of [22], where the gap opens at α0 = 68.70◦, whereas
the slope of the left fixed point becomes −1 at α0 = 68.85◦).

We note that this behavior is markedly different from the LLS dynamics discussed in [17,
19], in which no flight phase occurs, and the bound ∂∆ψ

∂δn
< 2 (see section 2.1.6) implies that

period-doubling cannot occur.

2.1.6. The limiting case v̄ → ∞. It was noted in [17] that there is a critical value v̄ above
which the touchdown kinetic energy exceeds the potential energy stored by a linear spring at
zero length. When this happens, ∆ψ(v̄, δn) no longer has a quadratic shape but approaches

2The reader should note that the symmetry of orbits associated with period 1 return maps [36] has no
bearing on the existence or properties of higher period discrete time behavior.



202 GHIGLIAZZA, ALTENDORFER, HOLMES, AND KODITSCHEK

the straight line: ∆ψ = π − 2(β − δ) as v̄ → ∞. The unstable fixed point is lost, and the
(previously stable) fixed point δ → 0+, as shown in Figures 7 and 8. (As we shall see, this
“change of type” does not occur for the air spring model, which has the physically desirable
property that the spring force increases without bound as it is compressed to zero length.)
However, for sufficiently large v̄ and any spring law having bounded energy at nonzero length,
kinetic energy dominates both gravitational and elastic energy at finite compression, and the
COM follows an almost-straight “ballistic” horizontal path.

In this limit, the quadrature integral of (2.10) can be asymptotically estimated, as shown
in Appendix B, leading to the following sweep angle expression:

∆ψ(v̄, δn) = (π − 2β + 2δn)− 1

v̄

√
2V (η0 sin(β − δn))

m
+O

(
1

v̄2

)
.(2.30)

This allows us to determine the limiting trajectory in physical space. Clearly the stance
phase limits to a horizontal motion over the distance 2η0 cosβ (the top of an inverted isosce-
les triangle). To compute the flight phase, we note that the fixed-point condition specifies
∆ψ(v̄, δ̄) = π − 2β. Calculating δ̄ ∼ 1

v̄ from the O( 1
v̄ ) term of (2.30) (see Appendix B), we

obtain an O(1) vertical component of liftoff velocity:

vLOvert = v̄ sin δ̄ ≈
√

V (η0 sinβ)

2m
; vLOhoriz = v̄ cos δ̄ ≈ v̄.(2.31)

Hence the flight duration approaches a constant, and the flight distance grows linearly with
v̄. The limiting behavior is well defined, but resolution of the flight phase requires an O( 1

v̄ )
calculation.

We note that (2.30) also shows that, as v̄ → ∞, the sweep angle approaches the straight
line ∆ψ = (π − 2β + 2δn) from below, within its domain of definition; in fact, the O( 1

v̄ )
correction to ∆ψ is the square root of the ratio of potential energy at midstance to kinetic
energy at touchdown.

2.2. Gravitational effects during stance. We have argued that, for sufficiently stiff leg
springs, elastic force dominates gravitational force during the stance phase. In this situation,
their inclusion represents a small perturbation of the idealized case studied above. Order of
magnitude estimates indicate that, for the mass and leg length chosen here, a relatively stiff
spring (e.g., k = 2000Nm , γ = 306) is required to justify the neglect of g. Typical apex heights
are one to two orders of magnitude larger than η0 in this case. However, even with springs
as soft as k = 100Nm (γ = 15.3), chosen so that flight phase displacements are comparable to
those in the stance phase, the hopper exhibits asymptotically stable gaits similar to those of
the idealized case. Figure 4 shows four examples of COM trajectories in physical space. Also
see Figure 2.

2.3. On pitching dynamics: d �= 0. We have found numerical evidence of periodic gaits
even when the leg is not attached at the COM so that the (freely pivoted) body pitches in
response to the combined moments due to gravity and the leg-spring force, according to the
last equation of (2.4). Figure 5 shows examples of symmetric 1:1 motions in which the pitching
angle is periodic with the same (least) period as the COM translation dynamics; note that in
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Figure 4. Stable gaits with gravity included in the stance phase, showing the effect of spring stiffness.
m = 1, η0 = 1.5, k = 2000 (γ = 306) (a); k = 1000 (γ = 153) (b); k = 250 (γ = 38.2) (c); and k = 100
(γ = 15.3) (d). Here β = 0.95 for the upper graphs, and β = 1.0 for the lower ones. vn was 45, 35, 15, 8,
respectively. Stance phases are shown chain dotted, and flight phases are shown solid; note the differing vertical
scales.
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Figure 5. Periodic gaits of the model with pitching included (d �= 0). The left-hand panels show COM
and hip paths in physical space, and the right-hand panels show pitch angle and angular velocity. Computed
for parameter values k = 100,m = 1, η0 = 1.5, β = 1, and (a) d = 0.015, I = 2.25 × 10−2, v̄ = 7.93; (b)
d = 0.15, I = 2.25× 10−4, v̄ = 8.26. Note that θ̇ scales differ in right-hand panels.

(b) the pitch angle oscillates several times during each stance phase. We have also seen higher
order resonances in which the pitching pattern repeats once every n strides and quasi-periodic
motions in which the pitch angle remains bounded but is not precisely locked to the stride
dynamics. We defer a detailed analysis of these “acrobatic” motions, which appear to include
partially asymptotically stable orbits having three eigenvalues of modulus 1 and one inside
the unit circle, to a future publication.
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3. Two examples. In section 2.1.3, we discussed general conditions for stability, saddle-
node bifurcations, period-doubling, and the appearance of a gap, and we classified the solutions
in terms of ∆ψmax, the maximum leg angle swept during stance, assuming only that the
function ∆ψ(v, δ) has a unique maximum but without specifying any particular spring law.
In the following section, we consider two specific and commonly used spring models: a linear
Hooke’s law spring and an air spring that mimics the compressed air strut used in certain
hopping robots. Throughout this section, we employ the approximation of section 2.1, ignoring
gravity during stance.

3.1. The Hooke’s law spring. To further illustrate the four cases discussed in section 2.1
(Figure 3), we numerically evaluate the Poincaré map for a system with spring potential
V (η) = k

2 (η − η0)
2 and parameters k = 100,m = 1, η0 = 1.5, β = 1.25. As before, we employ

increasing initial speeds v0 = 1.75, 3.5, 5, 6, corresponding to cases (a) to (d), respectively; see
Figure 6. A somewhat larger set of touchdown-to-touchdown Poincaré maps P2 is shown in
Figure 7, where we plot the second component δn �→ δn+1 implicit in (2.20).

Note that, as v̄ increases, the map first intersects the identity δn+1 = δn at v̄ = v̄SN , and
fixed points appear in a saddle-node bifurcation. We illustrate this in Figure 8(a) in the form
of bifurcation diagrams [34], plotting δ̄ vs. v̄. No qualitative changes with β are apparent; this
is a general feature that will be discussed in further detail in section 4, where we also assess
the effects of gravity in the stance phase. We note that the domain of attraction of the stable
fixed point opens and grows following v̄ = v̄SN until it is invaded by the gap; thereafter, it
shrinks as v̄ increases. Also note that the larger δn fixed point disappears at a finite speed
v̄ ≈ 5.9 due to the change of type of ∆ψ and the stance map when δ → β, and kinetic energy
at touchdown exceeds the potential energy stored in the spring at zero length (cf. [17], and
also see Figure 7).

We have also seen gaps in the domain of definition of P2 for low velocities v̄ < v̄SN (before
the saddle-node), but these are of less concern since there are no sustained gaits in this range.

As noted in section 2.1.5, period-doubling bifurcations may occur as v̄ increases, depending
upon the spring potential and other parameters. Figure 9 shows an example of a period two
gait born in such a bifurcation for a linear spring system.

3.2. An air spring. The four cases discussed in section 2.1.5 can also be illustrated with
an air spring model. As noted above, we adopt the potential c

2(
1
η2 − 1

η2
0
). We compute orbits

and Poincaré maps for a system with the parameters c = 23,m = 1, η0 = 1.5, β = 1.25
and increasing initial speeds v0 = 1.75, 3.5, 5, 6 shown as cases (a) to (d), respectively, in
Figure 10; these should be compared with Figure 6. The corresponding Poincaré maps are
shown in Figure 11 for comparison with Figure 7. For small values of speed v̄, the map
has no fixed points or periodic orbits, and, as for the linear spring, fixed points appear in a
saddle-node bifurcation at a critical speed v̄ = v̄SN . Figure 8b shows a bifurcation diagram
for the air spring hopper. For this spring law, which requires infinite energy and force for
compression to zero length, no change of type occurs, and the upper, unstable branch of fixed
points continues to arbitrarily high velocities.

3.2.1. Period-doubling and chaos. In section 2.1.5, we showed that period-doubling may
occur as v̄ → ∞. On the other hand, there is also a critical speed v̄GP above which the return
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Figure 6. Motions of the linear spring hopper in physical space (left column) and Poincaré maps (right col-
umn). Physical parameters k,m, η0, β were taken as for Figure 3. Trajectories in physical space were computed
from initial condition δ0 = 0.1, and initial speed was increased from v0 = 1.75 to 3.5, 5, and 6 for cases (a) to
(d), respectively. Touchdown height is shown by dotted horizontal lines. Poincaré maps were computed for the
same speeds. Fixed points occur at intersections of the curves and the line δn = δn+1. Both the stance map Pst
(solid) and the full map P (dotted) are shown. In (d), note the gap in which the full map is not defined.
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Figure 7. The Poincaré map P2 for a linear spring hopper with k = 10,m = 1, η0 = 1.5, β = π/4, and
speeds v̄ ranging from 3.2 to 8. Note how the two fixed points appear in a saddle-node bifurcation, and a gap
then opens as v̄ increases. For very high speeds, only one fixed point exists.
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angle β = 0.8 in (a) and for the air spring hopper with m = 1, c = 23, η0 = 1.5, and β = 1.25 in (b). Stable
branches of fixed points are shown solid, unstable branches are dashed, and cross-hatching identifies the region
in which the map is not defined. Saddle-node bifurcations occur at v̄SN = 8.12 in (a) and v̄SN = 3.95 in (b);
below these no periodic gaits exist.
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Figure 9. A period two gait of the linear spring hopper with k = 10,m = 1, η0 = 1.5, β = π/4, and v̄ = 3.95.
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Figure 10. Physical space motions (left column) and Poincaré maps (right column) for the air spring
hopper. Parameter values were chosen as for Figure 3 except for the air spring stiffness c = 23 and leg length
ζ0 = 1.25. The physical space trajectories were computed from initial condition δ0 = 0.1 and initial speeds from
v0 = 1.75 to 3.5, 5, and 6 for cases (a) to (d), respectively. Touchdown height is shown by dotted horizontal
lines. The maps were computed for the same speeds and angles δ ∈ [0, β]. Fixed points are identified with
the intersection of the curves and the line δn = δn+1. Both the stance map Pst (solid) and the full map P
(dash-dotted) are shown. The region in which the full map is not defined is apparent in (d).
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Figure 11. The Poincaré map P2 for an air spring hopper with c = 23,m = 1, and ζ0 = 1.25. The speed v̄
ranges from 1.75 to 12.2. Note the gap and the fact that the upper (larger δ̄) fixed point persists.
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Figure 12. Lyapunov exponents for β = 0.961, c/m = 0.01839, g = 9.81, and η0 = 0.173. The speed range
where the exponent becomes positive is magnified in (b).

map is not defined over the whole range δn ∈ [0, β]. The question then arises whether the gap
always opens before period-doubling occurs or whether period two and higher period orbits
or even chaotic behavior is observed for gap-free return maps. This is not only of theoretical
importance; the onset of higher period orbits and chaotic behavior for gap-free return maps
would place additional constraints on feedforward control policies that simply keep the leg
touchdown angle at β = const [28].

To identify period-2n orbits and chaos, we numerically approximate the Lyapunov expo-
nent [34] λ of the one-dimensional return map P2 : δn �→ δn+1(δn), implicitly defined by the
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second component of (2.20):

λ = lim
N→∞

1

N

N−1∑
i=0

ln

∣∣∣∣dP2

dδn
(δi)

∣∣∣∣ =: lim
N→∞

λN .(3.1)

Specifically, we set

λ ≈
{

λK if |λK − λK−1| < ε and K < N̄,
λN̄ else (with N̄ = 10000 and ε = 10−6)

(3.2)

and take a range of leg touchdown speeds v̄ ∈ [1.515, 7.162]; other parameters are β = 0.961,
c/m = 0.01839, g = 9.81, and η0 = 0.173. In this case, the return map develops a gap at
v̄GP = 1.7162.

However, it can be seen from Figure 12(a) that λ crosses to positive values at v̄Chaos ≈
1.713 (magnified in Figure 12(b)). Similar behavior has been observed for the air spring
potential with gravity in stance for parameter values β = 0.961, c/m = 0.03839, g = 9.81,
and η0 = 0.17. Here, the Lyapunov exponent becomes positive at v̄Chaos = 1.6932, whereas
the gap opens at v̄GP = 1.697. This is strong numerical evidence for chaotic behavior in the
corresponding SLIP. Chaotic behavior has not been observed for the linear spring.

In Figure 13, the corresponding bifurcating branches of fixed points are plotted as a
function of the touchdown speed v̄ up to the gap at v̄GP . Bifurcations of period eight and
higher are omitted. The lower boundary of attraction is also shown; this deviates from δn = 0
whenever δn+1(0) > δn+1(δ̄

us
1 ), where δ̄us1 denotes the unstable fixed point of the period one

bifurcation.

4. Nondimensional parameter studies. Parameters intrinsic to the model are the mass
m of the body, the moment of inertia I, the gravitational acceleration g, the uncompressed
leg length η0, the leg touchdown angle β, the distance d from hip to the COM, and the
stiffnesses k or c. These, together with initial conditions v0, δ0, provide a variety of solutions
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with different stance and flight phases and basins of attraction. The seven physical parameters
can be reduced to a minimal set of nondimensional parameters necessary to characterize the
model. Rescaling time and lengths by defining t̃ = t

t0
, ζ̃ = ζ

η0
, d̃ = d

η0
, and η̃ = η

η0
, we can

rewrite the equations of motion (2.4) as

ζ̃ ′′ = ψ′2ζ̃ − gt20
η0

cosψ −
Vζ̃(η0η̃)t

2
0

mη2
0 η̃

(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ +
gt20
η0

sinψ + d̃
Vζ̃ (η0η̃)t

2
0

mη2
0 η̃

sin (ψ + θ) ,

θ′′ = d̃
Vζ̃ (η0η̃) ζ̃t

2
0

Iη̃
sin (ψ + θ) ,(4.1)

where the differentiation ()′ ≡ d
dt̃

is with respect to the nondimensional time t̃, and Vζ̃ (η̃) =

Vη̃ (η̃) = ∂
∂η̃V (η̃). It seems physically reasonable to define the characteristic time t0 = η0

v0
,

where v0 is a characteristic speed, such as the COM speed at touchdown, and η0 is the
uncompressed length of the leg spring.

4.1. Hooke’s law spring. If we assume a linear spring with V (η0η̃) =
kη2

0
2 (η̃ − 1)2 and

define the nondimensional parameter groups

k̃
�
=

kt20
m

=
kη2

0

mv2
0

, g̃
�
=

gt20
η0

=
gη0

v2
0

, and Ĩ
�
=

I

mη2
0

,(4.2)

the equations of motion, expressed in nondimensional coordinates, become

ζ̃ ′′ = ψ′2ζ̃ − g̃ cosψ − k̃

(
1− 1

η̃

)
(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ + g̃ sinψ + k̃d̃

(
1− 1

η̃

)
sin (ψ + θ) ,

θ′′ =
k̃d̃ζ̃

Ĩ

(
1− 1

η̃

)
sin (ψ + θ) .(4.3)

Here the parameter k̃ =
kη2

0

mv2
0
=

Espr
Ekin

expresses the ratio between the potential energy storable

by the spring at maximum compression (i.e., to zero length) and the touchdown kinetic energy,
whereas g̃ = gη0

v2
0
, a Froude number, expresses the ratio of gravitational energy to kinetic energy.

Note also that the ratio k̃
g̃ = kη0

mg

�
= γ is fixed for a given physical system and is independent

of initial conditions and, in particular, of the characteristic speed. Seven physical parameters
m, I, d, η0, β, g, k have been reduced to five: Ĩ , d̃, β, g̃, k̃. In the special case of the hip attached
at the COM d̃ = 0, θ = const and only three parameters play a role: β, g̃, k̃. This facilitates a
parametric analysis of the system. Since β does not appear to change the qualitative behavior
of the solutions of (4.3), we represent the “sheets” of periodic solutions in (k̃, g̃, δ̄)-space.

Since we wish to assess the influence of gravity via g̃, here and for the air spring calcula-
tions below, we include gravity in the stance phase and make our fixed-point computations
numerically.
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Figure 14. Bifurcation diagrams for the linear spring in nondimensional (k̃, g̃, δ̄)-parameter space. Upper
panels show the cases β = 1.25 (a) and β = 1 (b), respectively; lower panels show three bifurcation diagrams
(cross sections of (a)) for β = 1.25 (c) and a single bifurcation diagram for β = 1.25 and g̃ = 0.5 (d). Unstable
branches are shown dashed, stable branches are shown solid, period-doubling bifurcation points are indicated by
triangles, and boundaries of the gap are indicated by thick black curves.

Figures 14(a)–(b) show how the stable and unstable branches of the fixed point δn = δ̄
over (k̃, g̃)-space change as β varies. The general shape of the surface of equilibria is preserved,
although the influence of g̃ on the saddle-node location k̃SN lessens as β decreases and k̃SN
itself decreases, corresponding to higher velocities. Also, for fixed β, increases in g̃ cause the
lower (stable) branch to shrink until it disappears so that when gravity plays a dominant role
(low speed and/or long leg), there is only one unstable fixed point; cf. Figure 14(c) with g̃ ≈ 1.
It can also happen, as noted in section 3.1 (Figure 8(a)), that the upper branch terminates
and only one (potentially) stable fixed point exists, e.g., near β = 1.25, k̃ ≈ 1, g̃ ≈ 0.01 in
Figure 14(c). Increasing β has the effect of expanding the domain of attraction both in the
k̃ and δ̄ directions. This suggests a choice of high ratios γ (e.g., relatively hard springs) and
high values of β in order to maximize the domains of attraction of the stable fixed points.
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Figure 15. Bifurcation diagrams for the air spring in nondimensional (c̃, g̃, δ̄)-parameter space. Upper
panels show the cases β = 1.25 (a) and β = 1 (b), respectively; lower panels show three bifurcation diagrams
(cross sections of (a)) for β = 1.25 (c) and a single bifurcation diagram for β = 1.25 and g̃ = 0.5 (d). Unstable
branches are shown dashed, stable branches are shown solid, period-doubling bifurcation points are indicated by
triangles, and boundaries of the gap are indicated by thick black curves.

We note that, for fixed (k̃, g̃, β), the saddle-node and other bifurcations occur at particular
velocities v̄SN , etc. It therefore follows from (4.2) that, as k and/or m vary and other physical
parameters remain fixed,

v̄SN = η0

√
k

mk̃SN
∝
√

k

m
.(4.4)

This is presumably the type of scaling mentioned in [22, section 4.1]. See [19] for extensive
analyses of this type for the LLS model.
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4.2. Air spring. If we assume an air spring with V (η0η̃) = c
2η2

0
( 1
η̃2 − 1) and define the

nondimensional parameter groups

c̃
�
=

ct20
mη4

0

=
c

mv2
0η

2
0

, g̃
�
=

gt20
η0

=
gη0

v2
0

, and Ĩ
�
=

I

mη2
0

,(4.5)

the equations of motion, expressed in nondimensional coordinates, become

ζ̃ ′′ = ψ′2ζ̃ − g̃ cosψ +
c̃

η̃4
(ζ̃ + d̃ cos(ψ + θ)),

ζ̃ψ′′ = −2ψ′ζ̃ ′ + g̃ sinψ − c̃

η̃4
d̃ sin (ψ + θ) ,

θ′′ = − c̃d̃ζ̃

η̃4Ĩ
sin (ψ + θ) .(4.6)

Note that with these choices, c̃ = c
mη2

0v
2
0
=

Espr
Ekin

expresses the ratio between the potential

energy stored at infinite spring length and the kinetic energy, whereas g̃ = gη0

v2
0

is again the

Froude number. Note also that the ratio c̃
g̃ = c

mgη3
0

�
= γ̊ is fixed for a given physical system

and, like γ above, is independent of initial conditions and of the characteristic speed. Again,
seven physical parameters m, I, d, η0, β, g, c have been reduced to five: Ĩ , d̃, β, g̃, c̃. In the
special case of the hip attached at the COM d̃ = 0, θ = const and only three parameters play
a role: β, g̃, c̃. The resulting surface plots are generally similar to those of Figure 14 for the
linear spring, but they reveal that stable branches persist for large g̃ and that period-doubling
occurs “earlier” (for higher c̃ and hence lower v̄); see Figure 15.

5. Conclusions. In this paper, we studied the SLIP model of a hopping rigid body in
the vertical plane. Exploring suitable limiting cases, we proved the existence of asymptoti-
cally stable periodic gaits for a fixed leg-angle (feedforward) touchdown protocol by studying
the touchdown-to-touchdown Poincaré map in its exact form and under the approximation
that gravity is negligible during stance. Numerical simulations including gravitational effects
corroborated this result, revealing regions in the parameter and phase spaces where stable
gaits exist. We considered two representative spring laws: a linear spring and a hardening air
spring, and we studied bifurcations from the branch of stable gaits, the domains of attraction
of those gaits, and the domains of definition of the Poincaré map, picking parameter values
appropriate to illustrating key behaviors rather than for comparison with specific animals or
machines. Throughout we focused on the classical SLIP, but our formulation includes full
rigid body dynamics in the sagittal plane, and we displayed some coupled translation and
pitching motions. Future work will include a broader analysis of these aspects.

As noted in the introduction, our work complements the study of [22], which addresses
parameter ranges relevant to human running. Using direct numerical solution of the point
mass SLIP equations (equivalent to the first two of (2.6)), [22] identifies parameters for which
potentially stable period one gaits exist and shows that models with masses, leg lengths, and
stiffnesses estimated from human data fall within a narrow range [22, Figure 2(A)]. A set of
apex height Poincaré maps and some COM trajectories are also shown [22, Figures 3(A–B)].
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It is noted that there is a minimum speed below which periodic gaits do not exist, that “larger
variations in leg stiffness and angle of attack are tolerated [for] increasing speed,” and that
“higher . . . velocities require either higher leg stiffness assuming constant angle of attack, or
flatter angles of attack for constant leg stiffness” [22, Figures 2(B–C)].

We believe that the present analytical work, with the associated limiting integrable limit-
ing cases, illuminates those observations. Specifically, our bifurcation studies reveal limits to
stable parameter ranges bounded by saddle-node and period-doubling bifurcations, the former
being responsible for [22]’s minimum speed requirement; our nondimensional analysis shows
clear speed/stiffness relations (e.g., (4.4) for the linear spring) and reveals the relative impor-
tance of elastic and gravitational effects; and our study of gaps in the domain of definition of
P ([22]’s apex/touchdown height constraint) shows that, while stable fixed points or higher
period orbits continue to high velocity, their domains of attraction become extremely small.
This shows that, with increasing speed, the system is less tolerant to dynamical perturbations,
even though parameter variations are less restricted, as observed in [22] (see also Figure 2(b)
in [25]). However, the bifurcation diagrams of Figures 8 and 14 show that, if the nondimen-
sional parameters are maintained in a “good” location (e.g., between the saddle-node and
gap of Figure 8) as v̄ changes, by suitable tuning of stiffness or touchdown angle, then robust
stability can be achieved with simple fixed-leg reset control. This viewpoint is guiding our
development of “low attention” feedback controllers, to be described in a future paper [28].

Appendix A. Air spring sweep angle. The sweep angle ∆ψ (vn, δn) can be obtained
explicitly in terms of elementary functions for an air spring model with V (η) = c

2(
1
η2 − 1

η2
0
).

For d = 0 (hip attached to the COM), η ≡ ζ. Solving first for the midstance compressed
length using conservation of energy and angular momentum, we obtain

1

2
mv2

0 =
1

2

p2
ψ

mζ2
min

+
c

2

(
1

ζ2
min

− 1

ζ2
0

)
⇒ ζmin = ζ0

√
p2
ψ +mc

m2v2
nζ

2
0 +mc

.(A.1)

Using this in the quadrature (2.10) with vn = v0 and pψ = mζ0v0 sin(β− δn), the sweep angle
may be computed as

∆ψ(v0, δn) =
2pψ√

mc+ p2
ψ

arccos



√

p2
ψ +mc

m2v2
0ζ

2
0 +mc


 .(A.2)

Finally, redefining c̃ = c
mζ2

0v
2
0
, z = sin(β − δn), ĉ =

c̃
1+c̃ , and ẑ =

√
z2+c̃
1+c̃ , ∆ψ can be rewritten

as

∆ψ(v0, δn) = 2
z√
1 + c̃

arccos

(√
z2+c̃
1+c̃

)
√

z2+c̃
1+c̃

= 2

√
1− ĉ

ẑ2
arccos(ẑ).(A.3)

Appendix B. Limiting behavior as v̄ → ∞. We recall the quadrature integral (2.10)

∆ψ = 2η0 sin(β − δn)

∫ η0

ζb

dζ

ζ
√

ζ2 − 2ζ2V (ζ)
mv̄2 − η2

0 sin
2 (β − δn)

,(B.1)
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where ζb is the compressed leg length at midstance, satisfying the energy balance

[
1− 2V (ζb)

mv̄2

]
ζ2
b = η2

0 sin
2(β − δn).(B.2)

(Note that we do not (yet) assume the fixed-point condition δn = δ̄.) Under the standing
assumption of analyticity of V in (0, η0), we first estimate the relevant solution of (B.2) and
then examine the asymptotics of ∆ψ as v̄ → ∞.

We introduce the small (dimensional) parameter ε = 1
v̄2 and expand solutions of (B.2) in

the form ζb ≈ ζb0 + εζb1 + · · · , obtaining

ζb0 = η0 sin (β − δn) , ζb1 =
ζb0V (ζb0)

m
.(B.3)

The integral (B.1) may then be written

∆ψ ≈ 2ζb0

∫ η0

ζb0+εζb1

dζ

ζ

√
ζ2
(
1− 2εV (ζ)

m

)
− ζ2

b0

≈ 2ζb0

∫ η0

ζb0+εζb1

dζ

ζ
√

ζ2 − ζ2
b0

+
2εζb0
m

∫ η0

ζb0+εζb1

ζV (ζ)dζ

(ζ2 − ζ2
b0
)

3
2

.(B.4)

The first integral of (B.4) yields leading terms of O(1) and O(
√
ε )

2

[
arccos (sin(β − δn))− arccos

(
ζb0

ζb0 + εζb1

)]
≈ π − 2β + 2δn − 2

√
2εζb1
ζb0

,(B.5)

where the O(
√
ε ) term is computed by setting arccos (

ζb0
ζb0+εζb1

) ≈ k0 + εαk1 and solving for

k0, k1, and α.
Integrating the second term of (B.4) twice by parts, we obtain

2εζb0
m

([
−V (ζ)√
ζ2 − ζ2

b0

+ V ′(ζ) ln
(
ζ +

√
ζ2 − ζ2

b0

)]∣∣∣∣∣
η0

ζb0+εζb1

−
∫ η0

ζb0+εζb1

V ′′(ζ) ln
(
ζ +

√
ζ2 − ζ2

b0

)
dζ

)
.(B.6)

The upper limit of the first term and both logarithmic boundary terms give contributions of
O(ε). Successive integrations by parts of the third term produce a convergent series [42], so it
is also of O(ε). To obtain the dominant O(

√
ε ) contribution, we therefore need only include

the lower limit of the first term:

2εζb0
m

V (ζb0 + εζb1)√
2εζb0ζb1 + ε2ζ2

b1

≈
√

2εζb0
ζb1

V (ζb0)

m
.(B.7)
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Combining (B.5) and (B.7) and using (B.3), we therefore obtain

∆ψ = (π − 2β + 2δn)−
√

2εζb1
ζb0

+O(ε).(B.8)

We note that ∆ψ → (π − 2β + 2δn) from below as ε → 0. Substituting the expressions (B.3)
once more, (B.8) yields (2.30).

The fixed-point condition δn = δ̄ requires that ∆ψ
(
δ̄, vn

)
= π − 2β, implying

δ̄ ≈
√

εζb1
2ζb0

=

√
εV (ζb0)

2m
.(B.9)

Now (B.9) defines δ̄ only implicitly since ζb0 = η0 sin(β−δ̄), but setting ζb0 ≈ η0

(
sinβ − δ̄ cosβ

)
for δ̄ = O(

√
ε) and expanding V (ζb0) ≈ V (η0 sinβ)− V ′(η0 sinβ)δ̄ cosβ, we obtain

δ̄ =

√
V (η0 sinβ)

2mv̄2
+O

(
1

v̄2

)
.(B.10)

Thus δ̄ → 0+ linearly with 1
v̄ as v̄ → ∞. We use this in (2.31).

Appendix C. Asymptotic behavior of λ2. We recall that the second eigenvalue of the
stride-to-stride map is given by

λ2 = 1−
(
1 + gη0 cosβ

cot δ̄

v̄2

)
∂∆ψ

∂δn

∣∣∣∣
f.p.

.(C.1)

Evaluating the derivative of the sweep angle at the fixed point (v̄, δ̄) using the expressions
developed in Appendix B, and noting that δ̄ ∼ √

ε = 1
v̄ , we obtain

∂∆ψ

∂δn
= 2 +

η0 cosβ V ′(η0 sinβ)

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(C.2)

Then using cot δ̄ ≈ 1
δ̄
∝ v̄ and substituting (C.2) into (C.1) yield the expression (2.29):

λ2 = −1− η0 cosβ [4mg + V ′(η0 sinβ)]

v̄
√
2mV (η0 sinβ)

+O
(

1

v̄2

)
.(C.3)
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Coorbital Periodic Orbits in the Three Body Problem∗

Josep M. Cors† and Glen R. Hall‡

Abstract. We consider the dynamics of coorbital motion of two small moons about a large planet which have
nearly circular orbits with almost equal radii. These moons avoid collision because they switch
orbits during each close encounter. We approach the problem as a perturbation of decoupled Kepler
problems as in Poincaré’s periodic orbits of the first kind. The perturbation is large but only in a
small region in the phase space. We discuss the relationship required among the small quantities
(radial separation, mass, and minimum angular separation). Persistence of the orbits is discussed.

Key words. coorbital motion, periodic orbits of the first kind, three body problem

AMS subject classifications. 70F15, 70F07
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1. Introduction. In 1981, the Voyager 1 space craft explored and photographed the neigh-
borhood of Saturn (see Aksnes [1]). These photos captured two remarkable small moons
subsequently named Janus and Epimetheus. The moons are remarkable because they are of
nearly equal mass, and their orbits have nearly equal radii. Because their orbits are so close,
their motion is called “coorbital.” As implied by Kepler’s laws, the inner moon has a smaller
period and hence catches up to the outer moon. The moons avoid collision because their
mutual gravitation causes them to switch orbits when they approach each other. Figure 1.1
shows a schematic drawing of the paths of the coorbital moons. Figure 1.2 shows computed
orbits of the two moons in rotating coordinates. The speed of rotation of the coordinates is
that of the orbit of average radius. In this paper, we investigate the dynamics of the motion of
a pair of small, comparable mass, coorbital moons as solutions of the Newtonian three body
problem.

Several authors have studied the dynamics of coorbital satellites in general and Janus and
Epimetheus in particular. One approach is to treat one of the moons as a test particle of
zero mass and think of the dynamics as that of the restricted three body problem. Coorbital
motion in this situation is very interesting and has been extensively studied both analytically
and numerically (see, for example, Salo and Yoder [12] and Llibre and Ollé [4]).

Since the small moons are of comparable mass, it is more natural to treat them equally in
the analysis. Two groups have approached the problem from this point of view. One approach
is to do a “matching” of two separate dynamics problems—an “outer” problem, where the
small moons do not interact, and an “inner” problem, where the interactions dominate the
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Figure 1.1. Schematic of coorbital satellites exchanging orbits. The actual exchange takes several revolutions.

motion. This technique was successfully used by Spirig and Waldvogel [13]. A second approach
is that of Murray and Dermott [9]. They consider perturbations of the tangential component
of the forces caused by the interactions of the two moons. Their work gives very accurate
predictions of the orbits.

In the classical literature, the study of the dynamics of the three body problem, in which
two of the bodies are small compared to the third, has a long and noble history. Periodic
orbits of this problem in which the interaction between the two small bodies is treated as a
perturbation of decoupled Kepler problems have been studied extensively (see, for example,
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Paths of coorbital moons in rotating coordinates

1.1-1.1

1.1

-1.1

x

y

 

Figure 1.2. Typical coorbital paths in rotating coordinates. The angle of closest approach is the angle of
the gap between the paths of the moons. In this picture, the initial positions are (1.01, 0), (0,−0.99); the initial
velocities are (0.0995037), (0,−1.00504); and the masses are 0.012.4. (Computed with dstool.)

Meyer [6], [7]). The situation we study here involves two small masses in nearly circular
coplanar orbits about a large mass. Periodic orbits of this type were described by Poincaré as
periodic orbits of the “first type” (see Poincaré [11, pp. 75–76] and Goroff’s introduction in
[11, p. I46]) The problem studied here differs from the classical problem in that we consider
solutions for which the distance between the radii of the orbits of the small bodies tends to
zero as their masses tend to zero. For this reason, there is no “restricted” (small masses = 0)
limit, and we must study the problem for small but nonzero masses.

There are three small quantities to consider. The first is the ratio of the difference between
the radii of the moons’ orbits and the average radius of their orbits. We call this quantity
ε. The second is the masses of the small moons. We call the masses µiε

a, where µ1, µ2 are
order one. Finally, we are seeking orbits for which the moons do not pass through syzygy
on the same side of the planet. Hence, there is some minimum angle between the rays from
the planet to the moons. This minimum angular separation of the moons is the third small
quantity; we call it εb. (This angle is the gap between the orbits of the moons in rotating
coordinates; see Figure 1.2.) The main and new result of this paper is the determination of
the relative size of these small quantities that admits coorbital motion like that observed for
Janus and Epimetheus. In particular, we show the following.
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Theorem 1.1. Let ε be the ratio of the difference between the radii of the orbits of the small
moons with the average radius, and suppose the ratio of the moons’ masses to the mass of
the planet is of order εa and the minimum angular separation of the moons is of order εb. If
2 < a < 5/2, then the system admits coorbital motion, and in this case b = a− 2.

The technique we use is to make restrictions on the parameters a and b so as to obtain
a low order system in ε that we can analyze. Then we show coorbital motion occurs in
this truncated system. Restrictions on the parameter a correspond to restricting the choice
of masses of the small bodies. Restrictions on the parameter b correspond to limiting our
attention to certain regions of the phase space. Hence we can treat a and b as independent
parameters. Once we fix the ranges for a and b, we must (a postiori) show that coorbital
motion occurs for the masses and in the region of phase space satisfying the restrictions.

The range of values for the parameter a is chosen so that the terms giving the force
between the moons have only one summand of low order in epsilon. Care must be taken
because terms involving epsilon appear in both the numerators and denominators of terms in
the Hamiltonian.

In the final section, we discuss qualitative aspects of coorbital motion. We do not prove
stability, but we discuss a lower bound for the persistence of these orbits.

2. Equations of motion and scalings. In this section, we derive our model for the study
of motion of small coorbital moons. Since the two small moons have masses of the same order
of magnitude, we require that they be treated equally by the equations of motion.

We begin with the Hamiltonian system representing the Newtonian three body problem
given by the usual energy function

H(q, p) =
p2
0

2M
+

p2
1

2m1
+

p2
2

2m3
− GMm1

‖q1 − q0‖ − GMm2

‖q2 − q0‖ − Gm1m2

‖q2 − q1‖ ,

where q0, p0 are the positions and momentum in the plane of the large planet with mass M ,
qi, pi, i = 1, 2, are the position and momenta in the plane of the small moons with masses
mi, i = 1, 2, respectively, and G is the gravitational constant. We choose units of distance so
that G = 1 (see Meyer [8]) and units of mass so that M = 1. This gives the Hamiltonian

H(q, p) =
p2
0

2
+

p2
1

2m1
+

p2
2

2m2
− m1

‖q1 − q0‖ − m2

‖q2 − q0‖ − m1m2

‖q2 − q1‖ .

Next we isolate the total momentum and center of mass via a change of variables. The
usual coordinate choice for this step is the Jacobi coordinates (see Meyer [8]); however, these
coordinates treat the moons asymmetrically. We use a coordinate change which treats the
moons equivalently. We define new position variables u by

u1 = q1 − q0,

u2 = q2 − q0,

u3 =
1

1 + m1 + m2
(q0 + m1q1 + m2q2).
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Extending this to a symplectic transformation, we define new momentum variables v by

v1 = − m1

1 + m1 + m2
p0 +

1 + m2

1 + m1 + m2
p1 − m1

1 + m1 + m2
p2,

v2 = − m2

1 + m1 + m2
p0 − m2

1 + m1 + m2
p1 +

1 + m1

1 + m1 + m2
p2,

v3 = p0 + p1 + p2.

In these variables, the new Hamiltonian function is

H(u, v) =
(1 + m1)v2

1

2m1
+

(1 + m2)v2
2

2m2
+ v1v2 +

v2
3

2(1 + m1 + m2)
− m1

‖u1‖ − m2

‖u2‖ − m1m2

‖u1 − u2‖ .

Since the variables v3, u3 represent the total momentum and center of mass, respectively,
it suffices to consider only u1, u2, v1, v2.

2.1. The small quantities: Moon masses. As stated above, we take advantage of the
fact that the coorbital motion involves three small quantities. We assume that the distance
between the semimajor axes of the orbits of the small moons when they are far apart is of
order epsilon compared to the average of the two semimajor axes. We assume that the masses
are (both) of order εa (in comparison to the mass of the planet M = 1) and that the angle of
closest approach of the bodies is of order εb.

It is convenient to incorporate the small masses first. We let

m1 = εaµ1,

m2 = εaµ2,

where µ1, µ2 are of the same order as the mass of the planet M = 1. We simultaneously
rescale the momentum variables, defining new momentum variables w1, w2 by

w1 = ε−av1,

w2 = ε−av2.

The change from u, v to u,w variables is a symplectic transformation with multiplier ε−a (see
Meyer [8]). The resulting system has Hamiltonian function

H(u,w) =
w2

1

2µ1
+ εa

w2
1

2
+

w2
2

2µ2
+ εa

w2
2

2
+ εaw1w2 − µ1

‖u1‖ − µ2

‖u2‖ − εaµ1µ2

‖u1 − u2‖ ,

and the corresponding differential equations are

u̇1 =
w1

µ1
+ εaw1 + εaw2,

u̇2 =
w2

µ2
+ εaw2 + εaw1,

ẇ1 = − µ1

‖u1‖3
u1 +

εaµ1µ2

‖u2 − u1‖3
(u2 − u1),

ẇ2 = − µ2

‖u2‖3
u2 +

εaµ1µ2

‖u2 − u1‖3
(u1 − u2).



224 JOSEP M. CORS AND GLEN R. HALL

2.2. Incorporating the minimum distance between moons. The next step is to group
terms in the system above with respect to powers of ε. Our goal is to collect terms so that
the system corresponding to the lowest order is simple yet reflects the dynamics of coorbital
motion. In particular, we cannot just treat all terms involving epsilon as “higher order” since
the resulting system is just two decoupled Kepler problems.

To begin, we make the a priori assumption that a > 0, that is, that the small masses are
small in comparison to the mass of the primary M = 1. In addition, since we are seeking
coorbital motion, we assume that the moons do not approach the planet, i.e., that ‖u1‖ and
‖u2‖ are of order one. Finally, while coorbital motion is subtle, it probably does not include
times when the velocity is very large. Hence we assume that the (scaled) momentum variables
w1, w2 are of order one. These a priori assumptions restrict our attention to a region of phase
space in which we hope to find solutions corresponding to coorbital motion.

With the a priori assumptions above, we can classify all of the terms with a factor εa in
the Hamiltonian and/or the differential equations as order O(εa) except the terms having

‖u2 − u1‖
in the denominator. Since we are looking for orbits where the two moons do interact signifi-
cantly, we must assume that the distance between the moons becomes sufficiently small that
the interaction terms are significant. In particular, we assume that

‖u2 − u1‖ ≥ O(εb)

and that the minimum value of ‖u2−u1‖ along an orbit is of this order. This can be interpreted
as allowing the algebra to do the division between the “inner” and the “outer” solutions in
the matching method. We set the relative size of a and b below to achieve this division.

Hence, at this stage, we have

H(u,w) =
w2

1

2µ1
+

w2
2

2µ2
− µ1

‖u1‖ − µ2

‖u2‖ − εaµ1µ2

‖u2 − u1‖ + O(εa).

2.3. Rotating polar coordinates. We next change to rotating coordinates in the usual
way. Let

xj = R(t)uj ,

yj = R(t)wj ,

where

R(t) =

[
cos t sin t
− sin t cos t

]
.

We focus on orbits of period near 2π and hence radius near 1 without loss of generality. The
new Hamiltonian is

H(x1, x2, y1, y2) =
‖ y1 ‖2

2µ1
+

‖ y2 ‖2

2µ2
− xT

1 Ky1 − xT
2 Ky2

− µ1

‖ x1 ‖ − µ2

‖ x2 ‖ − εa
µ1µ2

‖ x2 − x1 ‖ + O(εa),
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where

K =

[
0 1
−1 0

]
.

As expected, the next step is to convert to polar coordinates

(r1, r2, θ1, θ2, R1, R2,Θ1,Θ2) = (r, θ, R,Θ).

In these coordinates, the Hamiltonian is given by

H(r, θ, R,Θ) =
1

2µ1

(
R2

1 +

(
Θ1

r1

)2
)

+
1

2µ2

(
R2

2 +

(
Θ2

r2

)2
)

− Θ1 − Θ2 − µ1

r1
− µ2

r2

− εa
µ1µ2

(r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1))1/2
+ O(εa).

2.4. Incorporating the difference between the semimajor axes. The last of the small
quantities in the problem is the difference between the semimajor axes of the moons when
they are far from each other and on approximate Kepler orbits. We assume this difference is
of order ε; i.e., we let

ερ1 = r1 − 1,

ερ2 = r2 − 1,

εΦ1 = Θ1 − µ1,

εΦ2 = Θ2 − µ2.

This change of variables is a symplectic transformation with multiplier ε−1. To avoid the
singularity at ε = 0, we rescale time using

dtold/dtnew = ε, so told = εtnew.

The new Hamiltonian is

H(ρ1, ρ2, θ1, θ2, R1, R2,Φ1,Φ2) =
1

2µ1

(
R2

1 +
(µ1 + εΦ1)2

(1 + ερ1)2

)
+

1

2µ2

(
R2

2 +
(µ2 + εΦ2)2

(1 + ερ2)2

)

− (µ1 + µ2) − εΦ1 − εΦ2 − µ1

1 + ερ1
− µ2

1 + ερ2

− εaµ1µ2

((1 + ερ1)2 + (1 + ερ2)2 − 2(1 + ερ1)(1 + ερ2) cos(θ2 − θ1))1/2
+ O(εa).

Again, we expand and collect similar power terms in ε for all but the last summand (which
is treated separately below). We obtain

H(ρ1, ρ2, θ1, θ2, R1, R2,Φ1,Φ2) =
R2

1

2µ1
+ ε2

(
Φ2

1

2µ1
− 2Φ1ρ1 +

µ1ρ
2
1

2

)
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+
R2

2

2µ2
+ ε2

(
Φ2

2

2µ2
− 2Φ2ρ2 +

µ2ρ
2
2

2

)

− εaµ1µ2

((1 + ερ1)2 + (1 + ερ2)2 − 2(1 + ερ1)(1 + ερ2) cos(θ2 − θ1))1/2
+ O(εa) + O(ε3),

where we have kept terms of order two in ε and the last summand. The constant terms have
no effect on the dynamics and have been dropped. The “O(ε3)” refers to those generated by
expanding all but the last summand.

2.5. A priori assumption on the masses: Lower bound for parameter a. We can think
of the Hamiltonian above as coming from two decoupled Kepler problems for the motion of
the moons plus interaction terms. In the rotating coordinates, there is a circle of fixed points
corresponding to the circular orbits at radius one. To include the fact that the moons are
not on this orbit but rather are moving on orbits nearby (within ±ε), we must include the ε2

order terms in this part of the Hamiltonian.
We are seeking systems for which the terms governing interaction between the two moons

are significant only when they are close. Hence we must assume that the terms collected above
in “O(εa)” are actually of higher order than ε2. To do this, we are forced to assume that

a > 2.

This assumption allows the algebra to perform the localization of the interaction terms between
the moons.

2.6. Interaction terms between the moons. Finally, we return to the terms governing
the interaction between the two moons. We must go carefully since we must keep terms which
may become large when the two moons are close.

To deal with the coupling term between the moons, we analyze

g(ρ1, ρ2, θ, ε) =
1

((1 + ερ1)2 + (1 + ερ2)2 − 2(1 + ερ1)(1 + ερ2) cos(θ))1/2
.

Here θ = θ2 − θ1, the angular distance between the moons. We must examine the order in
epsilon of terms in the partials of g, particularly when θ is small. We extend our a priori
assumptions to restrict our attention to orbits for which syzygy does not occur with the two
moons on the same side of the planet, i.e., that

θ, 2π − θ ≥ O(εb),

where b is fixed below. We compute ∂g/∂ρ1 and arrange the terms as follows:

∂g

∂ρ1
= − ε

(1 − cos θ) + ε(ρ1 − ρ2 cos θ)

((2 − 2 cos θ)(1 + ε(ρ1 + ρ2) + ε2ρ1ρ2) + ε2(ρ1 − ρ2)2)3/2

= − ε
1

2(2 − 2 cos θ)1/2

[
1

(1 + ε(ρ1 + ρ2) + ε2ρ1ρ2 + ε2(ρ1 + ρ2)2/(2 − 2 cos θ))3/2

+
ε(ρ1 − ρ2 cos θ)/(1 − cos θ)

(1 + ε(ρ1 + ρ2) + ε2ρ1ρ2 + ε2(ρ1 + ρ2)2/(2 − 2 cos θ))3/2

]
.
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Now, the order in epsilon of these terms is determined by the denominators. We can expand
the terms within the square brackets by expanding

(1 + δ)−3/2

in powers of δ, where

δ = ε(ρ1 + ρ2) + ε2ρ1ρ2 +
ε2(ρ1 + ρ2)2

(2 − 2 cos θ)
.

The last summand of δ is of order ε2−2b, so δn contains terms of order

εk
(
ε2
)r(

ε(2−2b)
)n−(k+r)

= εk+2r+(2−2b)(n−k−r).

At extreme values of θ,
ε

2(2 − 2 cos θ)1/2
= O(ε1−b).

So, expanding ∂g/∂ρ1 at the extreme values of θ, we obtain terms of order

O(ε1−b+k+2r+(2−2b)(n−k−r)) and O(ε2−3b+k+2r+(2−2b)(n−k−r)),

where n = 0, 1, 2, . . . and 0 ≤ k, r, k + r ≤ n. The terms in Ṙ1 are εa times these.

The terms in ∂g/∂ρ2 (which relates to the Ṙ2 = −∂H/∂ρ2 term) are of the same order.

For partials with respect to the θ, we must compute more and be considerably more
careful. First, we compute ∂g/∂θ. We could deal with the resulting terms as we did above,
but it is more illustrative to examine the power series of ∂g/∂θ in epsilon:

∂g

∂θ
=

(1 + ερ1)(1 + ερ2) sin θ

((2 − 2 cos θ)(1 + ε(ρ1 + ρ2) + ε2ρ1ρ2) + ε2(ρ1 − ρ2)2)3/2

=
sin θ

(2 − 2 cos θ)3/2
− 1

2

(ρ1 + ρ2) sin θ

(2 − 2 cos θ)3/2
ε

+
1

4

((3ρ2
1 + 3ρ2

2 + 2ρ1ρ2) cos θ + 3ρ2
1 + 3ρ2

2 − 14ρ1ρ2) sin θ

(2 − 2 cos θ)5/2
ε2

+ −1

8

((5ρ3
1 + 5ρ3

2 + 3ρ2
1ρ2 + 3ρ1ρ

2
2) cos θ + 13ρ3

1 + 13ρ3
2 − 21ρ2

1ρ2 − 21ρ1ρ
2
2) sin θ

(2 − 2 cos θ)5/2
ε3 + O(ε4).

We analyze each summand at extreme values of θ, so 2−2 cos θ = O(ε2b) and sin θ = O(εb).

Evaluating the order of these terms at the extreme values of θ, we see that the first term
is of order ε−2b. The second term is of order ε1−2b, and the third term is at the largest of
order ε2−4b.

Subsequent terms are of order

O(εw−2b+k+2r+(2−2b)(n−k−r)),

where w = 0, 1, 2, n = 1, 2, 3, . . . , and 0 ≤ k, r, k + r ≤ n. The corresponding terms in the Φ̇i

are of order εa times these.
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2.7. Bounds for b. We saw above that we must keep terms of order ε2 and lower in order
to have any chance of accurately representing the motion of the two moons when they are far
apart. In the previous section, we computed the order of terms resulting from the interaction
between the moons when they are close to each other. The order of these terms is as follows:

Ṙi contains terms εa+1−b+k+2r+(2−2b)(n−k−r) and εa+2−3b+k+2r+(2−2b)(n−k−r),
where n = 0, 1, . . . and 0 ≤ k, r, k + r ≤ n;

Φ̇i contains terms εa−2b, εa−2b+1, εa−4b+2,

εa+w−2b+k+2r+(2−2b)(n−k−r),
where w = 0, 1, 2, n = 1, 2, 3, . . . , 0 ≤ k, r, and k + r ≤ n.

In order to obtain a model system in which to search for and study coorbital behavior, we
choose an upper bound for a and conditions on b which guarantee that finitely many of these
terms are of order less than or equal to 2 in epsilon. We note that the terms

εa+1−b+(2−2b)n and εa−2b+(2−2b)n

appear in Ṙi and Φ̇i. In order to guarantee that only finitely many of these terms are of order
less than 2 in epsilon, we must assume that 2 − 2b > 0. Hence we assume b < 1. That is, we
restrict our attention to the region of the phase space corresponding to positions where the
angular separation is greater than or equal to O(εb) and b > 1.

However, we do not want to eliminate all the terms from the interactions between the
moons. To guarantee that at least one interaction term is of order less than 2 in epsilon, we
assume that

a− 2b < 2

or
a− 2

2
< b.

The simplest nontrivial system possible would contain just the one interaction term of
order εa−2b in Φ̇i and none of the higher order terms in Φ̇i or Ṙi. To obtain this system to
order 2 in epsilon, we need to guarantee that

a− 2b + 1 > 2 and a− 4b + 2 > 2.

All subsequent terms of Φ̇i and all terms of Ṙi are of order greater than these powers and/or
of order greater than a > 2 in epsilon. If 0 < b < 1/2, then a − 2b + 1 < a − 4b + 2, so we
must assume that

a− 2b + 1 > 2,

i.e.,

b <
a− 1

2
.

If 1/2 ≤ b < 1, then a− 4b + 2 ≤ a− 2b + 1, so we must assume that

a− 4b + 2 > 2,
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i.e.,

b <
a

4
.

2.8. Summary. To summarize, we have made two sorts of restrictions. First, we have
restricted our attention to a specific region of the phase space in which we hope to find
coorbital motion. This includes a priori restrictions on the size of some variables (e.g., the
distances from the planet to the moons is of order one) and restrictions on the parameter b.
Second, we have made restrictions on the possible values of the parameters of the masses of
the moons by placing restrictions on the parameter a. The motivation for these restrictions is
to isolate a region in phase x parameter space where the lowest order system is simple enough
to study (and in which we hope to find coorbital behavior).

We collect the following assumptions:

• The distances of the moons from the planet are bounded below by an order one
constant.

• The velocities of the moons are bounded above by an order one constant.
• The difference between the radii of the orbits of the moons is of order ε (i.e., the radii

of the moons’ orbits are close).
• The masses of the moons are both of order εa (where the mass of the planet is one),

and a > 0; i.e., the moons are small.
• The angular distance between the moons (call it θ) satisfies

min (θ) ≥ O(εb)

and

max (2π − θ) ≥ O(εb),

and b > 0 (i.e., the moons get close to each other, but syzygy of the moons does not
occur with both on the same side of the planet), and at closest approach θ = O(εb).

Recall that the radii of the approximate Kepler orbits of the two moons when they are
separated are assumed to differ by order epsilon. In the resulting system, we must keep terms
of order two in epsilon in order to distinguish our system from one where the two moons are
both on the same circular orbit.

• We assume the masses of the moons are such that a > 2. This assumption is equivalent
to assuming that the significant interaction between the moons occurs only when they
are close.

• We assume that the minimum angular separation of the moons is such that

a− 2

2
< b.

This assumption ensures that there is at least one term of order less than two in epsilon
resulting from the interaction between the moons.

• We assume that b < 1. This assumption is necessary to keep the number of interaction
terms between the moons of order less than two in epsilon finite.

• The two assumptions above imply that a < 4.
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• If 0 < b < 1/2, we assume that b < (a− 1)/2. If 1/2 ≤ b < 1, we assume that b < a/4.
These assumptions yield the simplest nontrivial system in which to search for coorbital
behavior.

With these assumptions, we can write the truncated equations (up to order ε2) as

ρ̇1 =
1

µ1
R1,

θ̇1 = ε2
(

Φ1

µ1
− 2ρ1

)
,

Ṙ1 = ε2(2Φ1 − µ1ρ1),

Φ̇1 = εa
µ1µ2 sin(θ2 − θ1)

(2 − 2 cos(θ2 − θ1))3/2
,

ρ̇2 =
1

µ2
R2,

θ̇2 = ε2
(

Φ2

µ2
− 2ρ2

)
,

Ṙ2 = ε2(2Φ2 − µ2ρ2),

Φ̇2 = −εa µ1µ2 sin(θ2 − θ1)

(2 − 2 cos(θ2 − θ1))3/2
.

This system is Hamiltonian with

H(ρ1, ρ2, θ1, θ2, R1, R2,Φ1,Φ2) =
1

2µ1
R2

1 + ε2
(

Φ2
1

2µ1
− 2ρ1Φ1 +

µ1ρ
2
1

2

)

+
1

2µ1
R2

2 + ε2
(

Φ2
2

2µ2
− 2ρ2Φ2 +

µ2ρ
2
2

2

)

− εa
µ1µ2

(2 − 2 cos(θ2 − θ1))1/2
.

3. Analysis of the reduced system. Two steps remain in the construction of our reduced
system. First, we must determine appropriate value(s) for the parameter b, which determines
the minimum angular separation between the moons. Second, we must justify (a postiori) our
model by finding solutions of our model exhibiting coorbital behavior.

3.1. Projecting to two degrees of freedom. The four degree of freedom system above
almost decouples into two systems. We can take advantage of this, projecting the system
above onto a two degree of freedom system as follows: Let

ρ = ρ2 − ρ1,

θ = θ2 − θ1,

R = R2/µ2 −R1/µ1,

Φ = Φ2/µ2 − Φ1/µ1
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to obtain the system

ρ̇ = R,

θ̇ = ε2 (Φ − 2ρ) ,

Ṙ = ε2(2Φ − ρ),

Φ̇ = −(µ1 + µ2)εa sin θ

(2 − 2 cos θ)3/2
.

This is a Hamiltonian system with Hamiltonian

H(ρ, θ,R,Φ) =
R2

2
+ ε2

ρ2

2
+ ε2

(
Φ2

2
− 2ρΦ

)
− (µ1 + µ2)εa

(2 − 2 cos θ)1/2
.

3.2. Separating fast and slow variables. Next we isolate the slow and fast variables and
put the system into a simpler form while maintaining the Hamiltonian structure. Hence all
of our changes of variables will be symplectic or symplectic transformations with multipliers.

First, we redistribute the ε on the ρ,R variables by letting

√
εP = R,

1√
ε
γ = ρ.

We also rescale time, choosing a new time variable with dtnew/dtold = ε. Note that this change
undoes the scaling done at the beginning of section 2.4, so this time variable is “real” time.
These changes yield the new system

γ̇ = P,

θ̇ = −2ε1/2γ + εΦ,

Ṗ = −γ + 2ε1/2Φ,

Φ̇ = −(µ1 + µ2)εa−1 sin θ

(2 − 2 cos θ)3/2
.

The Hamiltonian is

H(γ, θ, P,Φ) =
P 2

2
+

γ2

2
− 2ε1/2Φγ + ε

Φ2

2
+ εa−1 µ1 + µ2

(2 − 2 cos θ)1/2
.

To lowest order, the γ, P equations are those of a harmonic oscillator with equilibrium at
P = 0, γ = 2ε1/2Φ. We move this equilibrium to the origin by changing variables, setting

γ̃ = γ − 2ε1/2Φ.

However, to keep the change symplectic, we must also alter the other variables. Using the
generating function (see Meyer [8])

S(γ, θ, P̃ , Φ̃) = γP̃ + θΦ̃ − 2ε1/2Φ̃P̃ ,
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we obtain the symplectic change of variables

γ̃ = γ − 2ε1/2Φ̃,

θ̃ = θ − 2ε1/2P̃ ,

P̃ = P,

Φ̃ = Φ.

In these variables, the Hamiltonian is

H(γ̃, θ̃, P̃ , Φ̃) =
P̃ 2

2
+

γ̃2

2
− ε

3

2
Φ̃2 − εa−1 µ1 + µ2

(2 − 2 cos(θ̃ + 2ε1/2P̃ ))1/2
.

As above, we expand and keep only terms which contribute terms of order less than or
equal to one in epsilon to the differential equation. We must identify these terms in the
expansions of

∂

∂θ̃

(
εa−1 µ1 + µ2

(2 − 2 cos(θ̃ + ε1/2P̃ ))1/2

)

and
∂

∂P̃

(
εa−1 µ1 + µ2

(2 − 2 cos(θ̃ + ε1/2P̃ ))1/2

)
.

The computations involved are similar to those of sections 2.6 and 2.7,

∂

∂θ̃

(
1

(2 − 2 cos(θ̃ + ε1/2P̃ ))1/2

)
= − sin θ̃

(2 − 2 cos θ̃)3/2

+ε1/2P̃

(
− cos θ̃

(2 − 2 cos θ̃)3/2
+

sin2 θ̃

(2 − 2 cos θ̃)5/2

)
+ · · · ,

where “ · · · ” refers to terms in higher powers of ε1/2P̃ . As above, we examine the higher order
terms at the extreme values of θ̃. In addition, we use the fact that restricting our attention to
the region of the phase space where ρ is of order one implies that γ is O(ε1/2). Since γ and P
behave to lowest order like a harmonic oscillator about (εΦ, 0) and Φ is order one, we restrict
our attention to the region of phase space where P̃ is O(ε1/2). Assuming γ and P are order
O(ε1/2) is equivalent to assuming that the eccentricity of the moons’ orbits is small (O(ε))
when they are far apart.

However, we also need to add the assumption that

a− 1

3
> b.

Using this and 0 < b < 1, we have that we need only keep the first summand on the right-hand
side above in the equation for Φ̇.

Similarly, we need to assume that

2a− 3

4
> b
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to guarantee that all terms of

∂

∂P̃

(
εa−1 µ1 + µ2

(2 − 2 cos(θ̃ + ε1/2P̃ ))1/2

)

are of order greater than epsilon in the equation for ρ̇.
Hence, to first order in epsilon, we have

H(γ, θ, P,Φ) =
P 2

2
+

γ2

2
− ε

3

2
Φ2 − εa−1 µ1 + µ2

(2 − 2 cos(θ))1/2
.

We emphasize that this is the reduced system under the assumptions and restrictions of section
2.8 and that

• P is O(ε1/2),
• b < (a− 1)/3, and b < (2a− 3)/4.

3.3. Fixing the range for a and setting b. We note that in these variables, to lowest
order in ε, we have the system

γ̇ = P,

θ̇ = −3εΦ,

Ṗ = −γ,
Φ̇ = −(µ1 + µ2)εa−1 sin θ

(2 − 2 cos θ)3/2
.

This system decouples. The Hamiltonian for the θ,Φ system is

K(θ,Φ) = −3

2
εΦ2 − (µ1 + µ2)εa−1

(2 − 2 cos θ)1/2
.

Using this expression, we see that solutions of the slow system are closed curves about
θ = π,Φ = 0. These correspond to the coorbital motions of the two moons. The angle θ,
which equals the angle between the moons, oscillates strictly between 0 and 2π, while the
angular velocity Φ alternates sign depending on which moon is closer to the planet. The
oscillations of γ and P correspond to slight eccentricities of the Kepler orbits followed by the
moons when they are far apart.

Hence we have found the coorbital solutions in the truncated system, and this provides a
postiori justification of the assumptions necessary to obtain the system.

Moreover, if we consider the level set K(θ,Φ) = k, then on θ = π,Φ = Φ0 we have

K(π,Φ0) = k = −ε3

2
Φ2

0 − εa−1µ1 + µ2

2
≈ −ε3

2
Φ2

0.

The maximum, θmax, and minimum, θmin, values of θ on the level curve K(θ,Φ) = k occur
where Φ = 0, and so, to lowest order in ε,

θmin ≈ εa−2 2(µ1 + µ2)

3Φ2
0

,
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and similarly for θmax.
This implies that the consistent choice for the parameter b is b = a − 2. Combining this

with the a priori assumptions of section 2.8, we obtain the following: if 0 < b < 1/2, then
2 < a < 5/2, while if 1/2 ≤ b < 1, then 2 < a < 8/3. Adding the assumptions of section
3.2, namely, that b < (a − 1)/3 and b < (2a − 3)/4, and using a > 2, b = a − 2, we obtain
2 < a < 5/2.

This completes the proof of the theorem stated in the introduction.

3.4. Analysis of the moons of Saturn. We next consider examples of coorbital motion
observed in the moons of Saturn—first Janus and Epimetheus. The analysis above allows us
to relate the three small quantities in coorbital motion, the difference in average radius of the
orbit, the mass, and the angle of closest approach. The equation at the end of section 3.3
relates θmin, µ1, µ2, and Φ0 the value of Φ when θ = π to each other. Referring back to the
system of section 3.1, we see that if we take the initial value of ρ (the separation of the radii)
to be one, then nearly circular orbits will have ρ ≈ 2Φ, so we take Φ0 = 1/2. Substituting
gives

θmin ≈ 8

3
εa−2(µ1 + µ2) =

8

3
ε−2(m1 + m2),

where we use that the masses satisfy mi = εaµi. This agrees to lowest order with the similar
relationship found by Murray and Dermott [9].

While careful observation has accurately determined the orbits of Janus and Epimetheus
(see Nicholson et al. [10]), the masses cannot be directly measured. In practice, masses of
small bodies are determined by the effect these bodies have on other bodies. For Janus and
Epimetheus, observation yields that the average radius of the orbits of the moons is 150,432
Km and the difference in the radii when they are far apart is approximately 50Km. This gives
an epsilon value of ε ≈ 3.32 · 10−4. Consistent choices of masses and minimum separation
angles which agree with observation are given by m1 + m2 ≈ 4.5 · 10−9 and θmin ≈ 6◦. While
our theorem specifies only the order of magnitude of the relationship between the masses and
epsilon, the value 4.5 · 10−9 ≈ ε2.4 is well within the range allowed, i.e., ε2 ≈ 1 · 10−7 to
ε2.5 ≈ 2 · 10−9.

Other groups of moons of Saturn have very close semimajor axes—for example, Dione and
Helene and Thethys, Telesto, and Calypso (see Murray and Dermott [9]). However, the ratios
of the masses of the smaller moon to the larger one in these cases is so small that it is more
natural to treat these as perturbations of the restricted three body problem. One exception is
the pair Prometheus and Pandora, which have approximately equal masses and radii 139,350
Km and 141,700 Km, respectively (data from Murray and Dermott [9, pp. 531–533]). For this
pair, the average radius is 140,525 Km and

ε =
141, 700 − 139, 350

140, 525
≈ 0.0167.

The minimum mass ratio of these moons with Saturn necessary for them to exhibit coorbital
motion is on the order of 0.01675/2 = 3.6 · 10−5. The actual mass ratio is 2.37 · 10−10 and,
as expected, these moons do not switch orbits. The F ring is between the orbits of these two
moons. However, the interaction terms between these moons have a significant effect on their
orbits as recent observations and simulations show (see Goldreich and Rapporport [3]).
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4. Persistence of coorbital motion. Above we found, under appropriate assumptions on
the parameters, orbits in a certain region of the phase space of the three body problem for
a truncated approximation of the full system. Ideally we would like to show that there is
a large set of such orbits which remains in the region for all time (“stability” of coorbital
motion). We can, however, use ideas from KAM theory to at least discuss a lower bound on
the minimum time solution’s stay in the coorbital region. Here we assume the small moons
are of equal mass (µ1 = µ2 = 1).

In section 3.1, we gave a projection of the full four degree of freedom system onto a two
degree of freedom system. In the case in which µ1 = µ2 = 1, this projection can easily be
altered and extended to form a symplectic transformation as follows:

ρ = ρ2 − ρ1, ρ̄ = ρ2 + ρ1,
θ = θ2 − θ1, θ̄ = θ2 + θ1,
R = (R2 −R1)/2, R̄ = (R2 + R1)/2,
Φ = (Φ2 − Φ1)/2, Φ̄ = (Φ2 + Φ1)/2.

The new Hamiltonian is

H(ρ, ρ̄, θ, θ̄, R, R̄,Φ, Φ̄) = R2 + R̄2 +
ε2

4
(ρ2 + ρ̄2) + ε2(Φ2 + Φ̄2 − ρΦ − ρ̄Φ̄)

− εa
1

(2 − 2 cos(θ))1/2
.

As in section 3.2, we separate the fast and slow variables by setting
√
εP = R,

√
εP̄ = R̄,

1√
ε
γ = ρ, 1√

ε
γ̄ = ρ̄

and rescale time to obtain

H(γ, γ̄, θ, θ̄, P, P̄ ,Φ, Φ̄) = P 2 + P̄ 2 +
1

4
(γ2 + γ̄2) + ε1/2γΦ − ε1/2γ̄Φ̄ + εΦ2 + εΦ̄2

− εa−1 1

(2 − 2 cos(θ))1/2
.

Finally, we let
γ̃ = γ − 2ε1/2Φ, ˜̄γ = γ̄ − 2ε1/2Φ̄,

θ̃ = θ − 2ε1/2P, ˜̄θ = θ̄ − 2ε1/2P̄ .

To reduce excessive decoration, we remove the tildes, obtaining the Hamiltonian to first order
in ε:

H(γ, γ̄, θ, θ̄, P, P̄ ,Φ, Φ̄) = P 2 + P̄ 2 +
1

4
(γ2 + γ̄2) + 2εΦ2 + 2εΦ̄2

− εa−1 1

(2 − 2 cos(θ))1/2
.

We note that θ̄ is missing from the Hamiltonian. Hence

˙̄Φ = 0.
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This corresponds to the conservation of angular momentum. The conjugate variable θ̄ satisfies

˙̄θ = 4εΦ̄,

which corresponds to the constant rotation of the angle at which the closest approach occurs.
(The outer moon takes slightly longer to traverse 360◦ than the inner moon, so the position
of closest approach precesses.) We can remove these variables from consideration.

Also, we note that, to order one in epsilon, the unbarred and barred systems decouple. In
fact, while there could be terms of order between one and a− 1 in epsilon which we have not
displayed above, the two systems actually decouple up to order a−1 in epsilon. (The changes
of variables in section 3 do not mix barred with unbarred variables.)

4.1. Period of the slow system and a twist map. We can compute the approximate pe-
riod of the slow unbarred system as follows: Letting T equal the period of the orbit containing
the point θ = π,Φ = Φ0, we can use the symmetry of the system across the θ axis and the
monotonicity of θ when Φ has constant sign to say that

T = 2

∫ θmax

θmin

dt

dθ
dθ.

Substituting in the differential equation for θ̇, we obtain

T = 2

∫ θmax

θmin

1

3εΦ
dθ,

where the relationship between θ and Φ is given by K(θ,Φ) in section 3.3.
For the orbit with initial conditions θ = π,Φ = Φ0, we have 1/Φ ≈ 1/Φ0 on most of the

interval (θmin, θmax). Also, the values of θmin and θmax change at higher order in epsilon as Φ
is changed, and hence the period T decreases as Φ0 increases.

This implies that if we put the θ,Φ and γ, P variables into action-angle coordinates (to
order one in epsilon) in the four dimensional system (decoupled from γ̄, P̄ ), then the return
map in θ,Φ on a constant energy surface plane given by fixing γ and P satisfies a twist
condition. Because the periods in θ,Φ and γ, P are order epsilon apart, the resulting map will
be a “small twist.” Luckily, both Poincaré’s last geometric theorem and the KAM theorem
apply in this situation (see Franks [2] and Levy and Moser [5]), providing periodic orbits and
invariant circles for the return map and their perturbations.

4.2. Persistence of coorbital motion. Unfortunately, as we noted above, the barred and
unbarred systems decouple only to order a−1 in epsilon. Hence invariant circles for the return
map of the unbarred system correspond to separating invariant sets in the constant energy
manifolds of the full system truncated to order a − 1 in epsilon. We can go slightly beyond
this order by looking at the terms we studied at the beginning of section 2.7 since these are
the first terms involving both barred and unbarred variables. The term of lowest order is
εa−2b = ε4−a.

This implies that if we follow solutions of the full four degree of freedoms system, the value
of the integral K(θ,Φ) can change no faster than a constant times ε4−a. Hence our coorbital
solutions remain qualitatively the same for a time period of order 1/ε4−a.
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For Janus and Epimetheus, one unit of time corresponds to one orbit around Saturn or
0.694590 days (see Murray and Dermott [9]). With ε = 3.32 · 10−4 and a = 2.4, we conclude
that the orbits of these moons will remain qualitatively the same for at least on the order of
1/ε1.6 orbits. This is on the order of 368,000 orbits or 700 years.

This ignores the possibility of large coefficients in the expansion; i.e., it cannot be taken
literally—only as an order of magnitude estimate. The precise statement is only that the rate
of change of K(θ,Φ) is of order ε4−a for orbits in the region of the phase space that we are
considering.
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Abstract. Oscillating population data often exhibit cycle irregularities such as episodes of damped oscillation
and abrupt changes of cycle phase. The prediction of such irregularities is of interest in applications
ranging from food production to wildlife management. We use concepts from dynamical systems
theory to present a model-based method for quantifying the risk of impending cycle irregularity.

Key words. nonlinear population dynamics, stochasticity, periodic solutions, phase switching, basins of attrac-
tion

AMS subject classifications. 39A11, 92D25

PII. S1111111102411262

1. Introduction. Animal numbers can oscillate periodically in many biological popula-
tions. Laboratory examples include paramecia [22], blowflies [33], bean weevils [37], moths
[3], and flour beetles [6, 19].

Noise, always present in population dynamics, causes cycle irregularities such as outbreaks,
switches in oscillation phase [28], and episodes of damped oscillations caused by “saddle
fly-bys” [11] or other stochastic visitations of unstable equilibria. Phase switches (when,
for example, an “up-down” time series pattern becomes a “down-up” pattern) occur rather
frequently in laboratory populations of the flour beetle Tribolium castaneum. Figure 1.1
displays the larval numbers from control B of the experiment reported in Desharnais and
Costantino [16]. The data oscillate with period two but switch cycle phase at times t = 3 and
t = 13.

Cycle irregularities are important in a variety of applications ranging from food production
to forest management to species conservation. In this paper, we use the concepts of dynamical
systems theory to devise a method for predicting such irregularities in oscillating data.

In section 2, we use the univariate Ricker map to illustrate the dynamic mechanisms that
give rise to cycle irregularities and to develop a method for predicting such irregularities.
Section 3 applies the theoretical ideas to simulated data sets generated by two different multi-
variate models. In section 4 we use the method to predict cycle irregularities in experimental
data replicates of laboratory cultures of the flour beetle Tribolium.
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Figure 1.1. Experimental data from Desharnais and Costantino [16] replicate B. Tribolium castaneum
larval numbers oscillate in a 2-cycle. Phase switches occur at times t = 3 and t = 13. The time step is two
weeks.

2. Cycle irregularities. Consider a discrete time autonomous population model of the
form xt+1 = f (xt) where x is a scalar, a vector of life stage classes, or a vector of interacting
populations. To illustrate these ideas, consider specifically the scalar Ricker population model
[31, 32, 34]

xt+1 = bxte
−cxt .(2.1)

The Ricker map (2.1) has stable periodic solutions at many values of its parameters. For
example, when b = 9 and c = 1, the Ricker map has a stable 2-cycle solution given by
x0 = 1.099, x1 = 3.296, x2 = 1.099, x3 = 3.296, . . . . Since (2.1) is autonomous, the phase
shift x0 = 3.296, x1 = 1.099, x2 = 3.296, x3 = 1.099, . . . is also a stable 2-cycle solution.
Denote the first cycle “Phase 1” and the second “Phase 2.” Let B1 be the set of positive
initial conditions x0 ∈ R+ that give rise to solutions converging to the Phase 1 cycle, and let
B2 be the set of positive initial conditions that give rise to solutions converging to Phase 2.
These “basins of attraction” for the two cycle phases are sets on the real line. Some of the
numerically computed boundaries separating these phase basins are shown in Figure 2.1(a).
Initial conditions x0 with 4.840 < x0 < 7.425 converge to Phase 1; initial conditions with
2.198 < x0 < 4.840 converge to Phase 2; those with 0.345 < x0 < 2.198 converge to Phase
1; those with 0.040 < x0 < 0.345 converge to Phase 2; and so forth. (Near the origin, the
basin structure becomes complicated and cannot be shown in Figure 2.1(a).) Note that the
unstable equilibrium xu = 2.198 lies on the basin boundary. The reader should also note that
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Figure 2.1. Ricker map simulations with b = 9 and c = 1. (a) Four deterministic Ricker time series with
initial conditions x0 = 0.3, x0 = 1, x0 = 2.75, and x0 = 5. Red horizontal lines represent basin boundaries at
x = 0.3445, x = 2.198, and x = 4.840. Since x0 = 1 and x0 = 5 are both in basin B1, their orbits converge to
Phase 1 (shown in black). Since x0 = 0.3 and x0 = 2.75 are both in basin B2, their orbits converge to Phase
2 (shown in blue). (b) Stochastic Ricker simulation with σ2 = 0.0225. Red horizontal lines represent basin
boundaries as in (a). The red lines are bracketed by blue horizontal lines that demarcate the 10% zones. Points
on the orbit which lie in the 10% zones are colored red and have at least a 10% probability of switching phase at
the next time step. (c) The probability P (x) of switching phase at the next time step given the current value of
x. Red vertical lines represent values of x at which P (x) = 50% and correspond to the basin boundaries. Blue
vertical lines show values of x at which P (x) = 10% and correspond to the boundaries of the 10% zones.

the term “basin” is being used here to differentiate two separate basins of attraction for two
different solutions lying on the same 2-cycle attractor, while the usual meaning lumps B1 and
B2 together as a single basin of attraction for the 2-cycle attractor itself. (To view B1 and B2

as basins in the traditional sense, we could use the composite map to decompose the 2-cycle
attractor into two separate stable equilibria with two separate basins of attraction. However,
this complication is unnecessary for our purposes.)

If x0 ∈ B1 so that the solution converges to Phase 1, then taking f (x0) as an initial
condition would lead to a solution converging to Phase 2; hence x1 = f (x0) ∈ B2. Similarly,
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if x0 ∈ B2, then x1 ∈ B1. In this way, deterministic orbits must always bounce back and forth
between the two basins at each time step as they converge to the appropriate phase of the
2-cycle (Figure 2.1(a)).

Process noise in ecological data is of two basic types: environmental and demographic.
Environmental noise is additive on the log scale, while demographic noise is additive on the
square root scale [15]. The methods in this paper work equally well for both kinds of noise;
however, we will focus on demographic stochasticity. Thus we can incorporate demographic
noise by means of

xt+1 =
(√

bxte−cxt + Et

)2
,(2.2)

where Et is a random normal variable with mean zero and variance σ2 (see Dennis et al. [15]).
When σ = 0, we recover the “deterministic skeleton” (2.1) [36]. As σ increases from zero,
the cycles become irregular. In particular, orbits may not always alternate between basins at
each time step. If a stochastic orbit remains in the same basin for two consecutive time steps,
we say a “phase switch” has occurred. For example, in the stochastic simulation shown in
Figure 2.1(b), the orbit is in Phase 2 for t = 86 to 91 but in Phase 1 for t = 97 to 100. On
examination of the basins in which the t = 92 to 96 values lie, we see that the orbit switches
phase at t = 97, since x96 and x97 are both in B2.

The conditional probability P (x) of switching phase at the next time step, given a current
value of x, is graphed in Figure 2.1(c). P (x) is lowest at the 2-cycle values x = 1.099 and
x = 3.296 and is highest along the basin boundary. P (x) can be considered a kind of measure
of how far a point is from the deterministic attractor or, alternately, how close a point is to
the basin boundary.

Figures 2.1(b) and (c) show the numerically computed values of x for which P (x) = 10%.
These values bracket the basin boundaries; and when x falls inside these “10% zones,” there
is at least a 10% chance of suffering a phase switch at the next time step. For example,
P (x) > 10% whenever 1.691 < x < 2.669.

For the stochastic orbit in Figure 2.1(b), all values xt for which P (xt) ≥ 10% are colored
red. Note how the red tagging provides a fairly good warning of impending cycle irregularities.
For example, at t = 69, the orbit falls into a 10% zone, and the following values for t = 70
to 73 are highly irregular. At t = 76 the orbit again enters the 10% zone, and irregularities
follow for t = 77 to 85. At t = 92 the orbit once more lands in the 10% zone, and irregularities,
including the aforementioned phase switch at t = 97, follow.

Note how the orbit sometimes lingers near the unstable equilibrium xu = 2.198 if stochas-
tically bumped into its vicinity (for example, at times t = 70, 79, 92). This phenomenon is
similar to a “saddle fly-by,” although the unstable equilibrium here is a repellor rather than a
saddle. In a “saddle fly-by,” the orbit is stochastically bumped near the stable manifold of a
saddle and approaches the saddle before moving away. In a “repellor visitation,” the orbit is
stochastically knocked directly into the neighborhood of a repellor or maps in from a nonlocal
stable set and then lingers before moving away. In cycling data, saddle fly-bys and repellor
visitations of unstable equilibria typically give rise to episodes of damped oscillation [11].

To summarize this example, we suggest an empirical “rule of thumb”:
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Figure 3.1. Leaf-herbivore model simulations with f = 1.5, a = .005, r = 3.8, and δ = 1.0. (a) Basins
of attraction for the two phases of the attracting 2-cycle. The basins were determined by iterating points in
state space (on a grid of mesh 1/10) forward 200 time steps with the deterministic model. The red triangles are
the 2-cycle values (v, h) = (108.76, 59.94), (120.9, 102.25). The unstable saddle equilibrium (v, h) = (110, 81) is
indicated by a red “x.” The 2-cycle attractor is shown above this plot as a time series. (b) Approximation of
the 50% (red) and 10% (blue) contour lines for P (v, h). These curves were computed by finding the frequency
of phase switching at the next step for points on a grid of mesh 1/10 in state space. Each point tested was
iterated one time step forward, 2000 times, with σ2

v = .008 and σ2
h = .032. The set of all initial conditions with

9.75%−10.25% probability of switching phase on the next step is plotted in blue. The set of all initial conditions
with 49.5%− 50.5% probability of switching phase on the next step is plotted in red. The deterministic 2-cycle
values are indicated by triangles and the unstable equilibrium by an “x.”

Remark 2.1. The conditional probability P (x) of switching phase at the next time step,
given a current data point x, can be considered a measure of how close the point x is to the
basin boundary. The set of points for which P (x) ≥ 10% brackets the basin boundaries. When
the current data point falls within these “10% zones,” cycle irregularities are likely to follow.
The choice of 10% is subjective and depends on the acceptable risk level in the particular
application. A more conservative approach would use a smaller contour value (and hence a
wider zone around the basin boundaries).

3. Theoretical examples in population models. In this section, we use two examples to
illustrate how cycle irregularities occur in multivariate models and in cycles of periods other
than 2. The first example is a two-species model with a 2-cycle, and the second is a single
species structured model with a 4-cycle.
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Figure 3.2. Stochastic orbit of the leaf-herbivore model with σ2
v = .008 and σ2

h = .032. 600 time steps are
plotted in a close-up of state space. Red curves approximate basin boundaries; blue curves bracket the basin
boundaries and demarcate the 10% zones. Points of the orbit that suffered a phase switch at the next step are
colored green; note that most lie within the 10% zones, as expected.

3.1. Leaf-herbivore model. Consider a leaf-herbivore model of Edelstein-Keshet [20],

vt+1 = fe−ahtvt,(3.1)

ht+1 = r

(
δ − ht

vt

)
ht, vt �= 0,

where ht is the number of herbivores at time t on a tree of leaf mass vt and f, a, r, and δ
are positive constants. When f = 1.5, a = 0.005, r = 3.8, and δ = 1, this model has a stable
2-cycle attractor, both phases of which are stable solutions. The basins of attraction for the
two phases are shown in Figure 3.1(a), along with the 2-cycle values and an unstable saddle
equilibrium lying on the basin boundary.
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Figure 3.3. Stochastic orbit of the leaf-herbivore model with σ2
v = .008 and σ2

h = .032. Points on the orbit
that fall within the 10% zones are colored red. Points that suffered a phase change at the next time step are
indicated by a green diamond. (a) h component for two sections of the stochastic time series shown in Figure
3.2. Two typical kinds of cycle irregularities are contained in sections t = 125 to 133 and t = 474 to 485.
In the first case, the oscillations are irregular (down-up-up) with large amplitude, while in the second case the
oscillations are irregular and damped. (b) State space close-ups of two sections of the time series in (a). For
t = 474 to 485, the orbit starts out regularly, following the deterministic 2-cycle. Beginning at t = 477, the
orbit lands near the basin boundary, then switches phase, and lands near the basin boundary again. From there
the orbit follows the stable manifold toward the unstable equilibrium for a saddle fly-by before returning to the
2-cycle. A close-up of the saddle fly-by is shown for t = 480 to 483. The panel for t = 125 to 133 shows how the
orbit is knocked far from the 2-cycle and visits regions of state space in which the basins are more complicated.
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Consider the stochastic model

vt+1 =
(√

fe−ahtvt + E1t

)2
,(3.2)

ht+1 =

(√
r

(
δ − ht

vt

)
ht + E2t

)2

, vt �= 0,

where the random vector Et = (E1t, E2t)
′ is assumed to have bivariate normal distribution

with mean vector 0 and variance-covariance matrix Σ [15].

Given that the stochastic system (3.2) is at (vt, ht) in state space, one can numerically
compute the probability P (vt, ht) that the next stochastic step (vt+1, ht+1) will be a phase
switch. Figure 3.1(b) shows two numerically computed contours in state space along which
P (v, h) is constant. Along the blue contours, P (v, h) = 10%, and along the red contours,
P (v, h) = 50%. Note that the 50% contours follow the basin boundaries, while the 10%
contours roughly parallel and “bracket” the boundaries. We will call these bracketing sets
“10% zones.”

Figure 3.2 shows a stochastic run of 600 time steps in a close-up of the state space plot
shown in Figure 3.1(b). The orbit points which suffer a phase switch at the next step are
green. Note that most of the green points lie within the 10% zones. Indeed, less than 10%
of all points landing outside the 10% zones are expected to give rise to phase switches at the
next step. By their definition, the 10% zones give a fairly accurate indication of impending
phase switches.

Do the 10% zones also provide a good indicator for the onset of other types of cycle
irregularities? In Figure 3.3, we consider two sections of the stochastic time series of Figure
3.2. Orbit points landing within the 10% zones are colored red, while those leading to phase
switches are also marked by a green diamond. Two typical kinds of cycle irregularities appear
in the sections t = 125 to 133 and t = 474 to 485 (Figure 3.3(a)). In the first case the time
series oscillations are irregular (“down-up-up”) with large amplitude, while in the second case
the oscillations are irregular and damped. In Figure 3.3(b), we take a closer look in state
space at the mechanics of these time series irregularities. The section beginning with t = 474
starts off with a fairly regular pattern, following the deterministic 2-cycle. At t = 477, the
orbit lands near the basin boundary within the 10% zone, then switches phase, and lands
near the basin boundary again. From there the orbit follows the stable manifold toward the
unstable equilibrium and lingers for a saddle fly-by before returning to the 2-cycle. The section
beginning with t = 125 starts with a point outside the 10% zone but which in fact leads to
an unpredicted phase switch. The next step (t = 126) is, however, inside the 10% zone, even
though in the time series it appears rather unremarkable (Figure 3.3(a)). Although there is
no phase switch at the next step, there is an upcoming irregularity. The orbit is stochastically
knocked down across three basin boundaries and then to the right into a 10% zone, after which
it switches phase and lands far from the attractor. A similar pattern follows until the orbit
lands outside the 10% zone fairly close to the attractor at t = 133, after which the pattern
becomes more regular.

In both of these cases of irregularity, a 10% zone visitation (at t = 477 and t = 126)
served as a warning of the upcoming cycle disturbance. Furthermore, in both cases, the
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Figure 3.4. Bartlett model simulations with α = 0.02, b = 3.14, and µ = 0.9. (a) Time series for
Bartlett model 4-cycle. (b) Four basins of attraction corresponding to the four phases of the attracting 4-cycle.
The 4-cycle values, indicated by red triangles, are (x, y) = (60.67, 85.09), (122.38, 69.18), (121.51, 129.30),
(71.64, 133.44). White arrows show the temporal sequence. The red “x” marks the unstable equilibrium at
(x, y) = (100.80, 112.00). (c) 50% and 10% contour lines of P (x, y) for the stochastic Bartlett model are repre-
sented by red and blue curves, respectively. Here σ2

x = 0.045 and σ
2
y = 0.025. To compute the phase switching

frequency, 2000 one-step stochastic predictions were made from each point on a grid of mesh 1/10. Also shown
is a 600 step stochastic orbit. Points landing within the 10% zone are colored red. Orbit points that switched
phase at the next step are indicated by green diamonds. Black triangles mark the values of the deterministic
4-cycle, while a black “x” identifies the unstable equilibrium.

crucial orbit point (at t = 477 and t = 126) would appear unremarkable in the unfolding time
series (Figure 3.3(a)) unless one had knowledge of its proximity in state space to the basin
boundary as measured by the 10% zone or some other appropriate measure.

3.2. Bartlett model. In this example, we consider a well-known juvenile-adult model of
Bartlett [1]. A stochastic version is

xt+1 =
(√

(b− αyt) yt + E1t

)2
,(3.3)

yt+1 =
(√

xt + (1− µ) yt + E2t

)2
,
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Figure 3.5. Stochastic simulation of Bartlett model with α = 0.02, b = 3.14, µ = 0.9, σ2
x = 0.045, and σ

2
y

= 0.025 from Figure 3.4(c). Orbit points falling within the 10% zone are colored red. Green diamonds indicate
points that lead to a phase switch at the next time step. (a) The time series is divided into five sections of
interest (see text). (b) State space graphs of the five sections of the stochastic time series in (a). 50% and 10%
contour lines for P (x, y) are shown in red and blue, respectively. Orbit points are shown in temporal sequence,
with the direction of motion indicated by red arrows. t = 174 to 185 shows a fairly regular section, but we see
in state space that the last orbit point is within a 10% zone and in fact leads to a phase switch at the next step.
A period of irregularity follows, as shown in the second panel for t = 185 to 199. For t = 185 to 188, the time
series still appears regular, but we see from state space that the orbit is oscillating near the basin boundary.
This leads to a visitation of the unstable equilibrium beginning at t = 189, and the orbit lingers there before
moving away. The move away is shown in the third panel with t = 199 to 214 as the system regains regularity.
The fourth panel, t = 214 to 225, is fairly regular, deviating minimally from the 4-cycle pattern. The fifth panel
of the time series, t = 225 to 235, shows the stochastic orbit landing inside the 10% zone at t = 226, and again
at t = 227, after which a phase change occurs. With the phase change comes a new period of irregularity, as
the stochastic orbit is knocked far from the attractor before finally returning to the 4-cycle for the last few time
steps. The last panel shows a close-up of the equilibrium visitation for t = 189 to 199. The unstable equilibrium
is located at (v, h) = (100.80, 112.00), within the diamond created by the 50% contour lines.



248 HENSON, REILLY, ROBERTSON, SCHU, ROZIER, AND CUSHING

where xt and yt are the numbers of juveniles and adults at time t, respectively, and b, α, and
µ are positive constants with 0 < µ < 1. Here the random vector Et = (E1t, E2t)

′ is assumed
to have bivariate normal distribution with mean vector 0. The deterministic Bartlett model
obtains for Et identically 0. When b = 3.14, α = 0.02, and µ = 0.9, the deterministic Bartlett
model has a stable 4-cycle attractor [6]. See Figure 3.4(a). The 4-cycle attractor corresponds
to four different stable solutions, one for each phase of the cycle. The corresponding four basins
of attraction, along with the four values on the stable cycle, are shown in Figure 3.4(b). A
repelling equilibrium exists at the vortex of the pinwheel of basin boundaries.

When noise is incorporated into the Bartlett model (3.3), the values of P (x, y) can be
computed numerically. Figure 3.4(c) shows 10% contours (blue) and 50% contours (red) in
state space. While the 50% contours roughly follow the basin boundaries, there are regions
(for example, inside the diamond around the repellor formed by the 50% contour) for which
P (x, y) > 50%. A 600 step stochastic simulation also is plotted in Figure 3.4(c). The majority
of orbit points that give rise to a phase switch at the next time step (green diamonds) do fall
within the 10% zone, as expected.

The 10% zones also warn of other types of cycle irregularities. Figure 3.5 shows a segment
of the stochastic simulation in Figure 3.4(c), both as a time series and in state space. Two
main periods of cycle irregularity occur during this segment. (A long period of damped
oscillations begins at t = 189, and an “up-up-down-down” irregularity with large amplitude
begins at t = 227.) Initially, the segment tends to follow the deterministic 4-cycle fairly closely.
However, at t = 185 the orbit lands in a 10% zone, and a long episode of irregularity follows.
Note that for t = 185 to 188, the time series in Figure 3.5(a) still appears regular, but we see
from state space in Figure 3.5(b) that the orbit is oscillating near the basin boundary. This
leads to a visitation of the unstable equilibrium beginning at t = 189, and the orbit lingers
there for ten more time steps before moving away for t = 199 to 214. For t = 214 to 225, the
system is fairly regular, deviating minimally from the 4-cycle pattern. The stochastic orbit
lands inside the 10% zone at t = 226 and again at t = 227, after which a phase change occurs.
With the phase change comes another period of irregularity, as the stochastic orbit is knocked
far from the attractor before finally returning to the 4-cycle for the last few time steps of
the segment. Note that the crucial orbit points themselves at t = 185 and t = 226 would
seem unremarkable in the unfolding time series (Figure 3.5(a)) unless one realized they were
sufficiently close to the basin boundaries to be in the 10% zones. A recognition, however, that
they are in the 10% zones warns of the two impending episodes of cycle disruption.

4. Theory applied to experimental data. In this section, we apply our proposed rule of
thumb for predicting cycle irregularities to experimental data.

The discrete stage-structured “LPA” Tribolium model has successfully explained and pre-
dicted nonlinear phenomena in a variety of contexts, including transitions between dynamic
regimes (such as equilibria, 2-cycles, 3-cycles, invariant loops, and chaos), multiple attractors,
saddle influences, stable and unstable manifolds, and lattice effects [4, 7, 5, 10, 8, 11, 12, 9, 13,
14, 15, 17, 18, 28, 24, 27, 25, 26, 30]. We now use the LPA model and the methods proposed
in this paper to predict the cycle irregularities observed by Desharnais and Costantino [16].

Noise in laboratory cultures of flour beetles is mainly demographic [15]. A version of the
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Figure 4.1. Experimental data shown in cross section of state space at P = 30 for LPA model. The
red curve shows the location of the basin boundary as calculated by the deterministic model. The blue curves
bracket the 10% zones. Here σl = 3.848, σp = 2.962, and σa = .2401. Experimental data control replicates
A,B,C, and D from Desharnais and Costantino [16] are projected onto the plane P = 30. Data points which fall
within the 10% zone are shown in red. Projections of the 2-cycle coordinates (L,P,A) = (35.26, 136.26, 104.14),
(282.24, 17.03, 114.08), and the unstable equilibrium (L,P,A) = (128.03, 61.83, 98.74) are indicated by black
triangles and a black “x,” respectively.

LPA model incorporating demographic stochasticity is

Lt+1 =
(√

bAt exp (−celLt − ceaAt) + E1t

)2
,

Pt+1 =
(√

(1− µl)Lt + E2t

)2
,(4.1)

At+1 =

(√
Pt exp (−cpaAt) + (1− µa)At + E3t

)2

,

where L denotes the number of (feeding) larvae, P denotes the number of pupae (nonfeeding
larvae, pupae, and callow adults), and A denotes the number of (mature) adults. The discrete
time interval is two weeks. The coefficient b > 0 denotes the average number of larvae recruited
per adult per unit time in the absence of cannibalism, µl and µa are the larval and adult per
unit time probabilities of dying from causes other than cannibalism, and the exponentials
represent the probabilities that individuals survive cannibalism one unit of time, with “can-
nibalism coefficients” cel, cea, cpa > 0. The random vector Et = (E1t, E2t, E3t)

′ is assumed to
have trivariate normal distribution with mean vector 0 and variance-covariance matrix ΣLPA.
E0, E1, . . . are assumed to be uncorrelated. The deterministic skeleton (ΣLPA = 0) of model
(4.1) is the deterministic LPA model. Local stability results for the LPA model are obtained
using standard linearization techniques [8, 23].

The conditioned least squares parameter estimates from the four control replicates re-
ported in Desharnais and Costantino [16] were b = 8.913, cel = 0.008446, cea = 0.008572,
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Figure 4.2. Experimental data control replicates A,B,C, and D from Desharnais and Costantino [16]. The
panels on the left show the cross-section of LPA state space at P = 30. Red and blue curves indicate the basin
boundary and the 10% contours, respectively. Red data points are those within the 10% zones. The time series
(L versus t) of the replicates are shown on the right. The time series illustrates how most cycle irregularities
can be predicted by the 10% zone rule. Note the saddle fly-by in replicate C.

µl = 0.5171, cpa = 0.01795, and µa = 0.1064, with

ΣLPA=


 3.848 0.3665 0.1440

0.3665 2.962 −0.5895
0.1440 −0.5895 0.2401


 .

At these parameter values, the deterministic LPA model admits an unstable saddle point
(rounded to the nearest beetle) of [128, 62, 99]. The LPA model also predicts a 2-cycle attractor
and hence two stable 2-cycle solutions (one for each phase of the cycle). The basins of
attraction for these phases, along with the replicate data, are shown in Figure 4.1. The
red curve is the basin boundary, and the blue curves are the 10% contours. The red data
points lie within the 10% zone. The two values of the 2-cycle are shown, as well as the saddle,
which lies on the basin boundary.
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Figure 4.2 presents each replicate both in state space and as a time series. From the time
series, it is clear that all cycle irregularities were preceded by a data point falling into the 10%
zone. Of course, not all visitations of the 10% zone actually led to cycle disturbances.

5. Summary and discussion. Populations often exhibit temporal cycles, but as a result of
noise, the oscillations may display irregularities in phase and amplitude. Understanding and
anticipating such irregularities is of great importance in applications from pest control and
species conservation to physiology and epidemiology [35]. In this paper, we have proposed a
method for understanding and predicting cycle irregularities. The method is model-based. It
requires a deterministic model for the population dynamics, together with a stochastic version
of the model that describes random deviations from the deterministic predictions. If the
deterministic model is autonomous, each phase of the cycle attractor is a stable solution. For
each phase there is a basin of attraction, and these basins are separated by basin boundaries
which may contain unstable equilibria. In general, the closer to the basin boundary a data
point falls, the higher the probability it will stochastically switch phase at the next time step.
Amplitude-dampened oscillations, caused by saddle fly-bys or repellor visitations, also occur
when the data fall near the basin boundary, since that is where the unstable equilibria lie and
exert the most influence. The probability P (x) of phase switching at the next time step, given
the current position x, can be computed with the stochastic model. “Warning zones” can be
constructed in state space by computing contour lines along which P (x) is constant. These
zones follow and contain the basin boundaries. When data fall within the warning zones, the
observer is informed that a cycle irregularity is likely to occur and can act accordingly. In
this paper, we have defined the warning zones using the 10% contours, i.e., where a greater
than 10% chance of phase switching is predicted. A more conservative approach would use
a smaller contour value (and hence a wider zone around the basin boundaries). The actual
contour value chosen is subjective and depends on the acceptable risk level in the particular
application.

Dynamical systems approaches are powerful tools for understanding biological systems.
Situation specific applications of model-based methods, including the one presented in this
paper, require constructing a model in whose accuracy one has confidence. During the last
few decades, rigorous connection of mathematical models with population data has become
possible for several laboratory systems (see, for example, Bjørnstad and Grenfell [2], Cushing
et al. [9], Fussmann et al. [21], and the references cited in section 4), but quantitatively accurate
models for field populations are still rare [29]. Until reliable models become more common
and established in ecology, there will be a need for nonparametric methods. An interesting
and important open question is whether nonparametric versions of the method presented in
this paper can be constructed when good data but no structural models are available.
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A Two-Parameter Study of the Locking Region of a Semiconductor Laser
Subject to Phase-Conjugate Feedback∗
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Abstract. We present a detailed bifurcation analysis of a single-mode semiconductor laser subject to phase-
conjugate feedback, a system described by a delay differential equation. Codimension-one bifurcation
curves of equilibria and periodic orbits and curves of certain connecting orbits are presented near
the laser’s locking region in the two-dimensional parameter plane of feedback strength and pump
current. We identify several codimension-two bifurcations, including a double-Hopf point, Belyakov
points, and a T-point bifurcation, and we show how they organize the dynamics.
This study is the first example of a two-parameter bifurcation study, including bifurcations of

periodic and connecting orbits, of a delay system. It was made possible by new numerical contin-
uation tools, implemented in the package DDE-BIFTOOL, and showcases their usefulness for the
study of delay systems arising in applications.

Key words. semiconductor lasers, phase-conjugate feedback, delay differential equations, two-parameter con-
tinuation, heteroclinic orbits, T-point bifurcation
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1. Introduction. The majority of lasers in application today are semiconductor lasers.
They can be found, for example, in CD-players, laser printers, and optical communication
networks. Semiconductor lasers are so-called Class B lasers, in which the polarization of
the electric field can be adiabatically eliminated. As a consequence, they can be described
well by three-dimensional rate equations, one for the complex electric field E(t) and one
for the population inversion N(t) (the number of excited states that can produce a single
photon). It turns out that the phase φ(t) of the electric field follows the two equations for the
optical intensity P (t) = |E(t)|2 and the inversion N(t). Therefore, a solitary semiconductor
laser is essentially a two-dimensional dynamical system that cannot exhibit chaotic dynamics.
The only observable dynamical behavior is a damped periodic exchange between the electric
field and the inversion. These oscillations are referred to as relaxation oscillations in the
laser literature (not to be confused with relaxation oscillations in slow-fast systems); see, for
example, [26, 41] for an introduction to the theory of semiconductor lasers.
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The occurrence of interesting dynamics in a semiconductor laser system requires the ad-
dition of one or more degrees of freedom to the rate equations. The good news, from a
dynamical systems point of view, is that this is easily achievable with the addition of some
form of external influence. This may be due to noise, optical injection from another laser, or
delayed optical feedback, the subject of this paper.

Optical feedback results when a part of a laser’s output light is fed back into the laser
after a delay time τ . This feedback can be unwanted; for example, reflections from a CD
or optical fiber can seriously interrupt the proper operation of the device. However, more
recently, it has been demonstrated that chaotic output from a feedback laser can be used in
optical encryption schemes [10, 33, 43].

In an experiment, controllable optical feedback is obtained by adding an external mirror
to the laser set-up; see Figure 2.1. If this mirror is a conventional optical reflector, then one
speaks of conventional optical feedback (COF), a system that has received much attention due
to its relevance for applications and because very complicated dynamics have been found; see,
for example, [11, 34]. If the optical feedback comes from a phase-conjugating mirror (PCM),
then one speaks of a laser with phase-conjugate feedback (PCF). This is the laser system that
we are studying here. It is physically interesting because, unlike in COF, the PCM reverses
the phase of the light so that the reflected wave travels back along the same path as the
incident wave. This means that the alignment of the laser beam is not so much of an issue.
Furthermore, perturbations to the light front on the way to the PCM are undone on the way
back. Also, in the PCF laser, many interesting dynamical regimes have been identified; see,
for example, [1, 12, 16, 24]; more details can be found in section 2.

Mathematically, optical feedback is described by adding a delay term to the equation
describing the electric field. This implies that the system is described by a delay differential
equation (DDE) with an infinite-dimensional phase space. Consequently, lasers with optical
feedback may exhibit very complicated dynamics, and their analysis is quite hard. Until
quite recently, the analysis of the linear stability of steady states and direct simulation of the
equations were essentially the only tools to study the dynamics of DDEs arising in applications.
However, this is changing with the introduction of advanced tools allowing detailed bifurcation
studies of DDEs. These consist of (a) the publicly available Matlab continuation package
DDE-BIFTOOL for numerical bifurcation analysis (see [8] and section 4 below) and (b) an
algorithm, using DDE-BIFTOOL to obtain the necessary starting data, to compute unstable
manifolds of saddle periodic orbits in a suitable Poincaré section [25]. (This algorithm was used
in [19] to identify the break-up of a torus in the PCF laser and its subsequent disappearance
in a crisis bifurcation.)

Continuation techniques have not yet been widely used to study the dynamics and bi-
furcations in DDEs arising in applications. The first examples include the series of papers
[21, 36, 37], in which connecting bridges of periodic solutions in the COF laser were studied,
and similar work on a vertical-cavity surface-emitting laser [40]. Continuation studies of the
PCF laser can be found in [17, 18, 19].

The continuation studies mentioned above follow steady states and periodic orbits as a
single parameter is changed (usually the strength of the feedback). This is also the case in
[18], where the locking range of the PCF laser was studied in detail. This revealed regions
of bistability associated with a saddle-node bifurcation, a Hopf bifurcation, and heteroclinic
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connections. The next logical step is to construct a full two-dimensional bifurcation diagram.

In this paper, we do just this: we present a consistent two-dimensional bifurcation diagram
near the locking region of the PCF laser in the plane of feedback strength versus pump current.
(These parameters are physically natural and were also used in an experimental overview of
the COF laser in [9].) We follow bifurcations of steady states and connecting orbits in two
parameters. We make a first attempt at mapping bifurcations of periodic orbits by detecting
a sufficient number of individual bifurcation points at appropriate values of the parameters.
We identify several codimension-two bifurcations—most importantly, a double-Hopf point, a
Belyakov point, and a bifurcation of heteroclinic orbits known as a T-point. We show how
the dynamics of the PCF laser near the locking region are organized around these points.

The paper is organized as follows. In section 2, we introduce the rate equations for the PCF
laser. In section 3, we give a brief introduction to the basic theory of DDEs. The capabilities
of the continuation package DDE-BIFTOOL, particularly with respect to connecting orbits,
are introduced in section 4. In section 5, we present a two-parameter bifurcation analysis of
the steady states and a heteroclinic orbit involved in the locking mechanisms of the PCF laser.
To allow for a better comparison with previous studies, we also present one-dimensional cross
sections through the bifurcation diagram for fixed values of the pump current. In section 6, we
look more closely at the bifurcations of steady states and continue the branch of heteroclinic
orbits involved in the locking mechanism, all the way to its end in a codimension-two bifurca-
tion of heteroclinic orbits known as a T-point. The heteroclinic orbits along this branch are
studied in section 7, where we also identify a codimension-two Belyakov point. In section 8,
we map out bifurcations of periodic orbits near the locking region. Finally, in section 9, we
draw conclusions and discuss future work.

2. Phase-conjugate feedback. Our object of study is a semiconductor laser with PCF
from a PCM, schematically shown in Figure 2.1. A PCM can be made by utilizing a number
of nonlinear optical processes, including stimulated Brillouin scattering, backward stimulated
Raman scattering, and three-wave down conversion [12]. Probably the most common way
of making a PCM is to use degenerate four-wave mixing, in which three input waves mix to
produce a fourth output wave. Two of the input waves are counterpropagating pump waves
from, for example, additional semiconductor lasers. The third wave is the incident wave, which
may enter at any angle to the pump waves. These three waves couple through a third-order
susceptibility χ(3) and produce a fourth wave, phase-conjugated to the incident wave. This
phase-conjugated wave may be more intense than the incident wave due to additional gain
provided by the pump waves [41].

In contrast to COF, the laser light is wave-front inverted at the PCM. The return conju-
gated wave retraces the path of the incident wave, and, therefore, the system is self-aligning.
Any distortions of the incident wave between its source and the PCM are undone on the return
trip [12]. This produces a highly focused beam [12] that is of considerable advantage when
stable output is desired, such as in mode locking [15] and phase locking, where PCF has been
shown to reduce the laser noise considerably [1, 16, 42].

Mathematically, a single-mode semiconductor laser subject to weak (instantaneous) PCF
can be described by the three-dimensional delay differential system
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Figure 2.1. Sketch of a semiconductor laser with PCF.

dE

dt
=

1

2

[
−iαGN (N(t)−Nsol) +

(
G(t)− 1

τp

)]
E(t)

+κE∗(t− τ) exp[2iδ(t− τ/2) + iφPCM],

(2.1)

dN

dt
=

I

q
− N(t)

τe
−G(t) |E(t)|2

for the evolution of the slowly varying complex electric field E(t) = Ex(t) + iEy(t) and
the population inversion N(t) [16, 24]. This type of rate equation of a laser with feedback
goes back to Lang and Kobayashi [31], who developed the first delay model for the COF
laser. In system (2.1), nonlinear gain is included as G(t) = GN (N(t) − N0)(1 − εP (t)),
where ε = 3.57 × 10−8 is the nonlinear gain coefficient and P (t) = |E(t)|2 is the intensity.
Parameter values are set to realistic values corresponding to a Ga-Al-As semiconductor laser
[16, 24], namely, the line-width enhancement factor α = 3, the optical gain GN = 1190 s−1,
the photon lifetime τp = 1.4 ps, the magnitude of the electron charge q = 1.6 × 10−19C, the
electron lifetime τe = 2 ns, and the transparency electron number N0 = 1.64× 108. Further,
Nsol = N0 + 1 / (GNτp). The constant phase shift φPCM at the PCM and the detuning
parameter δ were both set to zero, as is common in the field [16, 24]. Therefore, the feedback
term in system (2.1) reduces to κE∗(t− τ) and involves the complex conjugated electric field
E∗, the feedback rate κ, and the external cavity round-trip time τ . For one-parameter studies
of (2.1), we fix τ at the realistic value τ = 2/3 ns, corresponding to an external-cavity length
of Lext ≈ 10 cm, and consider the bifurcation parameter κτ ; for two-parameter studies, we
also free the pump current I.

System (2.1) has Z2-symmetry under the transformation (E,N) → (−E,N), where the
symmetry group is Z2 = {1,−1}. This corresponds to a rotation over π of the complex E-
plane so that any attractor (or other invariant set) either is symmetric or has a symmetric
counterpart. This symmetry allows for the possibility of symmetry-breaking and symmetry-
restoring bifurcations [24, 28] and also implies restrictions on the types of bifurcations of
periodic orbits. For example, symmetric orbits cannot undergo period-doubling bifurcations
[29].

It was shown in [24] that the general picture of the dynamics of the PCF laser is that of
stable periodic operation interspersed with “bubbles” of more complicated, chaotic dynamics.
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In [17], these periodic solutions were shown to be connected to a steady state solution. This
steady state solution represents a frequency match between the solitary laser and the pump
lasers used in the four-wave mixing [41]. When it is stable, the laser is frequency locked and
phase locked. In this region, the laser phase no longer undergoes diffusion, resulting in an
extremely narrow line-width, a property that persists even with the addition of noise from
spontaneous emission [1, 16, 42]. The region in which this stable locked solution exists is
called the locking region of the PCF laser.

3. Background on DDEs. System (2.1) is a DDE with an infinite-dimensional phase
space. As the reader may be unfamiliar with the theory of DDEs, we now give a brief
introduction; see [5, 22, 23] for further details.

Models featuring a delay can be found in many areas of science, such as, for example,
biology [35], control theory [14], and, as we have seen, laser physics [26]. They lead to a
mathematical description by a DDE which, in its simplest form of a single fixed delay τ ∈ R,
takes the form

dx(t)

dt
= F (x(t), x(t− τ), η),(3.1)

where

F : R
n × R

n × R
p → R

n

is differentiable and η ∈ R
p is a multiparameter. We consider here only the case of one fixed

delay. This is not an oversimplification; for example, both the COF laser and the PCF laser
introduced in section 2 are of this important class. We remark, however, that the continuation
methods described in section 4 also work for a finite number of fixed delays and even for certain
state-dependent delays [32].

The phase space of (3.1) is the infinite-dimensional space of continuous functions C over
the delay interval [−τ, 0] with values in R

n. The space R
n is called the physical space; for

example, it is the (E,N)-space for system (2.1). A point q ∈ C is a continuous function

q : [−τ, 0] → R
n.

We call q(0) the head of q and q|[−τ,0) ≡ {q(t) | t ∈ [−τ, 0)} its history. The evolution of a
point q ∈ C after time t ≥ 0 is given by the evolution operator

Φt : C → C.
A solution of (3.1) is a function

x : [−τ,∞) → R
n , t → Φt(x0)

for some initial point x0 ∈ C.
A steady state (or equilibrium) of (3.1) is a point x0 such that x0(t) ≡ x̄0 for all t ∈ [−τ,∞)

and fixed x̄0 ∈ R
n. In other words, F (x̄0, x̄0, η

∗) = 0 (for some fixed η∗) and Φt(x0) = x0 for
all t > 0. The stability of x0 is given by the variational equation

DF (x̄0, η
∗) = A1(x̄0, η

∗)x(t) +A2(x̄0, η
∗)x(t− τ),(3.2)
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which is the linearization around x0, where

A1(x̄0, η
∗) = D1F (x̄0, η

∗) and A2(x̄0, η
∗) = D2F (x̄0, η

∗)(3.3)

are the derivatives of F with respect to the first and second variable.
When we define the n× n matrix ∆ as

∆(x̄0, η
∗, λ) := λI −A1(x̄0, η

∗)−A2(x̄0, η
∗)e−λτ ,(3.4)

then the eigenvalues are given as the roots of the characteristic equation

det(∆(x̄0, η
∗, λ)) = 0.(3.5)

If we also need to compute eigenvectors, we solve

∆(x̄0, η
∗, λ)v = 0, cHv − 1 = 0 or ∆(x̄0, η

∗, λ)Hw = 0, dHw − 1 = 0,(3.6)

where v and w are right and left eigenvectors, respectively, and H denotes the Hermitian
conjugate.

It is a crucial property of DDEs with fixed delays that the eigenvalues are discrete and that
there are always finitely many eigenvalues with real part larger than γ for any fixed γ ∈ R;
see Theorem 4.4 (i) of [5]. In particular, there are only finitely many unstable eigendirections
(associated with eigenvalues with real part greater than zero). As usual, a steady state is
called hyperbolic if there are no eigenvalues that have zero real part.

A periodic orbit is a solution Γ such that ΦT(q) = q for some period T > 0 and all q ∈ Γ.
After choosing a section Σ ∈ R

n (locally) transverse to Γ, the corresponding Poincaré map P
is defined on the space CΣ of points in C with headpoints in Σ; that is,

P : CΣ → CΣ, q → Φtq(q),

where tq is the return time to Σ. The stability of Γ is given by its Floquet multipliers, which
are the eigenvalues of the linearization DP (q) of P at the corresponding fixed point q ∈ CΣ.
The linearization DP (q) is found by solving the variational equation, over one period T, along
Γ. For any fixed radius r > 0, there is only a finite number of Floquet multipliers outside a
circle of radius r so that there are always finitely many unstable eigendirections. A periodic
point is called hyperbolic if there are no Floquet multipliers on the unit circle.

As is the case for ODEs, a local bifurcation occurs when a steady state or a periodic
orbit is not hyperbolic. The generic bifurcations are saddle-node and Hopf bifurcations of
steady states and saddle-node, period-doubling, and torus (or Neimark–Sacker) bifurcations
of periodic orbits.

A solution x(t) of (3.1) at some parameter η = η∗ is called a connecting orbit if the limits

lim
t→−∞x(t) = x− and lim

t→+∞x(t) = x+(3.7)

exist, where x± are steady states of (3.1). Connecting orbits are discussed in more detail in
section 4.1.
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4. Numerical continuation with DDE-BIFTOOL. The continuation package DDE-
BIFTOOL [8] has been developed for the numerical bifurcation analysis of DDEs with fixed
discrete delays or state-dependent delays [32]. While a number of packages exist for the nu-
merical bifurcation analysis of ODEs, such as AUTO [6] and CONTENT [30], DDE-BIFTOOL
is the first publicly available package for the bifurcation analysis of DDEs. Roughly speaking,
DDE-BIFTOOL has the same functionality as (the local bifurcation part of) AUTO with new
features constantly being added, such as the computation of connecting orbits discussed below
in section 4.1.

DDE-BIFTOOL allows the user to find and follow steady states and periodic solutions
irrespective of their stability. It also detects the generic codimension-one local bifurcations of
steady states and periodic orbits by detecting when an eigenvalue of the linearization has a zero
real part or is on the unit circle, respectively. The software is able to switch to the continuation
of emanating branches of periodic orbits at bifurcation points (such as a Hopf bifurcation).
Furthermore, once a codimension-one bifurcation of a steady state has been detected, it can be
followed in two parameters. At present, codimension-one bifurcations of periodic orbits can be
detected but cannot be continued in two parameters. A recent addition to DDE-BIFTOOL
is the computation of connecting orbits, using projection boundary conditions, and their
continuation in two parameters [38]. This algorithm is a natural extension of the method
that was implemented for the computation of connecting orbits in ODEs in the HomCont [4]
extension of AUTO.

The infinite-dimensional nature of DDEs means that the computation of solutions and
their stability is far from trivial. To compute the stability of steady states, DDE-BIFTOOL
approximates an appropriate number of the right-most roots of the characteristic equation
and corrects them by using Newton iterations. A steady state is represented by the value of
the parameter η∗, the steady state position x̄0, and the eigenvalues λi of this steady state. A
saddle-node bifurcation is detected and represented by a null-vector of ∆(x̄0, η

∗, 0), the matrix
defined in (3.4). Similarly, a Hopf bifurcation is represented by the complex null-vector of
∆(x̄0, η

∗, iω) and corresponding frequency ω. To represent and follow periodic solutions,
orthogonal collocation, based on a piecewise polynomial representation of the solution, is
used. A periodic solution is represented by the value of the parameter η∗, the period T, and
a time-scaled profile x∗(t/T) on a mesh over the interval [0, 1].

DDE-BIFTOOL can be extended to monitor other quantities that might be of interest to
the user. One such example was developed and implemented for the analysis in section 7 to
find and follow a neutral saddle (-focus) point. This is a steady state solution where the sum
of the real parts of the unstable (complex conjugate) eigenvalues λ1,2 and the leading stable
eigenvalue λ3 is equal to zero. A neutral saddle is represented by the steady state position
x̄0, the values of the parameter η∗, the leading eigenvalues λ1,2 and λ3, and their eigenvectors
and is subject to the constraint that Re(λ1,2) +Re(λ3) = 0. These fields are used as elements
inside the branch structure when computing and continuing a neutral saddle point.

4.1. Computing connecting orbits in DDEs. A recent addition to DDE-BIFTOOL is
the continuation of connecting orbits [38]. Both homoclinic orbits (x− = x+ in (3.7)) and
heteroclinic orbits (x− �= x+ in (3.7)) can be computed and continued as certain system
parameters η are varied. This requires finding a good starting solution for a fixed parameter
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value. For a homoclinic orbit, one can start from a nearby periodic orbit with a sufficiently
large period. Heteroclinic orbits can be approximated by using time integration or by using
an extension of the method of successive continuation [7].

A defining condition for a connecting orbit is that it is contained in both the stable
manifold of x+ and the unstable manifold of x−. A classical approach in the ODE case is to
approximate this condition by truncating the time domain to an interval of length T and to
apply (so-called) projection boundary conditions [2]: one end point of the connecting orbit is
required to lie in the unstable eigenspace of x− and the other end point in the stable eigenspace
of x+. The projection boundary conditions therefore replace the stable and unstable manifolds
by their linear approximations near the steady states. The error caused by this approximation
has been proven to be exponentially decaying with the interval length T [39]. This approach
is successfully implemented in standard continuation codes for ODEs such as the HomCont
[4] part of AUTO [6].

In the implementation under DDE-BIFTOOL, this approach was extended to the case
of DDEs. Because one needs to provide an initial function segment (rather than just an
initial value as for ODEs), the boundary conditions need to be written in terms of solution
segments. Further, x+ has infinitely many eigenvalues with negative real parts so that it is
impossible to write the final function segment as a linear combination of all (infinitely many)
stable eigenfunctions. Instead, it is required that the end function segment is in the orthogonal
complement of all unstable left eigenfunctions.

More specifically, the condition for the initial function segment x0(θ)=x(θ), θ ∈ [−τ, 0],
can be written as

x0(θ) = x− + ε

s−∑
k=1

αkv
−
k eλ

−
k θ

(∑
|αk|2 = 1

)
,

where s− is the number of unstable eigenvalues λ−, with corresponding eigenvectors v−. The
αk are unknown coefficients, and ε is a measure for the desired accuracy. An extra condition is
added to ensure continuity at θ = 0. As discussed above, we cannot write the end conditions
for the final function segment in a similar way. Instead a special bilinear form [22] is used to
express the fact that the final function segment is in the complement of the unstable eigenspace
of x+. This leads to s+ extra conditions:

w+
k
H
(x(T )− x+) +

∫ 0

−τ
w+
k
H
e−λ

+
k (θ+τ)A2(x

+, η)
(
x(T + θ)− x+

)
dθ = 0 .

Here s+ is the number of unstable eigenvalues of x+, w+
k are the left eigenvectors corresponding

to the eigenvalues λ+
k , and the matrix A2 is defined in (3.3). While this integral condition

works well in practice, one slight drawback is that it does not control the distance of the end
function segment to the steady state.

Connecting orbits arise in one-parameter families: any time-translate is also a connecting
orbit. Therefore, a phase condition needs to be added to pick out just one of these orbits. In
general, a number sη of free parameters is required to obtain a generically isolated solution.
As a consequence, the equations for x− and x+ (steady state equations) and λ−

k and v−k and
λ+
k and w+

k (characteristic equations) have to be added to the defining system. The result
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Figure 5.1. Bifurcations bounding the locking region of the PCF laser in the (κτ, I)-plane. The arrows
correspond to the one-parameter continuations shown in Figure 5.2.

is a system of n differential equations, supplemented with (s− + s+)(n + 1) + s+ + 2 extra
equations, resulting in the need for sη = s+ − s− + 1 free parameters. We end up with a
boundary value problem, which we solve by using a collocation method, where the solution is
represented as a piecewise polynomial.

5. The locking region. In this section, we use the continuation package DDE-BIFTOOL
to detect and follow the bifurcations involved in the locking mechanism of the PCF laser.
Physically, this steady state solution corresponds to a frequency match between the PCM
pump lasers and the solitary laser. The resulting bifurcation diagram shown in Figure 5.1
was obtained by starting a two-parameter continuation from bifurcation points identified in
one-parameter studies, including the study described in [18]. Plotted in red are curves of Hopf
bifurcations H1,2, where each point on the curve represents a steady state with a pair of pure
imaginary eigenvalues. The Hopf curves H1,2 are drawn dark when they are supercritical (the
bifurcating periodic orbit is stable), and are drawn in a lighter tone when they are subcritical
(the bifurcating periodic orbit is unstable). In blue are plotted curves of saddle-node bifurca-
tions SN and pitch-fork bifurcations PF1; in both cases, each point represents a steady state
with a real eigenvalue equal to zero. Furthermore, we plot a curve of heteroclinic connections
Het1 between two saddle steady states that are each other’s symmetric counterparts.

The general picture of the locking region of the PCF laser is that it is bounded by the
curve of saddle-node bifurcations SN to the left, the (supercritical parts of the) curves of
Hopf bifurcations H1,2 to the right, and a curve of pitchfork bifurcations PF1 below. Passing
through the locking region is a curve of heteroclinic orbits Het1. The area above the curve
Het1 and between the curves SN and H2 is a region of bistability; that is, the periodic orbit
involved in the heteroclinic bifurcation Het1 and the nonsymmetric steady states born in the
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Figure 5.2. One-parameter continuation of steady states and periodic orbits for fixed pump current I; from
(a) to (f) I takes the values 0.064, 0.065, 0.0657345, 0.0657347, 0.067, and 0.068.

saddle-node bifurcation SN coexist; see Figure 5.2 (b) to (f). Note that, when the heteroclinic
curve crosses the curve of Hopf bifurcations H2, there is a second region of bistability, where
two stable periodic solutions coexist.

The nonsymmetric saddle steady states are born in the saddle-node bifurcation SN to-
gether with a pair of nonsymmetric stable steady states which correspond to the locked so-
lutions of the PCF laser. These locked solutions are destabilized along the curves of Hopf
bifurcations H1,2 when they bifurcate with a periodic orbit. Between c1 and c2, on H1, the
Hopf bifurcation is subcritical; that is, the bifurcating periodic orbit is unstable. For fixed I,
this subcritical Hopf bifurcation leads to a bistability between an attracting steady state and
an attracting periodic orbit and a heteroclinic connection between their respective saddles.
This bistability is due to a saddle-node bifurcation of limit cycles curve SL connecting c1 and
c2, and running parallel to the subcritical part of H1; see Figure 8.1 (a) and [18].
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The pitchfork curve PF1 is a bifurcation of the trivial steady state (E,N) = (0, Iτeq ).
Below PF1, the trivial steady state is stable. It is destabilized at PF1 when it bifurcates
with a pair of nonsymmetric stable steady states (the locked solutions). Physically, the PCF
laser is in its off-state below PF1. In this system with Z2-symmetry, the pitchfork bifurcation
constitutes the laser threshold; that is, it marks the onset of lasing.

The Hopf curves H1,2 intersect at the point DH, at (κτ, I) ≈ (0.893, 0.06589), which
is a codimension-two double-Hopf bifurcation point where there are two pairs of complex
eigenvalues on the imaginary axis [29]. At this bifurcation point, the center manifold is four-
dimensional; in other words, this bifurcation is only possible in a phase-space of dimension
greater than or equal to four. Around a double-Hopf point, the system can bifurcate to
a number of invariant objects, including two-dimensional tori, which may branch to three-
dimensional tori [29]. In fact, we will see below that, near the double-Hopf point, a period-
doubling route to chaos [18] becomes a route to chaos via the break-up of a torus.

At (κτ, I) ≈ (0.225, 0.06433), the heteroclinic curve Het1 ends at the saddle-node curve
SN at a saddle-node heteroclinic point SNhet. Here the saddle-node bifurcation takes place
on a codimension-one heteroclinic connection. If we divide out the symmetry of system (2.1),
this is a saddle-node homoclinic bifurcation [29]. Below the point SNhet, the saddle-node
bifurcation SN takes place on a limit cycle [20].

The lower part of the Hopf curve H1 is seen to bend off and run roughly parallel to the
curve PF1 before terminating. For low values of fixed pump current I, this means that it is
possible for the laser to lock and unlock as the value of κτ is varied; see Figure 6.2. However,
this effect occurs for a very small range of I and would be extremely difficult to observe
experimentally.

We now discuss transitions through the two-dimensional bifurcation diagram in Figure 5.1
as we vary the value of κτ for fixed values of I; this is the approach we took in [18]. The
bifurcation diagrams in Figure 5.2 were obtained with DDE-BIFTOOL, and the respective I-
values are indicated by the arrows on the right in Figure 5.1. For steady states, we plot Re(E),
and for periodic solutions we plot |max(Re(E))−min(Re(E))|, offset by the Re(E)-value of the
steady state at the Hopf point. Attracting solutions are drawn as solid curves, while unstable
solutions are drawn as dashed curves. By studying the eigenvalues of the system, we are able to
identify the bifurcations involved. Apart from saddle-node bifurcations SN, Hopf bifurcations
H1,2, and saddle-focus heteroclinic bifurcations Het1 already shown in Figure 5.1, we also
find saddle-node bifurcations of limit cycles SL, period-doubling bifurcations PD, symmetry-
breaking (or restoring) bifurcations SB, and torus (or Neimark–Sacker) bifurcations T. The
different bifurcations are color coded throughout; compare these with Figure 5.1, and see
Figures 6.1, 6.2, and 8.1.

For low values of I (Figure 5.2 (a)), the saddle-node bifurcation SN occurs very close to the
saddle-focus heteroclinic bifurcation Het1. For I < 0.06433, the steady state is destabilized in
the supercritical Hopf bifurcation H1. The ensuing periodic solution then undergoes a period-
doubling bifurcation PD, the first along a route to chaos [18, Figure 1]. At I ≈ 0.06433, the
Hopf bifurcation H1 becomes subcritical, and for larger values of I (Figure 5.2 (b)) we observe
the emergence of a saddle-node bifurcation of limit cycles SL. This is the scenario considered in
[18]. At I ≈ 0.0657345, the period-doubling route to chaos is preceded by a torus bifurcation
T and two saddle-node bifurcations of limit cycles SL. Consequently, we find a bistability
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Figure 6.1. Bifurcations of steady states in the (κτ, I)-plane. The labels along the curves Het1,2 correspond
to phase portraits shown in Figures 7.1 and 7.3.

between two stable periodic solutions (Figure 5.2 (c)). One of the periodic solutions is born
in the Hopf bifurcation H1 at κτ ≈ 0.8653 and is destabilized in the torus bifurcation T
at κτ ≈ 0.9118. The other periodic solution is born in the saddle-node bifurcation of limit
cycles SL at κτ ≈ 0.8598, first identified in Figure 5.2 (b), and is destabilized in the period-
doubling bifurcation PD at κτ ≈ 0.9593. For I > 0.0657346, the route to chaos via the
break-up of a torus persists (Figure 5.2 (d)). This change, from a period-doubling route to
chaos to a route to chaos via the break-up of a torus, appears to be due to the presence of
the double-Hopf point. At the double-Hopf point, the Hopf curves H1 and H2 pass through
one another. Figure 5.2 (e) shows the situation for I = 0.067. The first Hopf bifurcation
that destabilizes the nonsymmetric saddle steady state is now H2, which leads to a stable
periodic orbit that is destabilized in a torus bifurcation T at κτ ≈ 1.236. As I is increased
further, there is an increasingly larger region of bistability between a stable periodic solution
and the nonsymmetric stable steady state at the left boundary of the region of stability.
This is a result of the heteroclinic curve Het1 moving away from the saddle-node bifurcation
curve SN, and crossing into the locking region. Finally, for I > 0.068222, the periodic orbit
involved in the heteroclinic bifurcation exists past the first Hopf bifurcation. This is shown in
Figure 5.2 (f), where for I = 0.068 we observe a bistability between the periodic orbit involved
in the heteroclinic bifurcation and the periodic orbit born in the Hopf bifurcation H2.

6. Bifurcations of steady states. In Figure 6.1, we increase the area of the (κτ, I)-plane
under consideration to take a somewhat more global point of view. We follow the curves of
saddle-node bifurcations SN, pitchfork bifurcations PF1, Hopf bifurcations H1,2, and hetero-
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Figure 6.2. Enlargement of bifurcation diagram in Figure 6.1 near the laser threshold and sketch of stability
of steady states in different regions (directions not sketched are attracting).

clinic bifurcations Het1 shown further in Figure 5.1. We also follow the additional curves of
pitchfork bifurcations PF2, Hopf bifurcations H3, and heteroclinic bifurcations Het2 and show
a neutral saddle curve ns. This provides a consistent picture of the bifurcations that can be
continued, namely, bifurcations of steady states and heteroclinic orbits.

Figure 6.2 shows an enlargement of Figure 6.1 near the laser threshold, illustrating the
interaction of the pitchfork curves PF1,2 with the Hopf curves H1,3. The steady states in
three different regions are sketched, where stable steady states are drawn as blue points and
saddle (unstable) steady states as red points. As was mentioned earlier, below the pitchfork
curve PF1, the trivial steady state is stable (region 1). Physically, the curve PF1 marks the
onset of lasing of the PCF laser. (Below this curve the laser is off.) At the curve PF1, the
trivial steady state is destabilized, and a pair of nonsymmetric stable steady states emerge
(region 2); these are destabilized at the Hopf curve H1. The curve of pitchfork bifurcations
PF2 represents another bifurcation of the trivial steady state. At this curve the trivial steady
state has a zero eigenvalue, which means that a pair of nonsymmetric saddle steady states
is born (region 3). These saddles are those involved in the saddle-node bifurcation SN, and
they appear as the lower branch of saddle steady states identified in Figure 5.2. At the
Hopf curve H3, this nonsymmetric saddle steady state undergoes a Hopf bifurcation, where
it bifurcates with a saddle periodic orbit. The codimension-two pitchfork-Hopf bifurcation
points PFH1,2 represent the ends of the Hopf curves H1,3, respectively. At a pitchfork-Hopf
point the center manifold is three-dimensional, and one finds a real eigenvalue and two pure
imaginary eigenvalues on the imaginary axis [29].

The shape of the Hopf curve H1 means that the laser can lock and unlock for a fixed value
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of the pump current I as the feedback strength κτ is varied. For example, for I = 0.0612
a locked solution is born in a saddle-node bifurcation SN at κτ ≈ 0.00428. This solution is
unlocked (becomes unstable) at the Hopf curve H1 at κτ ≈ 0.0606, and the ensuing solution
is once again locked at the Hopf curve H1 at κτ ≈ 0.977. A final intersection with the
Hopf curve H1 at κτ ≈ 1.227 results in an unlocked solution. However, we note that these
transitions would be extremely difficult to observe experimentally due to the small ranges in
the parameters involved.

The curves of heteroclinic bifurcations Het1,2 are explained in the next section. We note
that, as is to be expected, they end at the curves SN and PF2, where the nonsymmetric saddle
steady states involved in the heteroclinic orbits are born.

7. Global bifurcations. Figure 6.1 shows that the curve of heteroclinic bifurcations Het1
curls up near the point marked TP. This indicates that the center point of the spiral is a
codimension-two point known as a T-point [13]. At TP the heteroclinic connection between the
two nonsymmetric steady states is destroyed. This results in the creation of two heteroclinic
orbits from the bifurcating heteroclinic orbit. To show that this is indeed the case, we must
look at the heteroclinic orbits themselves.

Figure 7.1 shows heteroclinic orbits, calculated with DDE-BIFTOOL, for the parameter
values along the curve Het1 indicated in Figure 6.1. The first and second columns show Ex and
N , respectively, as a function of time on the truncation interval that was used by the boundary
value solver; the third column shows the heteroclinic orbit projected onto the E-plane; and
the fourth column shows the heteroclinic orbit projected onto (E,N)-space.

Near the saddle-node bifurcation SN (Figure 7.1 (a)), the orbit is seen to leave one saddle
steady state and spiral into its symmetric counterpart; this was also found in [18]. As one
moves along the curve Het1, the heteroclinic orbit starts to increase in size in (E,N)-space
(Figure 7.1 (b4) and (c4)). As the heteroclinic curve Het1 approaches the T-point TP in the
(κτ, I)-plane, the heteroclinic orbit continues to grow in (E,N)-space (Figure 7.1 (d)) until
just prior to reaching the T-point TP it is seen to pass very near the origin of the E-plane.
At the same time, the value of the inversion N grows (Figures 7.1 (e1) and (e2)) with a
final rapid oscillation before ending up at the other nonsymmetric saddle steady state. The
maximum value of inversion N reached is very close to the value of N of the trivial steady state
(Figure 7.1 (e4)). This is a clear indication that we are very near the forthcoming T-point
bifurcation. The evolution of the connecting orbits is also shown in a movie accompanying
Figure 7.1.

One can find the new heteroclinic orbits at the T-point TP connecting the trivial steady
state to the nonsymmetric steady states, by providing the boundary value solver of DDE-
BIFTOOL with the position and stability information of the trivial steady state. As is to be
expected at a T-point, there is a codimension-two connection from the nonsymmetric steady
state to the trivial steady state and a codimension-zero connection from the trivial steady
state to the symmetric counterpart of the nonsymmetric steady state.

Figure 7.2 (a) shows the heteroclinic orbit between the two nonsymmetric steady states.
As was detailed in section 4.1, the codimension of a heteroclinic orbit is given by the dimen-
sion of the unstable manifold of the end steady state minus the dimension of the unstable
manifold of the initial steady state plus one [38]. The nonsymmetric steady states have
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Figure 7.1. Heteroclinic orbits along the curve Het1; from (a) to (e) (κτ, I) takes the values
(0.314, 0.065264), (1.303, 0.069026), (2.085, 0.069635), (2.201, 0.070357), and (2.177, 0.070394). (The movie
file linked to the framed image shows the development of the heteroclinic orbits along the branch Het1 in four
panels. Top left: Position along the curve Het1 in the (κτ, I)-plane. Top right: The heteroclinic orbit projected
onto (E,N)-space. Bottom left: Ex on the truncation interval. Bottom right: N on the truncation interval.)

one-dimensional unstable manifolds. Consequently, the heteroclinic orbit (and its symmetric
counterpart) shown in Figure 7.2 (a) is of codimension one. This orbit is seen to start at one
of the nonsymmetric steady states and then spend much time at the trivial steady state (red
part of the orbit) before a sudden oscillation back to the end nonsymmetric steady state (blue
part of the orbit). These two parts correspond to the two heteroclinic orbits that we find at

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/41657_01.mpg
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Figure 7.2. Codimension-one heteroclinic orbit very close to the T-point TP (a) and the corresponding
codimension-two (b) and codimension-zero (c) heteroclinic orbits at the T-point TP.

the T-point. The first of these is shown in Figure 7.2 (b). The nonsymmetric steady states
have one-dimensional unstable manifolds, and the trivial steady state has a two-dimensional
unstable manifold; therefore, the heteroclinic orbit shown in Figure 7.2 (b) is of codimension
two. This heteroclinic connection exists only at the point TP, and its continuation would
require freeing a third parameter, which is beyond the scope of this study. The second hete-
roclinic orbit found at the T-point TP is shown in Figure 7.2 (c). Because the trivial steady
state has a two-dimensional unstable manifold and the nonsymmetric steady states have one-
dimensional unstable manifolds, this heteroclinic orbit is of codimension zero. In other words,
this heteroclinic orbit exists for all values of (κτ, I) in a local neighborhood of the T-point
TP.

In Figures 6.1 and 6.2, the dotted curve ns represents a neutral saddle curve, along which
the saddle steady states born in the saddle-node bifurcation SN have zero saddle quantity;
that is, σ = Re(λ1,2) + λ3 ≡ 0, Re(λ1,2) > 0, λ3 < 0. We note that the curve ns starts at
the pitchfork curve PF2, the curve in which the nonsymmetric saddle steady states associated
with the neutral saddle are born; see Figure 6.2. The curve ns is seen to intersect the curve
of heteroclinic orbits Het1 at the point B1, a codimension-two Belyakov point [45]. Along the
curve Het1, the heteroclinic orbits between the saddle-node heteroclinic bifurcation SNhet and
the Belyakov bifurcation B1 have a negative saddle quantity corresponding to a bifurcating
attracting periodic orbit associated with the heteroclinic bifurcation. Above the Belyakov



270 KIRK GREEN, BERND KRAUSKOPF, AND GIOVANNI SAMAEY

0  
0.5

0

0.5

0  
7.63

7.64

7.65

0.5 0 0.5

0.5

0

0.5

0.5 0 0.50.500.5
7.63

7.64

7.65

0  

1

0

1

0  
7.61

7.64

7.67

2 0 2
2

0

2

2 0 2
2

0
2

7.61

7.64

7.67

0  

4

0

4

0  
7.55

7.65

7.75

4 0 4
4

0

4

4 0 4
404

7.55

7.65

7.75

0  

4

0

4

0  
7.55

7.65

7.75

4 0 4

4

0

4

4 0 4
404

7.55

7.65

7.75

−
−

− − −

− −− −
−

− −
− − −

− −
−

−
−

Figure 7.3. Heteroclinic orbits along the curve Het2; from (a) to (d) (κτ, I) takes the values
(0.182, 0.061478), (0.620, 0.063430), (2.153, 0.069019), and (2.751, 0.070576). (The movie file linked to the
framed image shows the development of the heteroclinic orbits along the branch Het2 in four panels. Top left:
Position along the curve Het2 in the (κτ, I)-plane. Top right: The heteroclinic orbit projected onto (E,N)-space.
Bottom left: Ex on the truncation interval. Bottom right: N on the truncation interval.)

point B1, the saddle quantity is positive; this is the case of a chaotic Shil’nikov bifurcation
and implies the existence of an infinite number of saddle periodic orbits associated with the
heteroclinic bifurcation. Near the Belyakov point B1 the PCF laser is excitable; that is, if a
locked steady state solution is perturbed enough, it will produce a large pulse by following
the nearby heteroclinic orbit before ending up at the other symmetric locked solution; see also
[27]. This may lead to multipulse solutions, as was recently shown for a semiconductor laser
with optical injection [45].

The existence of a Belyakov point and a T-point implies that there are infinite sequences
of codimension-one homoclinic and heteroclinic orbits in their local vicinities. However, it
appears to be very difficult to find and follow these solutions. So far we were unable to
find further branches of connecting orbits near the Belyakov point. Near the T-point, there

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/41657_02.mpg
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are codimension-zero heteroclinic orbits, some of which one could try to find and continue.
Theory dictates that the regions where they exist are bounded by curves of codimension-one
heteroclinic orbits [13]. Also, in this case, we could not locate a starting value which enabled
us to follow branches of these orbits.

However, during our investigations, DDE-BIFTOOL detected another branch Het2 of
connecting orbits. This new branch is shown in Figure 6.1. As is the case for Het1, it also
represents heteroclinic orbits, shown in Figure 7.3, between the nonsymmetric saddle steady
states. The curve Het2 starts at the pitchfork curve PF2, where the nonsymmetric saddle
steady states associated with the heteroclinic connection are born; again see Figure 6.2. The
heteroclinic orbit shown in Figure 7.3 (a) is very close to the pitchfork curve PF2; note
that the nonsymmetric steady states, which have just been created, are very close together
(Figure 7.3 (a3)). As one moves along Het2, the orbits oscillate more as they spiral into
the end steady state (Figure 7.3 (b)). Finally, near the end of the curve Het2, the damped
oscillations become more irregular with the size of the orbit increasing only slightly in (E,N)-
space (Figure 7.3 (c) and (d)). One sees the emergence of an extra “arm” of the orbit in
Figure 7.3 (d3). This may be an indication of a bifurcating periodic orbit responsible for the
destruction of the curve Het2 at (κτ, I) ≈ (2.833, 0.0702). It is clear that the heteroclinic
curves Het1 and Het2 cannot cross, as they involve the same branch of the one-dimensional
unstable manifold of the nonsymmetric saddle steady states. We note that, unlike the case of
the curve Het1, there is no interaction of the curve Het2 with the trivial saddle steady state.
The evolution of the connecting orbits is also shown in a movie accompanying Figure 7.3.

As is seen in Figure 6.2, the curve Het2 crosses the curve ns at the point B2, another
codimension-two Belyakov point. Below the Belyakov point B2, the heteroclinic orbits along
the curve Het2 have a negative saddle quantity corresponding to a bifurcating attracting
periodic orbit; above B2, the saddle quantity is positive, corresponding to an infinite number
of bifurcating saddle periodic orbits. Again, we were unable to find further branches of
heteroclinic orbits near this Belyakov point.

8. Bifurcations of periodic orbits. In this section, we make a first attempt at providing
a full two-dimensional picture, including bifurcations of periodic orbits, of the locking region
of the PCF laser. We performed a number of one-parameter studies, detected bifurcations of
periodic orbits by studying the Floquet multipliers, and plotted the results in the (κτ, I)-plane.

Figure 8.1 shows colored points indicating bifurcations of periodic orbits. For different
values of I, a one-parameter continuation of a periodic orbit was performed. By studying
the Floquet multipliers of the system, the following bifurcations were detected: saddle-node
bifurcations of limit cycles SL (yellow points) and symmetry-breaking (or restoring) bifurca-
tions SB (purple points), both when a real Floquet multiplier passes through the unit circle
at +1; period-doubling bifurcations PD (green points) when a real Floquet multiplier passes
through the unit circle at −1; and torus (or Neimark–Sacker) bifurcations T (black points)
when a complex pair of Floquet multipliers pass through the unit circle. Figure 8.1 (a) shows
bifurcations of the periodic orbit originating from the Hopf curve H1, while Figure 8.1 (b)
shows bifurcations of the periodic orbit originating from the Hopf curve H2.

Below the double-Hopf point DH, Figure 8.1 (a) clearly identifies that a saddle-node
bifurcation of limit cycles SL runs close to the curve of subcritical Hopf bifurcations H1. The
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Figure 8.1. Bifurcation diagrams in the (κτ, I)-plane; panel (a) shows bifurcations of periodic orbits orig-
inating from the Hopf curve H1, and panel (b) shows bifurcations of periodic orbits originating from the Hopf
curve H2.

stable periodic orbit emerging from the curve SL is destabilized at the curve of period-doubling
bifurcations PD (the first in a route to chaos); see Figures 5.2 (b) and (c). Near the double-
Hopf point DH, there is an interaction of several bifurcations [29] which we are unable to
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resolve. (In particular, our calculations suggest that the curve PD does not end at the double-
Hopf point DH but turns sharply to the right.) The periodic orbit that is destabilized at
PD is destroyed in a symmetry-restoring bifurcation at the curve SB. Above the double-Hopf
point DH, the bifurcation scenario is very different. The saddle periodic orbits originating
from the Hopf curve H1 are seen to undergo period-doubling bifurcations PD and, in a small
region, torus bifurcations T. An obvious question is: Why is there a sudden change from a
curve of symmetry-breaking bifurcations SB, below the double-Hopf point DH, to a curve of
period-doubling bifurcations PD, above the double-Hopf point DH? With the present tools
we cannot conclusively answer this question. However, initial investigations have revealed a
possible heteroclinic connection to a saddle periodic orbit near the end points of these curves
(around (κτ, I) ≈ (2.3, 0.0657)).

The bifurcation scenario of Figure 8.1 (b) is somewhat clearer. It is now clear that the
torus bifurcation T, identified in Figures 5.2 (e) and (f), originates from the double-Hopf point
DH. In the lower half-plane, a large curve of period-doubling bifurcations PD and a smaller
curve of torus bifurcations T are identified. The torus bifurcation T originating from the
double-Hopf point DH leads to interesting dynamics. Theory states that the curve T comes
with narrow resonance tongues, also known as Arnold tongues [29]. Inside these tongues we
find phase-locked periodic solutions on the torus which lead to additional curves of bifurcations
of periodic orbits. Furthermore, away from the curve T, the tongues intersect, and this results
in complicated bifurcations to chaotic dynamics [29]. A detailed analysis of these resonances
is beyond the scope of this paper.

We also identify a region bounded by curves of saddle-node bifurcations of limit cycles
SL. On the curve SL there appears to be a codimension-two cusp point C of saddle-node
bifurcations of limit cycles SL at (κτ, I) ≈ (2.3, 0.0675). (While it is not possible to confirm this
cusp point by a two-parameter continuation, one-parameter investigations give clear evidence
of a cusp.) Such regions are common in periodically driven systems [3] and laser models [44].
Inside this region, we identify torus bifurcations T and period-doubling bifurcations PD. It
is known that a curve of torus bifurcations can meet a curve of saddle-node bifurcations of
limit cycles at a Bogdanov–Takens bifurcation point [29]. Here we also expect a change from
supercritical to subcritical of the saddle-node bifurcation of limit cycles curve. (This is also
known as a 1:1 resonance.) Indeed, the lower curve T inside the bounded region is seen to
run very close to the curve SL. A period-doubling curve can also meet a torus curve. Again,
we would expect a change from supercritical to subcritical of the period-doubling bifurcation,
a codimension-two point known as a 1:2 resonance [29]. However, at present we cannot
accurately identify such points, and we leave a detailed study of bifurcations of periodic orbits
as an open problem.

9. Conclusions. We have provided a state-of-the-art two-parameter bifurcation analysis
of the locking region of the PCF laser, where we paid particular attention to the computa-
tion and continuation of connecting orbits. The general picture is that the locking region
is bounded by a saddle-node bifurcation and/or a heteroclinic bifurcation on one side and
by Hopf bifurcations on the other; this is consistent with the one-parameter study of [18].
Pitchfork bifurcations were shown to lead to interactions between the trivial steady state and
the nonsymmetric steady states of the PCF laser, thus forming the laser threshold. A number
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of codimension-two bifurcations were found to be organizing centers for the dynamics of the
PCF laser. These include pitchfork-Hopf bifurcations, a double-Hopf point, a Belyakov point,
and a T-point bifurcation. Finally, we made a first attempt at mapping out bifurcations of
periodic orbits in two parameters. This led to an overall consistent picture, in line with what
is to be expected from both theory and studies of other semiconductor laser systems.

Some questions remain about further codimension-two points, particularly a cusp bifur-
cation and possible 1:1 and 1:2 resonance points. Furthermore, it remains a challenge to find
connecting orbits in the vicinities of the Belyakov points and to find the codimension-one
connecting orbits bounding the regions near the T-point where codimension-zero heteroclinic
orbits exist.

To our knowledge, what was presented here is a first two-parameter bifurcation study of a
DDE with continuation techniques. Our study highlights the usefulness of continuation tools
for DDEs and, we hope, may encourage readers in other fields to use these new techniques.
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Abstract. We apply the synergetic elimination procedure for the stable modes in nonlinear delay systems close
to a dynamical instability and derive the normal form for the delay-induced Hopf bifurcation in the
Wright equation. The resulting periodic orbit is confirmed by numerical simulations.
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1. Introduction. Within the last decades, synergetics has provided powerful concepts and
methods to describe self-organization processes in various branches of science [1, 2, 3, 4, 5, 6].
The spontaneous formation of spatial, temporal, or functional patterns in complex systems
has been successfully investigated by working out general principles and by mapping them
onto universal mathematical structures. The important result is due to the fact that in the
vicinity of a dynamical instability the high-dimensional set of nonlinear evolution equations
modeling a complex system on a microscopic or a mesoscopic scale can approximately be
reduced to a low-dimensional set of order parameter equations describing the evolving pattern
formation on a macroscopic scale. To obtain such a simplified, reduced description of self-
organization processes, the synergetic system analysis proceeds as follows. A linearization of
the evolution equations around a stationary solution shows that a dynamical instability is
always accompanied by a time-scale hierarchy between numerous fast modes s and few slow
modes u. A rigorous treatment of the full nonlinear evolution equations in the vicinity of the
dynamical instability leads to a characteristic interdependence between both hierarchy levels
which may be illustrated by a circular causality chain. On the one hand, the slaving principle
of synergetics states that the numerous fast modes s quasi-instantaneously take values which
are prescribed by the few slow modes u according to s(t) = h(u(t)) with the center manifold
h(u). On the other hand, an adiabatic elimination of the fast enslaved modes s yields equations
for the slow order parameters u which depend, in general, on the center manifold h(u) due to
the nonlinear feedback.

In its original formulation, the synergetic system analysis was developed for complex
systems which can be modeled by ordinary and partial differential equations as well as their

∗Received by the editors August 8, 2002; accepted for publication (in revised form) by R. Murray January 21,
2003; published electronically August 15, 2003.

http://www.siam.org/journals/siads/2-3/41280.html
†Institute of Parallel and Distributed Systems, University of Stuttgart, Breitwiesenstraße 20-22, D-70565

Stuttgart, Germany (Michael.Schanz@informatik.uni-stuttgart.de).
‡Institute of Theoretical Physics, Free University of Berlin, Arnimallee 14, D-14195 Berlin, Germany

(pelster@physik.fu-berlin.de).

277

http://www.siam.org/journals/siads/2-3/41280.html
mailto:Michael.Schanz@informatik.uni-stuttgart.de
mailto:pelster@physik.fu-berlin.de


278 DELAY-INDUCED HOPF BIFURCATION

stochastic generalizations. Some time ago, the general concepts and methods of synergetics
were extended to delay differential equations to deal with dynamical instabilities which are
induced by the finite propagation time of signals in feedback loops [7]. Taking into account the
infinite-dimensional character of a delay system [8, 9], the adiabatic elimination of the stable
modes leads to a low-dimensional set of order parameter equations which turn out to be of
the form of ordinary differential equations; i.e., they no longer contain memory effects. The
predictions of the synergetic system analysis have been quantitatively tested by investigating
the delay-induced Hopf bifurcation of the electronic system of a first-order phase-locked loop
(PLL) [7]. The periodic orbit which results from the corresponding order parameter equation
near the bifurcation point has been confirmed by both a multiple scale procedure and numerical
simulations [10, 11]. Although this application exemplarily proves the order parameter concept
for delay systems, it does not allow us to draw conclusions about the slaving principle. As
the lowest nonlinear term in the scalar delay differential equation of the PLL is a cubic one,
the center manifold does not influence the order parameter equation of the Hopf bifurcation
in the lowest order. In order to check both ingredients of the circular causality chain, i.e., the
order parameter concept and the slaving principle, for delay systems, it is thus indispensable
to study a scalar delay differential equation with a quadratic nonlinearity. Such dynamical
systems were studied, for instance, in the context of Lotka–Volterra models [12] and machining
models [13, 14].

Another candidate is provided by the evolution equation

d

dt
z(t) = R

[
z(t)− z(t− τ)2

]
.(1.1)

With vanishing time delay τ , it represents a system which is named after the Belgian math-
ematician P. F. Verhulst from the 19th century [15]. It is used as a simplified model for
the population dynamics of a species in an environment with limited food supply [16]. The
synergetic system analysis for the Verhulst system with time delay (1.1) has already been
performed in [10]. There also the well-known equation of Wright [17]

d

dt
z(t) = −Rz(t− τ) [1 + z(t)](1.2)

has been treated, where R denotes a system parameter and τ a delay time. This delay
differential equation is mentioned by Wright [17] as arising in the application of probability
methods to the theory of asymptotic prime number density. Cunningham [18] depicts it as
a “growth equation” representing a mathematical description of a fluctuating population of
organisms under certain environmental conditions. In addition, it may describe the operation
of a control system working with potentially explosive chemical reactions. Performing an
appropriate scaling of time

t = τ t′ , z′(t′) = z(τ t′)(1.3)

converts the Wright equation (1.2) to its standard form with the control parameter

R′ = τ R.(1.4)
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Thus varying the delay time τ corresponds to changing the control parameter R′. By omitting
the prime ′ for the respective quantities, the standard form of the Wright equation reads

d

dt
z(t) = −Rz(t− 1) [1 + z(t)] .(1.5)

In this paper, we restrict ourselves to analyzing this standard form of the Wright equation.
TheWright equation (1.5) shows a delay-induced instability, namely, a Poincaré–Andronov–

Hopf bifurcation at the critical value

Rc =
π

2
(1.6)

of the control parameter R. In [19], it is shown that the oscillatory solution in the vicinity
of this instability, i.e., the emerging limit cycle, can be calculated approximately using the
method of averaging. This approximation reads in the lowest order

z(t) = A

√
R− π

2
cos

(
π

2
t

)
+O

(
R− π

2

)
,(1.7)

where the amplitude A has the value

A =

√
40

3π − 2
.(1.8)

In section 2, we start with a linear stability analysis of the Wright equation (1.5) which
confirms, of course, the delay-induced Poincaré–Andronov–Hopf bifurcation when the control
parameter R approaches the critical value (1.6). Near this instability, we perform a nonlinear
synergetic treatment in section 3 and study in detail how the center manifold influences the
order parameter equation. In section 4, the resulting order parameter equation is transformed
to the normal form of a Hopf bifurcation, where the emerging periodic orbit is determined
one order higher than the lowest-order result (1.7) and (1.8). The numerical investigations of
section 5 confirm the emerging periodic orbit; furthermore, we discuss the global bifurcation
scenario of the Wright equation (1.5).

2. Linear stability analysis. The solution of the delay differential equation (1.5) for times
t ≥ 0 depends on the initial values of the function z(t) in the entire interval [−1, 0]. In
order to properly define such an initial value problem, Hale [8] and Krasovskii [9] proposed to
transform the equation of motion (1.5) for a function z(t) in the usual state space Γ to the
extended state space C of continuous complex valued functions zt, which are defined on the
interval [−1, 0]:

d

dt
zt(Θ) = (G zt) (Θ) =




d

dΘ
zt(Θ), −1 ≤ Θ < 0,

F [zt], Θ = 0.

(2.1)

Following the notation of [7], we introduced not only the new function zt ∈ C, which is
connected to the original function z(t) ∈ Γ through

zt(Θ) = z(t+Θ) , −1 ≤ Θ ≤ 0,(2.2)
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but also the nonlinear functional

F [zt] =
2∑

k=1

∫ 0

−1
dΘ1 · · ·

∫ 0

−1
dΘk ω

(k)(Θ1, . . . ,Θk)
k∏
l=1

zt(Θl)(2.3)

with the two scalar densities

ω(1)(Θ1) = −Rδ(Θ1 + 1),(2.4)

ω(2)(Θ1,Θ2) = −Rδ(Θ1 + 1)δ(Θ2).(2.5)

The stationary states of this system

zIstat = 0 , zIIstat = −1(2.6)

are candidates for the reference state from which we start our further investigations. For the
main body of the article, we focus our attention on the stationary state zIstat and choose it
as the reference state. The other stationary state zIIstat will be discussed in section 5 together
with the global bifurcation scenario of the Wright equation (1.5).

Then we linearize the system (2.1) with respect to the stationary state zIstat = 0 by using
the decomposition

zt(Θ) = zIstat + ζt(Θ) , −1 ≤ Θ ≤ 0.(2.7)

This leads to the following linearized equation of motion for the deviation ζt(Θ) from the
stationary state zIstat = 0:

d

dt
ζt(Θ) = (GL ζt) (Θ) =




d

dΘ
ζt(Θ), −1 ≤ Θ < 0,

L[ζt], Θ = 0,

(2.8)

where the linear functional is given by

L [ζt] =

∫ 0

−1
dΘω(Θ)ζt(Θ)(2.9)

with the scalar density

ω(Θ) =
δF [zt]

δzt(Θ)

∣∣∣∣
zt(Θ)=zIstat

= −R δ(Θ + 1).(2.10)

Inserting the solution ansatz

ζt(Θ) = φλ(Θ)eλt, −1 ≤ Θ ≤ 0,(2.11)

into (2.8) leads to the eigenvalue problem of the infinitesimal generator GL:

λφλ(Θ) =
(
GLφλ

)
(Θ), −1 ≤ Θ ≤ 0.(2.12)
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Taking into account the definition of GL in (2.8), the eigenfunction φλ(Θ) is determined to be

φλ(Θ) = Nλe
λΘ, −1 ≤ Θ ≤ 0,(2.13)

and the eigenvalue λ follows from

λ = L(λ),(2.14)

where L(λ) is defined by

L(λ) =

∫ 0

−1
dΘω(Θ)eλΘ.(2.15)

Using the scalar density (2.10), we obtain the following transcendental characteristic equation:

−Re−λ − λ = 0.(2.16)

Thus the spectrum of the linear operator GL has the following properties [8]:

• It consists of a countable infinite number of eigenvalues which cumulate for �(λ) →
−∞.

• It is confined by an upper threshold for the real parts of the eigenvalues.
• At the bifurcation point, i.e., the instability, some of the eigenvalues reach the imagi-

nary axes and thus become unstable.

Further properties of the eigenvalues of the characteristic equation (2.16) follow from the
Hayes theorem, which can be found in [20]. It states that all solutions of the transcendental
equation

p+ qe−λ − λ = 0(2.17)

possess a negative real part if and only if (a) p < 1 and (b) p < −q <
√
a21 + p

2. Here a1
represents the solution of the transcendental equation a1 = p tan(a1) which lies in the interval
[0, π). For the special case p = 0, one can show that a1 is equal to π/2. The shaded region
in Figure 2.1 represents that region of the parameter space q, p where both conditions of the
Hayes theorem are fulfilled. The upper boundary line stems from (a) p < 1 and (b1) p < −q,
whereas the lower boundary line follows from (a) p < 1 and (b2) −q <

√
a21 + p

2.

Comparing (2.16) with (2.17), we obtain the identification q = −R and p = 0. Changing
the control parameter R from 0 to π/2, the corresponding point in the parameter space q, p
moves along the q-axis from the point q = 0 to q = −π/2 (see the arrow in Figure 2.1). At
this critical value, it reaches the boundary of the shaded stability region; i.e., no longer do
all solutions of the characteristic equation (2.16) have a negative real part. Therefore, an
instability occurs at Rc = π/2.

Figure 2.2 confirms this result by illustrating the movement of the ten solutions of the
characteristic equation (2.16) with the largest real part when the control parameter is in-
creased from 0 to π/2. The eigenvalues were obtained with a Newton algorithm, and the
control parameter R was increased in equidistant steps. For R = 0, there exists only one
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Figure 2.1. The Hayes theorem is fulfilled within the shaded region.

real eigenvalue 0 as the linearized delay differential equation (2.8) degenerates to an ordi-
nary differential equation. For R > 0, this eigenvalue remains real and becomes negative.
Furthermore, a countable infinite number of conjugate complex eigenvalues and another real
eigenvalue emerge from an infinite negative real part. At the value R = 1/e, both real eigenval-
ues meet at the point (−1/0). They are converted to a pair of conjugated complex eigenvalues
for 1/e < R < π/2. These two complex conjugated eigenvalues have zero real part at the
instability Rc = π/2, which thus represents a Hopf bifurcation. We can further analyze this
instability by introducing the smallness parameter

ε =
R−Rc
Rc

⇐⇒ R = Rc(1 + ε)(2.18)

for the deviation from the critical control parameter Rc = π/2. In particular, we can determine
both eigenvalues λ±u (ε) with nearly vanishing real part at ε ≈ 0 from the characteristic equation
(2.16):

λ±u (ε) =
R2
c

1 +R2
c

ε± iRc
(
1 +

1

1 +R2
c

ε

)
+O

(
ε2
)
.(2.19)

In the vicinity of the instability ε ≈ 0, we read off from Figure 2.2 that only the two eigenvalues
(2.19) have nearly vanishing real part; all other eigenvalues have a large negative real part:

�[λ±u (ε ≈ 0)] ≈ 0; �[λjs(ε ≈ 0)] < 0, j = 1, . . . ,∞.(2.20)

This characteristic property of the linearized system (2.8) leads to the time-scale hierarchy

T±
u =

1

�[λ±u (ε ≈ 0)]
� T js =

1

�[λjs(ε ≈ 0)]
, j = 1, . . . ,∞.(2.21)
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Figure 2.2. Movement of the ten solutions of the characteristic equation (2.16) with the largest real part.

Thus the infinite-dimensional extended state space C decomposes in a two-dimensional sub-
space U of the linear unstable modes and a remaining infinite-dimensional subspace S of the
linear stable modes [7]. As a consequence, the extended state function zt can be decomposed
near the instability according to

zt(Θ) = zIstat + ut(Θ) + st(Θ) = ut(Θ) + st(Θ), −1 ≤ Θ ≤ 0,(2.22)

as we have zIstat = 0. Here ut and st denote the respective contributions of zt in the subspaces
U and S. In order to project into these subspaces, we need the linear unstable modes

φλ
±
u (Θ) = Nλ±u e

λ±uΘ, −1 ≤ Θ ≤ 0,(2.23)

of the system (2.8) which have already been determined in (2.13). However, this knowledge
is not sufficient, as the infinitesimal generator GL is not self-adjoint. Therefore, we also need
the linear unstable modes

ψ†λ±u (s) = Nλ±u e
−λ±u s, 0 ≤ s ≤ 1,(2.24)

of the adjoint system

d

dt
ζ†t (s) = −

(
G†
L ζ

†
t

)
(s) =



d

ds
ζ†t (s), 0 < s ≤ 1,

−L†[ζ†t ], s = 0,

(2.25)

where the linear functional

L† [ζ†t
]
=

∫ 1

0
dsω(−s)ζ†t (s)(2.26)
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also contains the scalar density (2.10). Indeed, the solution ansatz

ζ†t (s) = ψ
†λ(s)e−λs, 0 ≤ s ≤ 1,(2.27)

converts (2.25) to the eigenvalue problem

λψ†λ(s) =
(
G†
Lψ

†λ) (s), 0 ≤ s ≤ 1,(2.28)

which is adjoint to (2.12). Note that ψ†λ and ζ†t are elements of the dual extended state space
C†, which consists of continuous complex valued functions on the interval [0, 1]. The relation
between both extended state spaces C and C† is defined by the bilinear form [7]

(
ψ†|φ

)
= ψ†(0)φ(0)−

∫ 0

−1
dΘ

∫ Θ

0
dsψ†(s−Θ)ω(Θ)φ(s).(2.29)

Using this bilinear form, one can show that the eigenfunctions (2.23) and (2.24) are biorthonor-
mal: (

ψ†λi |φλj
)
= δij , i, j = ±.(2.30)

This determines the yet unknown normalization constants to be

Nλ±u =
1√

1 + λ±u
,(2.31)

so they reduce near the instability because of (2.19) to

Nλ±u =
1√

1± iRc
+O (ε) .(2.32)

Furthermore, the bilinear form (2.29) allows us to define the projector into the two-dimensional
subspace U of the unstable modes:

(Pu •) (Θ) =
∑
i=±
φλ

i
u(Θ)

(
ψ†λiu

∣∣∣ •) .(2.33)

Correspondingly, the projector into the remaining infinite-dimensional subspace S of the stable
modes reads

Ps • = (I − Pu) • .(2.34)

Applying the projector Pu to zt ∈ C leads to ut ∈ U according to

ut(Θ) = (Puzt) (Θ) =
∑
i=±
ui(t)φλ

i
u(Θ), −1 ≤ Θ ≤ 0,(2.35)

where the amplitudes of the linear unstable modes φλ
±
u (Θ) are defined by

u±(t) =
(
ψ†λ±u

∣∣∣ zt
)
.(2.36)

Later on, these amplitudes represent the order parameters which indicate the emergence of
an instability. Analogously, the projector (2.34) leads to the stable modes

st(Θ) = (Pszt) (Θ), −1 ≤ Θ ≤ 0.(2.37)
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3. Nonlinear synergetic analysis. After having performed a linear stability analysis around
the reference state zIstat = 0 in the vicinity of the instability Rc = π/2, we now return to our
original nonlinear evolution equation (2.1) in the extended state space C. We proceed by
decomposing the generator G into its linear part GL and a remaining effective nonlinear part:

d

dt
zt(Θ) = (GL zt) (Θ) +X0(Θ)Feff[zt], −1 ≤ Θ ≤ 0.(3.1)

Here we introduce the scalar function

X0(Θ) =

{
0, −1 ≤ Θ < 0,
1, Θ = 0,

(3.2)

and the effective nonlinear functional

Feff[zt] =

∫ 0

−1
dΘ1

∫ 0

−1
dΘ2 ω

(2)(Θ1,Θ2) zt(Θ1)zt(Θ2)(3.3)

with the scalar density (2.5). Using the projectors (2.33) and (2.34) and their properties
(2.35)–(2.37), we can investigate the respective contributions of the order parameters u±(t)
and the linear stable modes st ∈ S to the nonlinear dynamics (3.1). Thus we obtain the
following system of coupled nonlinear mode equations:

d

dt
u±(t) = λ±u u

±(t) + ψ†λ±u (0)Feff


∑
j=±

φλ
j
uuj(t) + st


 ,(3.4)

d

dt
st(Θ) = (GLst) (Θ) + ((I − Pu)X0) (Θ)Feff


∑
j=±

φλ
j
uuj(t) + st


 .(3.5)

It is still exact and describes completely the nonlinear dynamics. However, a solution to these
equations can only be found by means of an approximation method. Such a well-established
approximative solution is provided by the slaving principle of synergetics [1, 2, 3, 4, 5].

To this end, we start with the time-scale hierarchy (2.21) near the instability which leads
to the fact that the dynamics of the stable modes st ∈ S evolves much faster than the order
parameters u±(t). In [7] it has been shown for a quite general class of delay differential
equations that such a time-scale hierarchy leads to a slaving of the stable modes; i.e., the
numerous fast modes st ∈ S quasi-instantaneously take values which are prescribed by the few
slow order parameters u±(t). In our context, the slaving principle states mathematically that
the dynamics of the stables modes st ∈ S is determined by the center manifold h(Θ, u+, u−)
according to

st(Θ) = h
(
Θ, u+(t), u−(t)

)
.(3.6)

Inserting this ansatz into (3.5) leads to an implicit equation for the center manifold h(Θ, u+, u−):

∑
i=±

∂h (Θ, u+(t), u−(t))
∂ui(t)


λiuui(t) + ψ†λiu(0) Feff


∑
j=±

φλ
j
uuj(t) + h




(3.7)

= (GLh) (Θ) + ((I − Pu)X0) (Θ)Feff


∑
j=±

φλ
j
uuj(t) + h


 .
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It can be approximately solved in the vicinity of the instability as follows. We assume that
the order parameters u±(t) possess a certain dependence on the smallness parameter (2.18)
which is typical for a Hopf bifurcation:

u±(t) = O(ε1/2).(3.8)

Furthermore, we perform for the center manifold h(Θ, u+, u−) the lowest-order ansatz

h(Θ, u+, u−) =
∑
j1=±

∑
j2=±

Hj1j2(Θ)uj1(t)uj2(t),(3.9)

as r = 2 is the order of the effective nonlinear functional (3.3). From (3.8) and (3.9), it
follows then in lowest order of ε that the effective nonlinear functional Feff in (3.7) can be
approximated by

Feff


∑
j=±

φλ
j
uuj(t) + h


 ≈

∑
j1=±

∑
j2=±

F eff
j1j2u

j1(t)uj2(t),(3.10)

where the coefficients F eff
j1j2

read

F eff
j1j2 =

∫ 0

−1
dΘ1

∫ 0

−1
dΘ2 ω

(2) (Θ1,Θ2)φ
λ
j1
u (Θ1)φ

λ
j2
u (Θ2).(3.11)

Taking into account (2.5) and (2.23), these coefficients turn out to be

F eff
++ = F eff

−−
∗
= −RN2

λ+
u
e−λ

+
u , F eff

+− = F eff
−+ = −RNλ+

u
Nλ−u e

−λ+
u .(3.12)

As a consequence, we conclude from (3.7) in lowest order of ε that the coefficients Hj1j2(Θ)
of the center manifold (3.9) are given by

Hj1j2(Θ) = F eff
j1j2Kj1j2(Θ),(3.13)

where the coefficients Kj1j2(Θ) follow from

Kj1j2(Θ) =
(
[GL − Λ]−1 (PuX0 −X0)

)
(Θ)(3.14)

with the abbreviation

Λ =
2∑

k=1

λjku .(3.15)

In [7] it is shown that the operator [GL − Λ]−1 has the explicit representation

(
[GL − Λ]−1 χ

)
(Θ) =

∫ Θ

0
ds eΛ(Θ−s)χ(s)(3.16)

+ [L(Λ)− Λ]−1

(
χ(0)−

∫ 0

−1
dΘ

∫ Θ

0
ds eΛ(Θ−s)ω(Θ)χ(s)

)
eΛΘ,
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where L(λ) is already defined in (2.15). After some calculation, which also involves (2.10),
(2.23), (2.24), (2.33), and (3.2), it thus follows that the coefficients (3.14) are given by

Kj1j2(Θ) =
∑
j=±

N2
λju

λju − Λ
eλ

j
uΘ − eΛΘ

L(Λ)− Λ
.(3.17)

Thus, together with (2.10), (2.15), and (3.15), we obtain

K++(Θ) = K∗
−−(Θ) = −

N2
λ+
u
eλ

+
uΘ

λ+
u

+
N2
λ−u
eλ

−
uΘ

λ−u − 2λ+
u
+

e2λ
+
uΘ

Re−2λ+
u + 2λ+

u

,(3.18)

K+−(Θ) = K−+(Θ) = −
N2
λ+
u
eλ

+
uΘ

λ−u
−
N2
λ−u
eλ

−
uΘ

λ+
u

+
e(λ

+
u+λ−u )Θ

Re−(λ+
u+λ−u ) + λ+

u + λ−u
.(3.19)

This completes the lowest-order result for the center manifold h(Θ, u+, u−), which is given by
(3.9), (3.12), (3.13), (3.18), and (3.19).

Thus we can now consider the order parameter equation (3.4). In lowest order in ε we
take into account (2.5), (2.25), (3.3), (3.6), and (3.9) so that it reduces to

d

dt
u±(t) = λ±u u

±(t)(3.20)

−RNλ±u
2∏
l=1


∑
j=±

φλ
j
u(ϑl)u

j(t) +
∑
j1=±

∑
j2=±

Hj1j2(ϑl)u
j1(t)uj2(t)


 ,

where we set

ϑl =

{
−1, l = 1,
0, l = 2.

(3.21)

Note that the order parameter equation (3.20) turns out to be an ordinary differential equation;
i.e., it no longer contains memory effects. Furthermore, we observe that the center manifold
explicitly enters the order parameter equation (3.20) as a direct consequence of the quadratic
nonlinearity of the Wright equation (1.5). We remark that this effect, which is essential for
the present synergetic analysis, was neglected in the neurophysiological study in [23]. In
the subsequent section we show how the order parameter equation (3.20) is converted to the
normal form of a Hopf bifurcation.

4. Normal form. Now we perform a nonlinear transformation of the order parameters
which eliminates those terms which are irrelevant for the normal form of a Hopf bifurcation.
As far as the so-called near identity transformation and the theory of normal forms in general
is concerned, we refer to the [19, 21, 22]. The terms in (3.20) which are relevant for the normal
form of a Hopf bifurcation read

d

dt
u±(t) = λ±u u

±(t) + q±0 u
±(t)2 + q±1 u

±(t)u∓(t) + q±2 u
∓(t)2 + k±1 u

±(t)2u∓(t)(4.1)
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as we can neglect quartic terms and nonresonant cubic terms due to the rotating wave ap-
proximation. The respective coefficients in (4.1) are given by

q±0 = −RNλ±u φ
λ±u (−1)φλ

±
u (0) = −RNλ±u

3e−λ
±
u ,(4.2)

q±1 = −RNλ±u
[
φλ

±
u (−1)φλ

∓
u (0) + φλ

±
u (0)φλ

∓
u (−1)

]
(4.3)

= −RNλ±u
2Nλ∓u

(
e−λ

±
u + e−λ

∓
u

)
,

q±2 = −RNλ±u φ
λ∓u (−1)φλ

∓
u (0) = −RNλ±uNλ∓u

2e−λ
∓
u ,(4.4)

k±1 = −RNλ±u
{
φλ

±
u (−1) [H+−(0) +H−+(0)] + φ

λ∓u (−1)H++(0)(4.5)

+ φλ
±
u (0) [H+−(−1) +H−+(−1)] + φλ

∓
u (0)H++(−1)

}
,

where we did not write down the explicit form of k±1 for simplicity. Then the previous or-
der parameters u±(t) are transformed to new order parameters v±(t) by the near identity
transformation

u±(t) = v±(t) + α±0 v
±(t)2 + α±1 v

±(t)v∓(t) + α±2 v
∓(t)2,(4.6)

with the yet-unknown coefficients α±0 , α
±
1 , and α

±
2 . As the u±(t) are small quantities in the

vicinity of the instability, the same holds for the v±(t). Inserting (4.6) in (4.1), we obtain a
system of ordinary differential equations of the form

M(t)
d

dt

(
v+(t)
v−(t)

)
=

(
w+(t)
w−(t)

)
,(4.7)

where the matrix M(t) is defined by

M(t) =

(
1 + 2α+

0 v
+(t) + α+

1 v
−(t) α+

1 v
+(t) + 2α+

2 v
−(t)

α−1 v
−(t) + 2α−2 v

+(t) 1 + 2α−0 v
−(t) + α−1 v

+(t)

)
.(4.8)

For simplicity, we do not write the explicit form of w+(t) and w−(t), but we note that they
contain v+(t) and v−(t) at least in first order. Thus we obtain from (4.7)

d

dt

(
v+(t)
v−(t)

)
=M−1(t)

(
w+(t)
w−(t)

)
,(4.9)

with the inverse matrix

M(t)−1 =
1

DetM(t)

(
M22(t) −M12(t)
−M21(t) M11(t)

)
,(4.10)

where the determinant has the form

DetM(t) = 1 + v+(t)
(
2α+

0 + α−1
)

(4.11)

+ 2v+(t)v−(t)
(
α+

0 α
−
0 − α+

2 α
−
2

)
+ 2v+(t)

2
(
α+

0 α
−
1 − α+

1 α
−
2

)
+ c.c.
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Expanding the right-hand side of (4.9) in powers of v+(t) and v−(t) up to the third order, we
yield

d

dt
v±(t) = λ±v±(t)(4.12)

+
(
q±1 − α±0 λ±

)
v±(t)2 +

(
q±0 − α±1 λ∓

)
v+(t)v−(t) +

[
q±2 + α±2 (λ

± − 2λ∓)
]
v∓(t)2

+
[
k±1 + q±0 (α

∓
1 − α±0 )− q∓0 α±1 + q±1 α

±
1 + 2q±2 α

∓
2 − 2q∓2 α

±
2 + α±1 α

∓
1 λ

±

+ 2α±2 α
∓
2 (2λ

± − λ∓) + α±0 α±1 (λ± + 2λ∓)
]
v±(t)2v∓(t).

Now we can fix the yet-unknown coefficients α±0 , α
±
1 , and α

±
2 of the near identity transforma-

tion (4.6) in such a way that all quadratic terms vanish. This leads to the conditions

α±0 =
q±0
λ±u
, α±1 =

q±1
λ∓u
, α±2 =

q±2
2λ∓u − λ±u .(4.13)

Thus (4.12) reduces to the normal form of a Hopf bifurcation

d

dt
v±(t) = λ±u v

±(t) + b±v±(t)2v∓(t),(4.14)

where the Hopf parameter b± is given by

b± = k±1 +
q±0 q

±
1 (4λ

±
u

2 − λ∓u 2
) + q±1 q

∓
1 (2λ

±
u λ

∓
u − λ∓u 2

) + 2q±2 q
∓
2 λ

±
u λ

∓
u

λ±u λ∓u (2λ±u − λ∓u ) .(4.15)

Taking into account (2.18), (2.19), (2.23), and (2.32) as well as (3.12), (3.13), (3.18), and
(3.19) together with (4.2)–(4.6), this Hopf parameter b± reads in the vicinity of the instability
as

b± = − Rc

5(1 +R2
c)

3
2

[(3Rc − 1)± i(Rc + 3)] +O (ε) .(4.16)

Performing the ansatz

v±(t) = r(t)e±iϕ(t),(4.17)

the normal form (4.14) is transformed to polar coordinates

d

dt
r(t) = r(t)

[
� (
λ±u

)
+ � (

b±
)
r(t)2

]
,(4.18)

d

dt
ϕ(t) = ±

[
� (
λ±u

)
+ � (

b±
)
r(t)2

]
.(4.19)

Thus, taking into account (2.19) and (4.16) near the instability, the oscillatory solution results
in

rstat =

√√√√−
�
(
λ±u

)
� (b±)

=

√
5Rc

3Rc − 1
4

√
1 +R2

c

√
ε+O (ε) ,(4.20)

d

dt
ϕ(t) = ±

[
� (
λ±u

)
+ � (

b±
)
r2stat

]
= Rc − Rc

3Rc − 1
ε+O

(
ε2
)
.(4.21)
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In order to compare this result with numerical simulations, we have to convert this oscillatory
solution back to the original state space Γ. At first we observe that we obtain, for zt ∈ C from
(2.22), (2.35), (3.6), and (3.9) near the instability,

zt(Θ) =
∑
j=±

φλ
j
u(Θ)uj(t) +

∑
j1=±

∑
j2=±

Hj1j2(Θ)uj1(t)uj2(t).(4.22)

Taking into account the near identity transformation (4.6) together with (2.23), this yields up
to the first order in ε

zt(Θ) = Nλ+
u
eλ

+
uΘv+(t) +Nλ−u e

λ−uΘv−(t)(4.23)

+a0(Θ)v+(t)
2
+ a1(Θ)v+(t)v−(t) + a2(Θ)v−(t)2,

where the coefficients a0(Θ), a1(Θ), a2(Θ) read as

a0(Θ) =
[
Nλ+

u
eλ

+
uΘα+

0 +Nλ−u e
λ−uΘα−2 +H++(Θ)

]
,(4.24)

a1(Θ) =
[
Nλ+

u
eλ

+
uΘα+

1 +Nλ−u e
λ−uΘα−1 +H+−(Θ) +H−+(Θ)

]
,(4.25)

a2(Θ) =
[
Nλ+

u
eλ

+
uΘα+

2 +Nλ−u e
λ−uΘα−0 +H−−(Θ)

]
.(4.26)

Due to the relation (2.2) between z(t) ∈ Γ and zt ∈ C, we conclude from (4.23) that

z(t) = Nλ+
u
v+(t) +Nλ−u v

−(t)(4.27)

+ a0(0)v
+(t)

2
+ a1(0)v

+(t)v−(t) + a2(0)v−(t)
2
.

Near the instability, we obtain from (2.32)

Nλ±u =
1

4
√
1 +R2

c

e±iψ1 +O(ε)(4.28)

with some phase ψ1, whereas (4.17)–(4.19) lead to

v±(t) = rstate±iϕ(t)(4.29)

with the radius (4.20) and the phase

ϕ(t) = Ω(ε)t+ ϕ0.(4.30)

Here the frequency turns out to be

Ω(ε) = Rc − Rc
3Rc − 1

ε.(4.31)

Furthermore, we yield from (4.24)–(4.26), by taking into account (3.12), (3.13), (3.18), (3.19),
and (4.28) in the lowest order of ε,

a0(0) =
1√

5(1 +R2
c)
eiψ2 , a1(0) = 0, a2(0) =

1√
5(1 +R2

c)
e−iψ2 ,(4.32)
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where ψ2 denotes some phase. Thus we obtain the following result for z(t) ∈ Γ near the
instability:

z(t) = c0(ε) + c1(ε) cos [ϕ(t) + ψ1] + c2(ε) cos [2ϕ(t) + ψ2] +O
(
ε

3
2

)
,(4.33)

where the respective coefficients read as

c0(ε) = 0, c1(ε) = 2

√
5Rc

3Rc − 1

√
ε, c2(ε) = 2

√
5Rc

3Rc − 1
ε.(4.34)

Now we compare the oscillatory solution (1.7), (1.8), which was obtained by using the method
of averaging, with ours, (4.30), (4.31), (4.33), (4.34), by taking into account the critical value
(1.6) of the control parameter. We conclude that both results coincide in the lowest order
ε1/2, but our result is even correct up to the order ε.

From the near identity transformation (4.6) as well as from (4.20) and (4.29), we conclude
that the order parameters u±(t) turn out to be of the order ε1/2. This result is consistent with
our original assumption (3.8), which was the basis of our approximate solution of the implicit
equation for the center manifold (3.7) in the vicinity of the instability. Thus our synergetic
system analysis is justified a posteriori by self-consistency.

Note that the same perturbative result (4.30), (4.31), (4.33), (4.34) for the oscillatory
solution above the Hopf bifurcation can be derived with the multiple scale method [10]. It
represents a technical procedure to deduce the normal form, once the bifurcation type is
known, by using the knowledge of how the respective quantities depend on the smallness
parameter ε = (R−Rc)/Rc. Although the multiple scale method was originally developed for
ordinary differential equations [24, 25, 26], it can be also applied to delay differential equations
(see, for instance, the treatment in [27]).

5. Numerical investigation. In order to numerically verify our analytical result, we in-
tegrated the underlying delay differential equation of Wright (1.5). By doing so, we varied
the control parameter R in the vicinity of the instability Rc = π/2 in such a way that the
smallness parameter ε = (R − Rc)/Rc took 200 equidistant values between 10−5 and 10−1.
We used a Runge–Kutta–Verner method of the IMSL library as an integration routine with
a step-size of 10−3 and performed a linear interpolation between the respective values in the
memory interval. In particular, in the immediate vicinity of the instability, the phenomenon of
critical slowing down led to a transient behavior. To exclude this, we iterated the discretized
delay differential equation for each value of the control parameter at least 106 times. After-
ward, we calculated the power spectrum with a complex fast Fourier transform (FFT) so that
the basic frequency Ω of the oscillatory solution could be determined with high resolution.
Then we performed a real FFT with the period T = 2π/Ω of the simulated periodic signal
z(t) = z(t+ T ):

z(t) =
a0
2

+
∞∑
k=1

[ak cos (kΩt) + bk sin (kΩt)] .(5.1)
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Figure 5.1. Frequency Ω and Fourier coefficients c0, c1, c2 of the oscillatory solution of the Wright equation
after the Hopf bifurcation versus the smallness parameter ε = (R−Rc)/Rc.

The Fourier coefficients follow from integrations with respect to one period T = 2π/Ω:

ak =
2

T

∫ T

0
f(t) cos (kΩt) dt, k = 0, 1, . . . ,∞;(5.2)

bk =
2

T

∫ T

0
f(t) sin (kΩt) dt, k = 1, . . . ,∞.(5.3)

From (5.1) follows then the spectral representation

z(t) = c0 +
∞∑
k=1

ck cos (kΩt+ φk)(5.4)

with the quantities

c0 =
a0
2
, ck =

√
a2k + b

2
k, φk = − arctan

bk
ak
, k = 1, . . . ,∞.(5.5)

Thus our analytical result (4.30), (4.33) can be interpreted as the first terms within a spectral
representation (5.4), where the frequency Ω = 2π/T and the Fourier coefficients c0, c1, c2
are given by (4.31) and (4.34). Numerically analyzing the Hopf bifurcation with the FFT,
the results for Ω, c0, c1, c2 are plotted in Figure 5.1 versus the smallness parameter ε. Com-
paring the respective numerical and analytical results, we observe some deviations for small
and for large values of the smallness parameter ε. The former are due to the phenomenon of
critical slowing down (i.e., the system stays longer in the transient state when the instability
is approached), and the latter arise from the neglected higher-order corrections in the ana-
lytical approach. Therefore, we restricted our numerical analysis to the intermediate interval
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Table 5.1
Plotting the analytical and numerical values for the frequency Ω(ε) and the Fourier coefficients c0(ε),

ln c1(ε), c2(ε) of the oscillatory solution of the Wright equation after the Hopf bifurcation versus ε, we obtain
straight lines whose axes intercept and whose slopes are determined.

Quantity
Analytical
expression

Analytical
value

Numerical
value

Intercept Slope Intercept Slope Intercept Slope

Ω(ε) Rc
Rc

3Rc − 1
1.5708 −0.4231 1.5707 −0.4024

c0(ε) 0 0 0.0 0.0 −2 · 10−4 4 · 10−2

ln c1(ε)
1

2
ln

20Rc
3Rc − 1

1

2
1.06781 0.5 1.06126 0.4999

c2(ε) 0 2

√
5Rc

3Rc − 1
0.0 1.8923 2 · 10−4 1.832
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Figure 5.2. Oscillatory solutions of the Wright equation (1.5) for three values of the control parameter R:
1.7 (dotted line), 2.0 (dashed line), and 3.247 (solid line).

[10−5, 10−1] of the smallness parameter ε. In Table 5.1, we see that the analytically and nu-
merically determined quantities agree quantitatively very well. Thus our synergetic system
analysis for the delay-induced Hopf bifurcation in the Wright equation is numerically verified.

For the sake of completeness, we have also investigated oscillatory solutions for values of
the control parameter R which are larger than the critical one Rc = π/2. Figure 5.2 shows
that all these periodic solutions oscillate around the stationary state zIstat = 0, which becomes
unstable at Rc = π/2. It turns out that a global bifurcation occurs for Rgc = 3.247 as then the
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Figure 6.1. Circular causality chain of synergetics for the Hopf bifurcation of a delay differential equation.
On the one hand, the center manifold of the slaving principle guarantees that many fast linear stable modes
st(Θ) quasi-instantaneously take values which are prescribed by the few slow linear unstable modes u±(t). On the
other hand, the adiabatic elimination of the fast enslaved modes st(Θ) influences the resulting order parameter
equation.

oscillatory solution comes close to the other stationary state zIIstat = −1, which turns out to
be linear unstable for all values of the control parameter R > 0. Indeed, performing a linear
stability analysis according to section 2 around the stationary state zIIstat = −1 leads to the
characteristic equation

R− λ = 0,(5.6)

so we have from (2.16) the identification p = R and q = 0. (Compare this with the shaded
stability region in Figure 2.1.)

6. Summary and outlook. In this article, a linear stability analysis of the Wright equation
(1.5) around the stationary state zIstat = 0 showed that a delay-induced Hopf bifurcation occurs
at the critical value Rc = π/2 of the control parameter R. Within a subsequent nonlinear
synergetic analysis, we adiabatically eliminated the stable modes and derived the normal
form of this Hopf bifurcation. It is explicitly influenced by the center manifold in the lowest
order, as the Wright equation (1.5) has a quadratic nonlinearity. Solving the normal form, we
obtained a periodic solution above the Hopf bifurcation which was numerically verified.

In contrast to the corresponding analysis of the electronic system of a first-order PLL with
time delay [11], this paper not only confirms the order parameter concept for delay systems but
also represents a successful test for the slaving principle of synergetics, i.e., for the influence
of the center manifold on the order parameter equations. Thus the validity of the circular
causality chain of synergetics (see Figure 6.1) has been demonstrated for the Hopf bifurcation
of a delay differential equation.

It remains to investigate the circular causality chain for other bifurcations. For instance,
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it may be interesting to revisit a Hopf bifurcation of codimension two in delayed systems
as it occurs in some robotics applications [28]. Furthermore, the Floquet theory for delay
differential equations, and thus the linear stability analysis for a periodic reference state, was
already established in [29, 30, 31]. However, a corresponding synergetic system analysis which
derives the order parameter equations and the normal forms for bifurcations of oscillatory
solutions is still missing [10, 11, 32].
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Learning about Reality from Observation∗

William Ott† and James A. Yorke†

Abstract. Takens, Ruelle, Eckmann, Sano, and Sawada launched an investigation of images of attractors of
dynamical systems. Let A be a compact invariant set for a map f on R

n and let φ : R
n → R

m

be a “typical” smooth map, where n > m. When can we say that A and φ(A) are similar, based
only on knowledge of the images in R

m of trajectories in A? For example, under what conditions
on φ(A) (and the induced dynamics thereon) are A and φ(A) homeomorphic? Are their Lyapunov
exponents the same? Or, more precisely, which of their Lyapunov exponents are the same? This
paper addresses these questions with respect to both the general class of smooth mappings φ and
the subclass of delay coordinate mappings.

In answering these questions, a fundamental problem arises about an arbitrary compact set A in
R
n. For x ∈ A, what is the smallest integer d such that there is a C1 manifold of dimension d that

contains all points of A that lie in some neighborhood of x? We define a tangent space TxA in a
natural way and show that the answer is d = dim(TxA). As a consequence, we obtain a Platonic
version of the Whitney embedding theorem.

Key words. prevalence, attractor, embedding, enveloping manifold, Lyapunov exponent, delay coordinate map
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1. Introduction. In The Republic, Plato writes of people who are chained in a cave for all
of their lives, unable to observe life directly. Behind these people a fire burns and real objects
cast shadows on the cave wall for them to see. Forced to base their knowledge of reality on
inferences made from the shadows, they equate the shadows with reality. While philosophers
may vigorously debate epistemological theory, it is certainly true that experimentalists are
limited to observations that may not encode the full complexity of their systems.

As Ruelle and Takens have observed, it is very difficult to directly observe all aspects
of the evolution of a high dimensional dynamical system such as a turbulent flow. Out of
necessity, it is frequently the case that experimentalists study such systems by measuring a
relatively low number of different quantities. We assume that all measurements have infinite
precision in what follows. A central experimental question is the following.

Question 1.1. Is the measured data sufficient for us to understand the evolution of the
dynamical system? In particular, does the measured data contain enough information to re-
construct dynamical objects of interest and recover coordinate independent dynamical prop-
erties such as attractor dimension and Lyapunov exponents? How many exponents can be
determined?
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Let f : R
n → R

n be a map and suppose A ⊂ R
n is a compact invariant set. Let

φ : Rn → R
m be a smooth map. We always assume m > 0. We think of φ as a measurement

function measuring m physical quantities, and for each point x in the state space R
n we say

that φ(x) is the measurement associated with x. Motivated by an experimental point of view,
we say that observations are deterministic if there exists an induced map f̄ on φ(A) such that
the following diagram commutes:

A
f−−−→ A

φ

� �φ

φ(A)
f̄−−−→ φ(A)

The dynamics generated by f̄ may be thought of as the shadows that traverse Plato’s hy-
pothetical cave wall. The global goal is to infer as much as possible about the dynamical
system f from knowledge of the induced dynamics. In the absence of induced dynamics,
experimenters increase m by either making more measurements or using delay coordinate
maps. Assuming f̄ exists, there is a considerable literature on how to compute the Lyapunov
exponents associated with the induced system. Do these values correspond to those of the
full system? What do we need to check to see this? We would like to state theorems of the
following type.

Prototypical Theorem 1.2. For a typical measurement map φ, if the induced map f̄ exists
and has certain properties, then the measurement map φ preserves dynamical objects of inter-
est, and dynamical invariants of the full system may be computed from the induced dynamics.
Under what conditions do our observations allow us to make predictions? James Clerk

Maxwell wrote of the fundamental importance of continuous dependence on initial data [2, 9]:
“It is a metaphysical doctrine that from the same antecedents
follow the same consequents. No one can gainsay this. But it
is not of much use in a world like this, in which the same an-
tecedents never again concur, and nothing ever happens twice
. . . . The physical axiom which has a somewhat similar as-
pect is ‘That from like antecedents follow like consequents’.”

We ask what we can conclude if observations are deterministic and if the induced map f̄
is continuous. Using a translation invariant concept of “almost every” on infinite dimensional
vector spaces described in section 2, we obtain the main C0 conclusion.

Notation 1.3. For a map ψ we denote the restriction of ψ to a subset S of the domain of
ψ by ψ[S]. Notice that this notation is not standard.
Let Fix(f̄) and Per2(f̄) denote the collection of fixed points and period two points, re-

spectively, of f̄ .
C0 Theorem 1.4. Let f : R

n → R
n be a map and let A be a compact invariant set. For

almost every map φ ∈ C1(Rn,Rm), there is an induced map f̄ satisfying
1. f̄ is continuous and invertible, and
2. Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.
1. The measurement map φ is one-to-one on A.
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2. The sets Fix(f [A]) and Per2(f [A]) are countable.
3. The map f [A] is continuous and invertible.
Remark 1.5. If one can infer a property of A from a corresponding property of φ(A), we

say that the property is observable. The boundedness of A is observable in the sense that if
A is unbounded, then φ(A) is unbounded for almost every φ ∈ C1(Rn,Rm). This applies to
each of the embedding theorems in this paper.

Remark 1.6. Our goal is to obtain results with few or preferably no assumptions on f and
A. Hypotheses should instead be placed on the observed objects, φ(A) and f̄ . This point of
view motivates the definition of a Platonic result.

Definition 1.7. A result is said to be Platonic if it contains no hypotheses on the dynamical
system f aside from the assumption of a finite dimensional Euclidean phase space.
Does a typical measurement function preserve differential structure? If f is a diffeomor-

phism, A is a smooth submanifold of Rn, and dim(A) is known a priori, one may appeal to the
Whitney embedding theorem [6]. This theorem states that if A is a compact Cr k-dimensional
manifold, where r ≥ 1, then there is a Cr embedding of A into R

m, wherem ≥ 2k+1. This sit-
uation is generic in the sense that the set of embeddings of A is open and dense in Cr(A,Rm).
However, the experimentalist lacking a priori knowledge of the structure of A cannot rely on
embedding theorems of Whitney type.
In section 3 we define a notion of tangent space, denoted TxA, suitable for a general

compact subset A of R
n, and we prove a manifold extension theorem. This result allows us

to prove a Platonic version of the Whitney embedding theorem and to formulate a notion
of diffeomorphism on A equivalent to the notion of injective immersion on A. We formulate
our C1 embedding theorems using this notion of diffeomorphism. Our Platonic C1 Theorem
states that for almost every φ ∈ C1(Rn,Rm), the existence of an invertible quasidifferen-
tiable (see section 6) induced map f̄ on φ(A) satisfying mild assumptions implies that φ is a
diffeomorphism on A.

Platonic C1 Theorem 1.8. Suppose f : Rn → R
n is a map. For almost every φ ∈ C1(Rn,Rm),

if there exists an invertible quasidifferentiable (see section 6) induced map f̄ on φ(A) satisfying
1. Fix(f̄) and Per2(f̄) are countable,
2. dimTy(φ(A)) < m ∀y ∈ φ(A), and
3. Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),

then the measurement mapping φ is a diffeomorphism on A.
It is difficult for a scientist to measure a large number of independent quantities simulta-

neously. For this reason one introduces the class of delay coordinate mappings. This mapping
class was introduced into the literature by Takens [23].

Definition 1.9. Let g ∈ C1(Rn,R). The delay coordinate map φ(f, g) : Rn → R
m is given

by

φ(f, g)(x) = (g(x), g(f(x)), . . . , g(fm−1(x)))T.(1.1)

Analogues of several of our embedding results hold for the class of delay coordinate map-
pings. Since the delay coordinate mappings form a subspace of C1(Rn,Rm), it should be
stressed that the delay coordinate results do not follow from the corresponding results about
almost every φ ∈ C1(Rn,Rm). The following result addresses the observation of differentiable
dynamics.
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Delay Coordinate Map Theorem 1.10. Let f be a diffeomorphism on R
n and let A be a

compact invariant set. For almost every g ∈ C1(Rn,R), if there is a quasidifferentiable induced
map f̄ satisfying

1.
⋃2m

i=1 Peri(f̄) is countable and
2. for each p ∈ {1, . . . ,m} and y ∈ Perp(f̄) we have

Df̄p(y)[Tyφ(f, g)(A)] 	= γ · I for every γ ∈ R,(1.2)

then the delay map φ(f, g) is a diffeomorphism on A.

Assume that f and f̄ are quasidifferentiable and invertible on A and φ(A), respectively,
with invertible quasiderivatives at each point x ∈ A and y ∈ φ(A). Suppose that φ is a
diffeomorphism on A. We say that a Lyapunov exponent λ(y, v) of f̄ at y ∈ φ(A) is true if it
does not depend on the choice of quasiderivative Df̄ and if it is also a Lyapunov exponent of
f at φ−1(y) ∈ A. The works of Eckmann, Ruelle, Sano, and Sawada provide heuristic com-
putational procedures for obtaining m Lyapunov exponents for a trajectory (yk) of f̄ . They
use the subset of measurement mappings generated by so-called delay coordinate mappings,
the mapping class considered in the famous fundamental paper of Takens [23]. In particu-
lar, the Eckmann and Ruelle algorithm (ERA) [3, 4] uses a linear fitting of the tangent map
and has proven to be computationally efficient in giving the complete Lyapunov spectrum of
many dynamical systems. Mera and Morán [14] find conditions ensuring the convergence of
this algorithm for a smooth dynamical system on a C1+α submanifold supporting an ergodic
invariant Borel probability measure. Our exponent characterization theorem establishes a
rigorous connection between the observed Lyapunov exponents and the Lyapunov exponents
of f [A]. Under our assumptions, an observed Lyapunov exponent λ(y, v) is a true Lyapunov
exponent if and only if v ∈ Tyφ(A).

Suppose A is a manifold of dimension d. Implementation of the full ERA yields m ob-
served Lyapunov exponents, d of which are true. The remaining m−d exponents are spurious
artifacts of the embedding process. In order to identify the d true exponents, one must ei-
ther devise a method to identify the spurious exponents a fortiori or modify the ERA to
completely avoid the computation of spurious exponents. Several authors propose a modi-
fied ERA in which the tangent maps are computed only on the tangent spaces and not on
the ambient space R

m. Mera and Morán [15] discuss the convergence of the modified ERA.
This technique eliminates the computation of spurious exponents but requires that tangent
spaces be computed along orbits. We propose a new technique based on the exponent char-
acterization theorem that allows for the a fortiori determination of the spurious exponents
without requiring the computation of tangent spaces along orbits. We describe this algorithm
in section 7 following the statement of the exponent characterization theorem.

1.1. The case of linear f and φ. We illustrate our ansatz with the case where f and φ
are linear.

Proposition 1.11. Let f be linear on R
n, and let A be an invariant subspace on which f is

an isomorphism. If the restriction of f to A is not a scalar multiple of the identity, then for
almost every φ ∈ Lin(Rn,Rm) in the sense of Lebesgue measure, there is an induced map on
φ(A) if and only if φ is an isomorphism on A.
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Key issues are raised by this proposition. Notice that if there exists c ∈ R for which
f(x) = cx for all x ∈ A, then y �→ cy is the induced map on φ(A) even if φ is not one-to-
one on A. Since this is a theory of observation, when possible the assumptions should be
verifiable from observation. The following alternative version of the proposition transfers the
assumption onto the induced dynamics in a manner that will be followed throughout this
paper.

Proposition 1.12. Let f be linear on R
n, and let A be an invariant subspace on which f

is an isomorphism. For almost every φ ∈ Lin(Rn,Rm), there is an induced map on φ(A),
and this induced map is not identically a scalar multiple of the identity if and only if φ is an
isomorphism on A and the restriction of f to A is not a scalar multiple of the identity.

Remark 1.13. The hypothesis that f is an isomorphism on A is observable in the sense
mentioned earlier. The key point is that if f [A] is not one-to-one, then for almost every
φ ∈ Lin(Rn,Rm) there does not exist an injective induced map f̄ on φ(A).

1.2. What does “typical” mean? The conclusions of the linear propositions hold for
almost every linear φ with respect to Lebesgue measure. In the general situation we will
consider the space of C1 measurement mappings. In order to prove versions of our Prototypical
Theorem, we must first clarify what we mean by a “typical” measurement mapping φ. The
notion of typicality may be cast in topological terms. In this setting, “typical” would be used
to refer to an open and dense subset or a residual subset of mappings. For example, consider
the topological Kupka–Smale theorem.

Definition 1.14. Let M be a smooth, compact manifold. A diffeomorphism f ∈ Diffr(M)
is said to be Kupka–Smale if the following hold:

1. The periodic points of f are hyperbolic.
2. If p and q are periodic points of f , then W s(p) is transverse to W u(q).

Theorem 1.15 (Kupka–Smale [17]). The set of Kupka–Smale diffeomorphisms is residual in
Diffr(M).

The topological notion of typicality is not the appropriate conceptualization for the exper-
imentalist interested in a probabilistic result on the likelihood of a given property in a function
space. Any Cantor set of positive measure illustrates the difference between the topological
and measure theoretic notions of a small set. The discord between topological typicality and
probabilistic typicality is also evident in the following dynamical examples.

Example 1.16. Arnold [1] studied the family of circle diffeomorphisms

fω,ε(x) = x+ ω + ε sin(x) (mod 2π),(1.3)

where 0 ≤ ω ≤ 2π and 0 ≤ ε < 1 are parameters. For each ε, we define the set

Sε = {ω ∈ [0, 2π] : fω,ε has a stable periodic orbit}.(1.4)

For 0 < ε < 1, the set Sε is a countable union of disjoint open intervals (one for each rational
rotation number) and is an open dense subset of [0, 2π]. However, the Lebesgue measure of
Sε converges to 0 as ε → 0.
There are even more striking examples where the Baire categorical and measure theoretic

notions of typicality yield diametrically opposite conclusions about the size of a set.
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Example 1.17. Misiurewicz [16] proved that the mapping z �→ ez on the complex plane is
topologically transitive, implying that a residual set of initial points yields dense trajectories.
On the other hand, Lyubich [13] and Rees [18] proved that Lebesgue almost every initial point
has a trajectory whose limit set is a subset of the real axis.
Finally, we consider Lyapunov exponents. This example is particularly relevant because

the work of Eckmann, Ruelle, Sano, and Sawada on the computation of these exponents
motivated this paper.

Example 1.18 (Lyapunov exponents). Let f : M → M be a C1 diffeomorphism on a com-
pact finite dimensional Riemannian manifold M . For (x, v) ∈ TM , ‖v‖ 	= 0, the number

lim
n→±∞

1

n
log ‖Dfn(x)v‖,(1.5)

should the limit exist, is called the Lyapunov exponent of f at (x, v), denoted λ(x, v). We say
that x ∈ M is a regular point for f if there are Lyapunov exponents

λ1(x) > · · · > λl(x)(1.6)

and a splitting

TxM =
l⊕

i=1

Ei(x)(1.7)

of the tangent space to M at x such that

lim
n→±∞

1

n
log ‖Dfn(x)u‖ = λj(x) (u ∈ Ej(x) \ {0} and 1 ≤ j ≤ l).

While the periodic points of f are always regular points, frequently the set of regular points is
a topologically small subset of M . Quite often this set is Baire first category, and it may even
be finite [24]. From a measure theoretic point of view the situation is completely different.

Theorem 1.19 (Oseledec multiplicative ergodic theorem [24, 11]). The set of regular points
for f has full measure with respect to any f-invariant Borel probability measure on M .
The Oseledec theorem holds in the more general context of measurable cocycles over

invertible measure-preserving transformations of a Lebesgue space (X,µ) [11]. Let f : X →
X be an invertible measure-preserving transformation, and let L : X → GL(n,R) be a
measurable cocycle over X. If

log+ ‖L±1(x)‖ ∈ L1(X,µ),(1.8)

then almost every x ∈ X is a regular point for (f, L).
The following example illustrates that Lyapunov exponents may not exist for a residual

set of points. Let p > 1 and q > 1 satisfy 1
p +

1
q = 1 and p 	= q. Consider the Markov map

f : [0, 1]→ [0, 1] defined by

f(x) =



px if 0 � x < 1

p ,

qx− q
p if 1

p � x � 1.
(1.9)
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This transformation represents the full shift on two symbols with probabilities 1/p and 1/q.
Lebesgue measure is invariant under f and ergodic; thus the Lyapunov exponent at Lebesgue
almost every x ∈ [0, 1] exists and is equal to

log(p)

p
+
log(q)

q
(1.10)

by virtue of the Birkhoff ergodic theorem. On the other hand, we claim that no Lyapunov
exponent exists for a residual set of points. For n ∈ N, set

Vp,n(x) =
1

n
(|{0 � i � n− 1 : f i(x) ∈ [0, 1/p)}|).(1.11)

Fix α > 1/p and β < 1/p. Define for each N ∈ N the sets CN = {x : ∃n � N for which
Vp,n(x) � α} and DN = {x : ∃n � N for which Vp,n(x) � β}. The set CN contains an open
interval to the right of each preimage of 1/p, and thus CN contains an open and dense subset
of [0, 1]. Similarly, DN contains an open interval to the left of each preimage of 1/p, and thus
DN also contains an open and dense subset of [0, 1]. No Lyapunov exponent exists for points
in the residual set

∞⋂
N=1

CN ∩DN(1.12)

because Vp,n(x) does not converge for such points.
Motivated by the probabilistic interpretation of typicality, we will use the notion of preva-

lence developed in [7, 8]. See the references given in [8] for closely related concepts. The
notion of prevalence generalizes the translation invariant concept of Lebesgue full measure to
infinite dimensional Banach spaces.

1.3. Overview of this paper. Section 2 develops the relevant prevalence theory and
demonstrates that cardinality and boundedness are observable properties. In section 3 we
define a notion of tangent space suitable for general compact subsets of Rn, and we prove the
manifold extension theorem. The manifold extension theorem is used in section 4 to derive
a Platonic version of the Whitney embedding theorem. We present our embedding theorems
in sections 5 and 6 and our results on delay coordinate mappings and Lyapunov exponents in
section 7.

1.4. The transference method. Schematically our embedding theorems are developed in
the following way. Let f : Rn → R

n be a dynamical system, and let A be a compact invariant
set. We want to require no regularity assumptions about f , nor do we wish to assume that
f is invertible. For a map g, a subset D of the domain of g, and any property L, write
(g, L;D) to indicate that the restriction of g to D has property L. Let S denote a collection
of properties of a dynamical system. Let Q denote a collection of properties of maps in the
measurement function space C1(Rn,Rm). For example, Q might consist of the assertion that
φ ∈ C1(Rn,Rm) is a homeomorphism on A. We are interested in the ability of the observer
to make inferences, that is, in results of the form

(f̄ ,L;φ(A))⇒ (φ,Q) for almost every φ,(1.13)
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where L is a collection of properties of f̄ . In other words, the existence of an induced map f̄
satisfying properties L implies that φ satisfies properties Q. We first prove

(f, S;A)⇒ ((f̄ ,L1;φ(A))⇔ (φ,Q)) for a.e. φ.(1.14)

The Platonic version of the theorem is obtained by replacing each assumption on f with one
on f̄ . For P ∈ S, we replace the assumption

(f, P ;A)(1.15)

with one on f̄ , giving

(f̄ ,L1 ∪ S;φ(A))⇔ ((φ,Q) and (f, S;A)) for a.e. φ.(1.16)

In particular, (1.13) holds with L = L1∪S. In essence, the Platonic version has been obtained
by transferring the hypotheses (f, P ;A) for P ∈ S onto the induced dynamics. Prevalence
statements allow for these transfers. Properties for which this program may be implemented
are said to be observable.

2. Prevalence (measure-theoretic transversality). Let V be a complete metric linear
space.

Definition 2.1. A Borel measure µ on V is said to be transverse to a Borel set S ⊂ V if
the following hold:
1. There exists a compact set U ⊂ V for which 0 < µ(U) < ∞, and
2. for every v ∈ V we have µ(S + v) = 0.

For example, µ might be Lebesgue measure supported on a finite dimensional subspace of V .

Definition 2.2. A Borel set S ⊂ V is called shy if there exists a measure transverse to S.
More generally, a subset of V is called shy if it is contained in a shy Borel set. The complement
of a shy set is called a prevalent set.
A subset of Rn is shy if and only if it has Lebesgue measure zero. For a map φ contained

in a prevalent subset S of a linear function space V , we say that φ is typical. Employing the
language of the finite dimensional case, we say that almost every element of V lies in S (in
the sense of prevalence).
Using the notion of prevalence, researchers have reformulated several topological and dy-

namical theorems. Sauer, Yorke, and Casdagli prove in [21] a prevalence version of the Whit-
ney embedding theorem.

Theorem 2.3 (prevalence Whitney embedding theorem [21]). Let A be a compact subset of
R

n of box dimension d, and let m be an integer greater than 2d. For almost every smooth
map φ : Rn → R

m,
1. φ is one-to-one on A, and
2. φ is an immersion on each compact subset C of a smooth manifold contained in A.
This theorem is not Platonic because the dimension assumption is on A. In section 4

we prove a Platonic Whitney embedding theorem as a corollary of the manifold extension
theorem.
The reformulation of a genericity theorem of Kupka–Smale type requires a notion of preva-

lence for nonlinear function spaces such as the space of diffeomorphisms of a compact smooth
manifold. Kaloshin in [10] develops such a notion and proves a prevalence version of the
Kupka–Smale theorem for diffeomorphisms.
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2.1. Cardinality preservation. In sections 5, 6, and 7, we will need to know how a typical
smooth projection affects the cardinality of a set. We show that for a set A ⊂ R

n, A and φ(A)
have the same cardinality for almost every φ ∈ C1(Rn,Rm). We begin by assuming that A is
a countable set.

Proposition 2.4. Let A ⊂ R
n be a countable set. Almost every φ ∈ C1(Rn,Rm) is one-to-

one on A. In particular, if A is countably infinite, then φ(A) is also countably infinite for
almost every φ ∈ C1(Rn,Rm).

Proof. We write A = {xi : i ∈ N}. For i 	= j let Cij = {φ ∈ C1(Rn,Rm) : φ(xi) = φ(xj)}.
We first show that Cij is shy. Let B(xi, ri) be a metric ball such that xj /∈ B(xi, ri). Let
β : Rn → R be a C∞ map such that
1. β > 0 on B(xi, ri), and
2. supp(β) = B(xi, ri).

Let v ∈ R
m be a nonzero vector, and let µ be the Lebesgue measure supported on the one

dimensional subspace

{tvβ : t ∈ R}.(2.1)

For any φ ∈ C1(Rn,Rm), it is evident that φ+ tvβ ∈ Cij for at most one t ∈ R. Thus Cij is
a shy subset of C1(Rn,Rm) because µ is transverse to it. The set

⋂
i,j∈N

i	=j

C1(Rn,Rm) \ Cij(2.2)

consists of functions that map A injectively into R
m. This set is prevalent because the count-

able intersection of prevalent sets is prevalent (see [7]).
Plato would have us consider the prisoner’s question, where the cardinality of A is not

known a priori. For a typical φ, does the countability of φ(A) imply the countability of A?
The next proposition answers this question affirmatively with the help of the following lemma.

Lemma 2.5. Let A0 ⊂ R
n be an uncountable set. Lebesgue almost every function φ ∈

Lin(Rn,Rm) maps A0 to an uncountable set.
Proof. It suffices to consider the scalar case m = 1. For each φ ∈ Lin(Rn,R) there exists a

unique vector v ∈ R
n such that φ(x) = (x, v) for all x ∈ R

n. Suppose by way of contradiction
that the set

{φ ∈ Lin(Rn,R) : φ(A0) is countable}(2.3)

has positive measure. This implies that there exist n linearly independent vectors {vi : i =
1, . . . , n} such that the functions φvi given by x �→ (x, vi) map A0 to a countable set. Let A1

be an uncountable subset of A0 such that φv1(A1) = {y1}. Inductively construct a collection
of sets {Ai : i = 1, . . . , n} satisfying the following:
1. Ai is uncountable for each i,
2. Ai ⊂ Ai−1 for each i, and
3. φvi(Ai) = {yi}.

We have φvi(An) = {yi} for each i, so An consists of one point. This contradiction establishes
the lemma.
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Proposition 2.6. Let A0 be an uncountable set. For almost every

φ ∈ C1(Rn,Rm),(2.4)

φ(A0) is uncountable.
Proof. Once again it suffices to consider the scalar case m = 1. We show that the set

S = {φ ∈ C1(Rn,R) : φ(A0) is countable}(2.5)

is shy. Let {φei} be a basis for Lin(Rn,R), and let µ be the Lebesgue measure on R
n. Write

α = (αi) for a vector in R
n and for φ ∈ C1(Rn,R) set

φα := φ+
n∑

i=1

αiφei .(2.6)

If S is not shy, there exists some g ∈ S such that

µ{α : gα(A0) is countable} > 0,(2.7)

where µ denotes n-dimensional Lebesgue measure. Without loss of generality, assume that
g(A0) is countable. There is at least one point y such that g−1(y) ∩ A0 is uncountable.
Shrinking A0 if necessary, without loss of generality we may assume that g maps A0 to a
single point; that is, g is constant on A0. There exist n linearly independent vectors {vi}
such that the functions φvi + g map A0 to a countable set. As in the proof of Lemma 2.5, we
inductively construct a collection of sets {Ai : i = 1, . . . , n} satisfying the following:
1. Ai is uncountable for each i,
2. Ai ⊂ Ai−1 for each i, and
3. (φvi + g)(Ai) = {yi}.

We have (φvi + g)(An) = {yi} for each i, so An consists of one point. This contradiction
establishes the proposition.

2.2. Preservation of unboundedness. We now consider the question of how a typical
smooth projection affects the boundedness of a set. For a typical φ, does the boundedness of
φ(A) imply that A is bounded?

Proposition 2.7 (unboundedness preservation). Assume A ⊂ R
n is unbounded. Then φ(A)

is unbounded for almost every φ ∈ C1(Rn,Rm).
Proof. It suffices to assume m = 1. We show that the set

V = {φ ∈ C1(Rn,R) : φ(A) is bounded}(2.8)

is shy. As above, let µ be the Lebesgue measure on R
n, and for φ ∈ C1(Rn,R) and (αi) ∈ R

n

write

φα := φ+
n∑

i=1

αiφei .(2.9)

If V is not shy, there exists some g ∈ V such that

µ{α : gα(A) is bounded} > 0.(2.10)
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Without loss of generality, assume that g(A) ⊂ [−d, d] for some d > 0. There exist n linearly
independent vectors {vi} and scalars ci > 0 such that the functions g+φvi map A into [−ci, ci].
Thus A is contained in the set

n⋂
i=1

φ−1
vi ([−ci − d, ci + d]),(2.11)

a bounded solid polygon. This contradiction establishes the proposition.
Remark 2.8. We conclude that for a typical φ ∈ C1(Rn,Rm), the boundedness of φ(A)

implies that A is bounded. That is, the boundedness of A is an observable property.

3. Enveloping manifolds. Let A be a compact subset of Rn, and let x ∈ A. We say that a
C1 manifold M is an enveloping manifold for A at x if there exists a neighborhood N(x) of x
such that M ⊃ N(x)∩A and if the dimension of M is minimal with respect to this property.
We demonstrate the existence of a C1 enveloping manifold M for each x ∈ A.

Definition 3.1. Let DxA be the set of all directions v for which there exist sequences (yi)
and (zi) in A such that yi → x, zi → x, and zi−yi

‖zi−yi‖ → v. The tangent space at x relative to
A, denoted TxA, is the smallest linear space containing DxA.
We note that this is one of the two obvious ways to define the tangent space at a point in

an arbitrary compact subset of R
n. The other would be to fix yi = x in the above definition,

but the resulting tangent space would be too small for our purposes. In general neither the
tangent space itself nor its dimension will vary continuously with x ∈ A. Nevertheless, the
tangent space varies upper semicontinuously with x ∈ A. More precisely, we have the following
lemma.

Lemma 3.2. The function x �→ dim(TxA) is upper semicontinuous on A. In fact, TxA
depends upper semicontinuously on x ∈ A in the sense that if xi → x, where xi ∈ A, and
vi → v, where vi ∈ TxiA, then v ∈ TxA. In other words, {(x, v) : x ∈ A, v ∈ TxA} is a closed
subset of R

n × R
n. If TxA has constant dimension on a set A0 ⊂ A, then TxA is continuous

on A0 in the same sense.
Definition 3.3. The tangent dimension of A, denoted dimT (A), is given by

dimT (A) = max
x∈A
(dimTxA).(3.1)

Example 3.4. In Figure 3.1 the tangent space TpA is two dimensional, while TxA is one
dimensional for all other points x ∈ A. Choosing (yi) ⊂ A and (zi) ⊂ A such that yi → p,
zi → p, and yi and zi lie on a vertical line for each i, we obtain the tangent vector v ∈ TpA.
Thus dimT (A) = 2.
We are now in a position to state a surprising theorem.
Theorem 3.5 (manifold extension theorem). For each x ∈ A there exists an enveloping man-

ifold M for A at x with TxM = TxA.
Conjecture 3.6. We believe that integrability is an intrinsic feature of the definition of the

tangent space. We therefore conjecture that a global version of the manifold extension theorem
holds. Namely, there exists a manifold M such that dim(M) = dimT (A) and A ⊂ M .

Proof. Recall that for a map ψ we denote the restriction of ψ to a subset S of the domain
of ψ by ψ[S]. Let m = dim(TxA). There exists a compact neighborhood N of x such that
dim(TyA) ≤ m for all y ∈ N ∩ A. Let π denote the orthogonal projection of R

n onto TxA.
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v

zi

yi

A

p

Figure 3.1. A cusp.

The projection map π induces the splitting R
n = TxA⊕ Ex. Using this splitting, write (p, q)

for points in R
n. If ((pi, qi)) is a sequence such that (pi, qi) ∈ N ∩A for each i and (pi, qi)→ x,

then ‖qi+1−qi‖
‖pi+1−pi‖ → 0. We may assume N has been chosen sufficiently small so that π maps

TyA injectively into TxA for each y ∈ N ∩A and that π[N ∩A] is one-to-one. Hence we may
define ψ on π(N ∩ A) by ψ(p) := q for (p, q) ∈ N ∩ A. Repeated use of our main technical
tool, the Whitney extension theorem, will allow us to extend ψ to a C1 function defined on
a neighborhood in TxA of π(A ∩ N). We first state a C1 version of the Whitney extension
theorem for compact domains.

Definition 3.7. Let Q ⊂ R
m be a compact set, and assume f : Q → R

k and L : Q →
Lin(Rm,Rk) are given functions.

Notation 3.8.
1. R(y, z) := f(z)−f(y)−L(y)·(z−y)

‖z−y‖ (∀y, z ∈ Q, y 	= z).
2. For δ > 0, set

ρ(δ) := sup
y,z∈Q

0<‖z−y‖≤δ

‖R(y, z)‖.(3.2)

The pair (f, L) is said to be a Whitney C1 function pair on Q if f and L are continuous and
if ρ satisfies

ρ(δ)→ 0 as δ → 0.(3.3)

Notice that (3.3) is equivalent to the following uniformity condition stated by Whitney in
[25]: Given any w ∈ Q and ε > 0, there exists δ > 0 such that if y ∈ Q and z ∈ Q satisfy
‖y − w‖ < δ and ‖z − w‖ < δ, then ‖R(y, z)‖ ≤ ε.

Theorem 3.9 (Whitney extension theorem [5, 12, 22, 25]). Given a Whitney C1 function pair
(f, L) defined on a compact subset Q of R

m, there exists a C1 function f̃ : R
m → R

k such
that f̃ = f and Df̃ = L on Q.
We now continue the proof of our manifold extension theorem. Let

d(y) = dim(TyA)(3.4)

for y ∈ A ∩ N . For k ≤ m, let Xk = {y ∈ N ∩ A : d(y) = k}. We first find a function
whose graph is a C1 manifold which envelops Xm. For each y ∈ N ∩ A, the tangent space
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TyA may be viewed as a subspace of TxA⊕Ex = R
n. For y ∈ Xm, define the linear operator

Lm(y) : TxA → Ex as follows. For (v, w) ∈ DyA, let Lm(y)v = w. By linearity Lm(y) is
determined on TyA. The linear operator Lm(y) depends continuously on y ∈ Xm since TyA
depends continuously on y ∈ Xm by Lemma 3.2. The function pair (ψ,Lm) is Whitney C1

on π(Xm) because the uniformity condition of Whitney is implied by Definition 3.1. Notice
that the Whitney extension theorem can now be used only to extend ψ[π(Xm)] because no
obvious candidate exists for L(y) for y /∈ Xm. By applying the Whitney extension theorem,
extend ψ to a function ψ̃1 defined on π(N). Notice that if Xm = N ∩ A, the result is proved
since the graph of ψ̃1 constitutes an enveloping manifold for A at x.
The general case is handled inductively. Construct ψ̃1 as above, and make the nonlinear

change of variable (p, q)→ (p, q−ψ̃1(p)) := (p, ψ2(p)). Consider the map ψ2[π(Xm)∪π(Xm−1)],
and let y ∈ graph(ψ2[π(Xm) ∪ π(Xm−1)]). The tangent space Ty(graph(ψ2[π(A)])) may be
viewed as a subspace of TxA ⊕ Ex = R

n. Define the linear map Lm−1(y) : TxA → Ex as
follows. If y ∈ graph(ψ2[π(Xm)]), set Lm−1(y) ≡ 0. If y ∈ graph(ψ2[π(Xm−1)]), enlarge
Ty(graph(ψ2[π(A)])) to a linear space T̃y of dimension m by adjoining one vector in TxA or-
thogonal to Ty(graph(ψ2[π(A)])). For (v, w) ∈ T̃y, let Lm−1(y)v = w. The linear operator
Lm−1(y) depends continuously on y ∈ graph(ψ2[π(Xm) ∪ π(Xm−1)]) by Lemma 3.2. The
function pair (ψ2, Lm−1) is Whitney C1 on π(Xm) ∪ π(Xm−1) because the uniformity condi-
tion of Whitney is implied by Definition 3.1. By applying the Whitney extension theorem,
extend ψ2[π(Xm) ∪ π(Xm−1)] to a function ψ̃2 defined on π(N). Make the nonlinear change
of variables (p, q)→ (p, q − ψ̃2(p)) = (p, ψ3(p)).
Assume now that the functions ψ̃1, ψ̃2, . . . , ψ̃k−1 and ψk have been constructed. Consider

the map

ψk


 m⋃

i=m−k+1

π(Xi)


 .(3.5)

For each point y in the set

graph


ψk


 m⋃

i=m−k+1

π(Xi)




 ,(3.6)

the tangent space Ty(graph(ψk[π(A)])) may be viewed as a subspace of TxA⊕Ex = R
n. Define

the linear map Lm−k+1(y) : TxA → Ex as follows. If y ∈ graph(ψk[π(Xm)∪· · ·∪π(Xm−k+2)]),
set Lm−k+1(y) ≡ 0. If y ∈ graph(ψk[π(Xm−k+1)]), enlarge Ty(graph(ψk[π(A)])) to a linear
space T̃y of dimension m by adjoining k − 1 vectors in TxA orthogonal to

Ty(graph(ψk[π(A)])).(3.7)

For (v, w) ∈ T̃y, let Lm−k+1(y)v = w. By Definition 3.1 and Lemma 3.2 the function pair

(ψk, Lm−k+1)(3.8)

is Whitney C1 on the set

m⋃
i=m−k+1

π(Xi).(3.9)
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By applying the Whitney extension theorem, extend the function

ψk


 m⋃

i=m−k+1

π(Xi)


(3.10)

to a function ψ̃k defined on π(N). Make the change of variables (p, q) → (p, q − ψ̃k(p)) :=
(p, ψk+1(p)). After m+ 1 steps we obtain a map

Ψ :=
m+1∑
i=1

ψ̃i(3.11)

defined on π(N). The graph of Ψ constitutes an enveloping manifold M for A at x.

Remark 3.10. Although our inductive procedure is canonical, observe that the Whit-
ney extension theorem makes no claim of uniqueness. Assume that (f, L1) and (f, L2) are
Whitney C1 function pairs defined on a compact subset Q of R

m as in Theorem 3.9. Let
y ∈ graph(f), and let π denote the orthogonal projection of R

m × R
k onto R

m. The tangent
space Ty(graph(f)) may be viewed as a subspace of R

m ×R
k. The linear operators L1(y) and

L2(y) must satisfy L1(y)v = L2(y)v = w for all (v, w) ∈ Ty(graph(f)). However, L1(y) and
L2(y) are determined only for (v, w) ∈ Ty(graph(f)). If v /∈ π(Ty(graph(f))), then L1(y) and
L2(y) may be such that L1(y)v 	= L2(y)v.

4. Platonic embedology. Recall the prevalence version of the Whitney embedding theo-
rem.

Theorem 4.1 (prevalence Whitney embedding theorem [21]). Let A be a compact subset of
R

n of box dimension d, and let m be an integer greater than 2d. For almost every smooth
map φ : Rn → R

m,

1. φ is one-to-one on A, and
2. φ is an immersion on each compact subset C of a smooth manifold contained in A.

The manifold extension theorem implies a Platonic version of this result. We need a notion
of diffeomorphism appropriate for a general compact subset A of R

n.

Definition 4.2. We say that a measurement map φ ∈ C1(Rn,Rm) is a diffeomorphism on
A if φ is injective on A and if for each x ∈ A there exists an enveloping manifold M for A at
x that is mapped diffeomorphically onto an enveloping manifold for φ(A) at φ(x).

We are now in a position to formulate the Platonic Whitney embedding theorem.

Theorem 4.3 (Platonic Whitney embedding theorem). Let A ⊂ R
n be compact. For almost

every φ ∈ C1(Rn,Rm), if φ(A) satisfies dimT φ(A) < m
2 , then φ is a diffeomorphism on A.

Conjecture 4.4. The Platonic Whitney embedding theorem holds under the weaker as-
sumption that dimT φ(A) < m.

The proof of this result requires an understanding of the relationship between the box
dimension of A and the dimension of the tangent spaces TxA for x ∈ A. Working only with
the definitions, the relationship is unclear. Illumination is provided by the manifold extension
theorem.

Lemma 4.5. Let A ⊂ R
n be compact. For each x ∈ A, there exists a neighborhood N of x

such that dim(TxA) � dimB(A ∩N).
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Proof. Fix x ∈ A. By the manifold extension theorem, there exists an enveloping manifold
M for A at x and a neighborhood N of x such that M ⊃ N ∩A. The set N ∩A is contained
in a C1 manifold of dimension dim(TxA), and therefore dim(TxA) � dimB(A ∩N).
We now commence with the proof of the Platonic Whitney embedding theorem. Sup-

pose there exists x ∈ A such that dim(TxA) � m
2 . In this case, we would have that

dim(Tφ(x)φ(A)) � m
2 for almost every φ ∈ C1(Rn,Rm) as a consequence of the fact that almost

every linear transformation has full rank. Therefore, we may assume that dim(TxA) <
m
2 for

all x ∈ A. By the manifold extension theorem and the compactness of A, A is contained
in a finite union

⋃k
i=1 Mi of enveloping manifolds such that dim(Mi) <

m
2 for each i. Box

dimension is finitely stable, so one has

dimB(A) � dimB

(
k⋃

i=1

Mi

)
= max

i
dimB(Mi) <

m

2
.(4.1)

The prevalence version of the Whitney embedding theorem, Theorem 2.3, implies that almost
every φ ∈ C1(Rn,Rm) is a diffeomorphism on A.

Remark 4.6. Suppose one knows only that dimB(φ(A)) <
m
2 for a typical φ. It is difficult

to draw any conclusions in this case. Sauer and Yorke [20] exhibit a compact subset A of R10

with dimB(A) = 3.5 such that dimB(φ(A)) < 3 for every φ ∈ C1(R10,R6).

5. Observing a continuous dynamical system. Let f : Rn → R
n be a dynamical system,

and let A be a compact invariant set. We make no a priori regularity assumptions about f .
Let φ ∈ C1(Rn,Rm), and let B ⊂ R

n be an open metric ball. Recall that if there exists a map
f̄ : φ(A)→ φ(A) such that for x ∈ A the diagram

A
f−−−→ A

φ

� �φ

φ(A)
f̄−−−→ φ(A)

commutes, then we say that f̄ is the induced map associated with f .
Remark 5.1. If f is continuous, then the existence of f̄ implies the continuity of f̄ .
Definition 5.2. The pair (x1, x2) ∈ A×A is coincident if φ(x1) = φ(x2). The pair (x1, x2) ∈

A×A is said to be dynamically separated by B if
1. (x1, x2) is coincident and
2. x1 /∈ B, x2 /∈ B, f(x1) ∈ B, and f(x2) /∈ B.
Definition 5.3. Let SB be the set of maps φ in C1(Rn,Rm) for which the following hold:
1. There exists some pair (x1, x2) dynamically separated by B, and
2. for all such pairs we have φ(f(x1)) = φ(f(x2)).
Lemma 5.4. The set SB is a shy subset of C1(Rn,Rm).
Proof. We construct a measure transverse to SB. Let β : R

n → R be a C∞ map such
that β > 0 on B and supp(β) = B̄. Let v ∈ R

m be a nonzero vector. Let µ be the Lebesgue
measure supported on the one dimensional subspace

{tvβ : t ∈ R} .(5.1)
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For any φ ∈ C1(Rn,Rm), it is evident that φ + tvβ ∈ SB for at most one t ∈ R. Thus SB is
shy because µ is transverse to it.

Definition 5.5. Let Fix(f) denote the set of fixed points of f . Let Per2(f) denote the set
of periodic points of f of period 2.

Proposition 5.6. Suppose f [A] is continuous and invertible. Assume that Fix(f [A]) and
Per2(f [A]) are countable sets. For almost every map φ ∈ C1(Rn,Rm), the following are
equivalent:

1. The map φ is one-to-one on A.
2. The induced map f̄ exists (and is therefore continuous).

Proof. ((1)⇒ (2)) Define f̄ := φ ◦ f ◦ φ−1.

((2) ⇒ (1)) Let {Bi} be a countable collection of open metric balls such that if x, y ∈ A
satisfy x 	= y, then there exists some Bi such that x ∈ Bi and y /∈ Bi. Consider the following
three sets:




G1 = {φ ∈ C1(Rn,Rm) : φ is one-to-one on Fix(f [A])},
G2 = {φ ∈ C1(Rn,Rm) : φ is one-to-one on Per2(f [A])},
G3 =

⋂∞
i=1(SBi)

C .

(5.2)

The set G1 is a prevalent subset of C
1(Rn,Rm) by Proposition 2.4 because the fixed points of

f [A] are countable. Similarly, G2 is prevalent. The set G3 is a prevalent subset of C
1(Rn,Rm)

because (SBi)
C is prevalent for each i by Lemma 5.4 and because the countable intersection

of prevalent sets is prevalent (see [7]). Thus G1∩G2∩G3 is a prevalent subset of C
1(Rn,Rm).

Let φ ∈ G1 ∩G2 ∩G3, and assume that φ is not one-to-one on A. It follows that no induced
map f̄ exists. Since φ /∈ SBi for all i, there exist a metric ball Bi and a coincident pair (x1, x2)
dynamically separated by Bi such that φ(f(x1)) 	= φ(f(x2)).

Proposition 2.6 allows us to improve this result by transferring the dynamical hypothe-
ses onto the induced dynamics. We need a lemma indicating that the existence of a point
of discontinuity of f [A] precludes the existence of a continuous induced map for a typical
measurement function.

Lemma 5.7. Suppose f [A] is discontinuous at some point x ∈ A. Then for almost every
φ ∈ C1(Rn,Rm), no continuous induced map exists.

Theorem 5.8. Let f : Rn → R
n be a map. For almost every map φ ∈ C1(Rn,Rm), there is

an induced map f̄ satisfying

1. f̄ is continuous and invertible, and
2. Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.

1. The measurement map φ is one-to-one on A.
2. The sets Fix(f [A]) and Per2(f [A]) are countable.
3. The map f [A] is continuous and invertible.

Proof. We employ the transference method. If f [A] is continuous and invertible and
Fix(f [A]) and Per2(f [A]) are countable sets, then Proposition 5.6 implies the result. If
Fix(f [A]) or Per2(f [A]) is uncountable, then Proposition 2.6 implies that the statement of
the theorem holds for almost every φ. Lemma 5.7 implies the result if f [A] is discontinuous
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at some point. If f [A] is not invertible, then for almost every φ ∈ C1(Rn,Rm) no invertible
induced map exists.
We now consider the possibility of recovering differential information.

6. Observing differentiable dynamics. Assume that f is a diffeomorphism on R
n. The

concept of a measurement function φ being an immersion on A usually requires A to be a
manifold, but there is now an obvious extension.

Definition 6.1. We say the map φ ∈ C1(Rn,Rm) is an immersion on A if Dφ(x)[TxA] :
TxA → Tφ(x)φ(A) is one-to-one for each x ∈ A.
Motivated by the theory of infinite dimensional dynamical systems, we formulate our C1

results using the notion of quasidifferentiability.
Definition 6.2. The function f is said to be quasidifferentiable on the set A if f [A] is con-

tinuous and if for each x ∈ A there exists a linear map Df(x) : Rn → R
n, the quasiderivative

of f at x, such that

f(xi)− f(yi)−Df(x)(xi − yi)

‖xi − yi‖ → 0(6.1)

for all sequences (xi) ⊂ A and (yi) ⊂ A such that xi → x and yi → x.
Remark 6.3. The function f is Whitney C1 if and only if f is quasidifferentiable and the

quasiderivative varies continuously. Since continuity is observable, the C1 embedding results
to follow may be formulated with “Whitney C1” in place of “quasidifferentiable.”
We would like to prove under the assumptions of Proposition 5.6 that for almost every φ,

the existence of a quasidifferentiable induced map f̄ implies that φ is an injective immersion
on A. However, one extra hypothesis on f is needed; namely, for each x ∈ Fix(f [A]), we have

Df(x)[TxA] 	= γ · I for every γ ∈ R.(6.2)

To see the need for this hypothesis, suppose that f is the identity map, A is countable, and
there exists x ∈ A such that dim(TxA) = n > m. In this case, the identity map on φ(A) is
the induced map for every φ ∈ C1(Rn,Rm), yet every φ fails to be immersive at x.
Consider a countable set {Bi = B(yi, ri)} of open metric balls in R

n that separates points.
Let T (A) = {(x, v) : x ∈ A, v ∈ TxA}.

Definition 6.4. Let WBi be the set of measurement maps in C1(Rn,Rm) with the following
properties:
1. There exists some point (x, v) ∈ T (A) such that v 	= 0, x /∈ B(yi, 2ri), f(x) ∈ B(yi, ri),

Dφ(x)v = 0, and
2. for all such points we have Dφ(f(x)) ◦Df(x)v = 0.
Lemma 6.5. The set WBi is shy.
Proof. Let F1, . . . , Ft be a basis for the nm-dimensional space of linear transformations

from R
n to R

m. Let β : Rn → R be a C∞ map with the following properties:



(1) β(x) = 1 for x ∈ B(yi,
5
4ri),

(2) supp(β) = B(yi,
3
2ri),

(3) 0 < β ≤ 1 on B(yi,
3
2ri).

(6.3)
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Let P be the subspace of C1(Rn,Rm) spanned by the collection {βFi : i = 1, . . . , t}, and
endow P with Lebesgue measure. For any φ, the set of vectors (αi) for which

φ+ β
t∑

i=1

αiFi ∈ WBi(6.4)

is a subset of P of measure zero.

Lemma 6.6. Let x ∈ Fix(f [A]), and assume that Df(x)[TxA] 	= γ · I for all γ ∈ R. The
set Zx of measurement mappings satisfying

1. ker(Dφ(x)) ∩ TxA 	= {0} and
2. Df(x)(ker(Dφ(x)) ∩ TxA) ⊂ ker(Dφ(x))

is a shy subset of C1(Rn,Rm).

Proof. Consider the orthogonal decomposition R
n = TxA ⊕ Ex. Let L be the subset of

Lin(Rn,Rm) consisting of maps that vanish on Ex and have norm at most one. Endow L with
the normalized Lebesgue probability measure µ. For any φ ∈ C1(Rn,Rm), we claim that

µ({F ∈ L : φ+ F ∈ Zx}) = 0.(6.5)

If dimTxA ≤ m, then (6.5) follows from the fact that almost every linear transformation
has full rank. If dimTxA > m, then it suffices to consider the scalar case m = 1. Let
d = dim(TxA), and let {φei} be an orthonormal basis for Lin(TxA,R), the unit ball of which
we identify with L. Let φw represent Dφ(x)[TxA] with respect to the basis {φei}. For a
map φv ∈ Lin(TxA,R) such that v + w 	= 0, it is necessary that v + w be an eigenvector of
Df(x)[TxA]

T in order to have

Df(x)(ker(φv+w) ∩ TxA) ⊂ ker(φv+w).(6.6)

If Df(x)[TxA]
T does not have an eigenvalue of multiplicity d, then (6.5) holds. Finally, notice

that Df(x)[TxA]
T has an eigenvalue of multiplicity d if and only if Df(x)[TxA] is a scalar

multiple of the identity.

Proposition 6.7. Suppose f is a diffeomorphism on R
n. Assume that

Fix(f [A]) and Per2(f [A])(6.7)

are countable sets. Assume that for each x ∈ Fix(f [A]) we have

Df(x)[TxA] 	= γ · I for every γ ∈ R.(6.8)

Then for almost every φ ∈ C1(Rn,Rm), if there is a quasidifferentiable induced map f̄ , then
the measurement map φ is an injective immersion on A.

Proof. Consider the following sets:

{
G4 =

⋂∞
i=1(WBi)

C ,

G5 =
⋂

x∈Fix(f [A])(Zx)
C .

(6.9)
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The sets G4 and G5 are prevalent by Lemmas 6.5 and 6.6, respectively. For φ in the prevalent
set

5⋂
j=1

Gj ,(6.10)

the existence of a quasidifferentiable induced map f̄ implies that φ is an injective immersion
on A.

Once again, Proposition 2.6 allows us to transfer some of the hypotheses of this theorem
onto the induced dynamics.

Theorem 6.8. Suppose f is a diffeomorphism on R
n. For almost every φ ∈ C1(Rn,Rm), if

there is a quasidifferentiable induced map satisfying

1. Fix(f̄) and Per2(f̄) are countable and
2. For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 	= γ · I for every γ ∈ R,

then the following hold.

1. The measurement map φ is an injective immersion on A.
2. Fix(f [A]) and Per2(f [A]) are countable.
3. For each x ∈ Fix(f [A]), Df(x)[TxA] 	= γ · I for every γ ∈ R.

Proof. It suffices to consider the cases in which the hypotheses of Proposition 6.7 fail to
hold. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then for almost every φ there cannot exist an
induced map satisfying “Fix(f̄) and Per2(f̄) are countable” by Proposition 2.6. Suppose there
exist x ∈ Fix(f [A]) and γ ∈ R such that

Df(x)[TxA] = γ · I.(6.11)

For almost every φ ∈ C1(Rn,Rm), Dφ(x)[TxA] has full rank. If dim(TxA) � m, then the full
rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA onto Tφ(x)φ(A), and therefore the existence
of a quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.(6.12)

If dim(TxA) < m, then the full rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA injectively
into Tφ(x)φ(A) and therefore surjectively onto Tφ(x)φ(A). In this case, the existence of a
quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.(6.13)

Using the manifold extension theorem, we strengthen this theorem by utilizing the previ-
ously introduced notion of a diffeomorphism on A. We recall that definition here.

Definition 6.9. We say that a measurement map φ ∈ C1(Rn,Rm) is a diffeomorphism on
A if φ is injective on A and if for each x ∈ A there exists an enveloping manifold M for A at
x that is mapped diffeomorphically onto an enveloping manifold for φ(A) at φ(x).

Theorem 6.10. Suppose f is a diffeomorphism on R
n. For almost every φ ∈ C1(Rn,Rm),

if there is a quasidifferentiable induced map f̄ satisfying

1. Fix(f̄) and Per2(f̄) are countable and
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2. For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 	= γ · I for every γ ∈ R,
then the following hold.
1. The measurement map φ is a diffeomorphism on A.
2. Fix(f [A]) and Per2(f [A]) are countable.
3. For each x ∈ Fix(f [A]), Df(x)[TxA] 	= γ · I for every γ ∈ R.
Remark 6.11. Mera and Morán [14] provide a test for determining whether or not observed

trajectories of f̄ are consistent with the assumption that f̄ belongs to a certain regularity class.
The C1 theorem, Theorem 6.10, is not Platonic because we assume that f is a diffeomor-

phism on R
n. We formulate a Platonic version of the C1 theorem by selecting new hypotheses

on the induced map f̄ . The key modification is the replacement of the dynamical assump-
tion on the nature of Df̄(y)[Tyφ(A)] for y ∈ Fix(f̄) with the structural assumption that
dimTy(φ(A)) < m for all y ∈ φ(A). The smoothness of f becomes observable in this new
setting. After presenting several technical preliminaries, we state and prove the main result.
We assume only that f is a map throughout this section.

Lemma 6.12. If dimTx(A) � m for some x ∈ A, then for almost every φ ∈ C1(Rn,Rm)
one has dimTφ(x)φ(A) � m.

Proof. The result follows from the fact that almost every linear transformation from one
finite dimensional vector space to another has full rank.

Lemma 6.13. Suppose there exist sequences (xi) ⊂ A, (yi) ⊂ A, and x ∈ A such that
xi → x, yi → x, and xi−yi

‖xi−yi‖ → v ∈ TxA, but

(
f(xi)− f(yi)

‖xi − yi‖
)

(6.14)

does not converge to a vector in R
n. For almost every φ ∈ C1(Rn,Rm), there does not exist

a quasidifferentiable induced map f̄ on φ(A) with dimTyφ(A) < m for all y ∈ φ(A).
Proof. We need to consider two cases. Assume that the sequence(

f(xi)− f(yi)

‖xi − yi‖
)

(6.15)

has two limit points v1 and v2. There cannot exist a quasidifferentiable induced map f̄ on
φ(A) if v /∈ ker(Dφ(x)[TxA]) and v1−v2 /∈ ker(Dφ(f(x))[Tf(x)A]). This condition is prevalent,
and therefore the lemma holds in the first case. Now suppose that the sequence (6.15) tends
to infinity. If either dim(TxA) � m or dim(Tf(x)A) � m, then Lemma 6.12 implies that for
almost every φ one does not have dimTyφ(A) < m for all y ∈ φ(A). If both dim(TxA) < m and
dim(Tf(x)A) < m, then for almost every φ it follows that Dφ(x)[TxA] and Dφ(f(x))[Tf(x)A]
are injective. For such a φ, the existence of a quasidifferentiable induced map f̄ on φ(A) would
imply

f̄ ◦ φ(xi)− f̄ ◦ φ(yi)

‖φ(xi)− φ(yi)‖ =
φ ◦ f(xi)− φ ◦ f(yi)

‖φ(xi)− φ(yi)‖ → ∞,(6.16)

which is a contradiction.
Theorem 6.14 (Platonic C1 Theorem). Suppose f : R

n → R
n is a map. For almost ev-

ery φ ∈ C1(Rn,Rm), if there exists an invertible quasidifferentiable induced map f̄ on φ(A)
satisfying
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1. Fix(f̄) and Per2(f̄) are countable,
2. dimTy(φ(A)) < m ∀y ∈ φ(A), and
3. Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),

then the following hold.

1. The measurement mapping φ is a diffeomorphism on A.
2. The mapping f [A] is invertible.
3. The sets Fix(f [A]) and Per2(f [A]) are countable.
4. The dynamical system f is quasidifferentiable on A and Df(x)[TxA] is invertible for
all x ∈ A.

5. For each x ∈ A, dim(TxA) < m.

Proof. See sections 5 and 6 for the definitions of the sets G1, G2, G3, and G4. Let

G6 = {φ ∈ C1(Rn,Rm) : Dφ(x)[TxA] is injective for each x ∈ Fix(f [A])}.(6.17)

If Fix(f [A]) is countable and dim(TxA) < m for each x ∈ A, then G6 is prevalent. We employ
the transference method to prove the Platonic C1 Theorem.

If f satisfies conclusions (2), (3), (4), and (5), then for φ in the prevalent set


 4⋂

j=1

Gj


⋂G6,(6.18)

the existence of a quasidifferentiable induced map f̄ on φ(A) implies that φ is an injective
immersion on A. If f [A] is not invertible, then for almost every φ, no invertible induced
map exists. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then Proposition 2.6 implies that no
induced map satisfying hypothesis 1 exists for almost every φ. If there exists x ∈ A for which
dim(TxA) � m, then Lemma 6.12 implies that dimTφ(x)φ(A) � m for almost every φ, and for
such φ hypothesis 2 is not satisfied.

Suppose f is not quasidifferentiable on A. If f [A] is not continuous, then Lemma 5.7 im-
plies that for almost every φ there does not exist a quasidifferentiable induced map f̄ on φ(A).
If f fails to be quasidifferentiable on A because the hypotheses of Lemma 6.13 are satisfied,
then this lemma implies that for almost every φ there does not exist a quasidifferentiable
induced map f̄ on φ(A) with dimTyφ(A) < m for all y ∈ φ(A). The remaining possibility is
that for some x ∈ A there exists a nonlinear map taking TxA into Tf(x)A. For almost every
φ, this precludes the existence of a quasidifferentiable induced map f̄ . Finally, suppose f is
quasidifferentiable on A but Df(x)[TxA] is not invertible for some x ∈ A. In this case, for
almost every φ, there does not exist a quasidifferentiable induced map f̄ on φ(A) satisfying
hypothesis 3.

7. Delay coordinate embeddings and Lyapunov exponents. We state delay coordinate
embedding versions of our results and prove the exponent characterization theorem.

7.1. Delay coordinate maps. The following theorems do not follow from the previously
established corresponding theorems for the general class of smooth measurement mappings
because the delay coordinate mappings form a subspace of C1(Rn,Rm). Nevertheless, their
veracity is established using essentially the same reasoning.
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Theorem 7.1. Let f : R
n → R

n be a map. For almost every g ∈ C1(Rn,R), there is an
induced map f̄ satisfying
1. f̄ is continuous and invertible, and
2.
⋃2m

i=1 Peri(f̄) is countable
if and only if the following hold.
1. The delay coordinate map φ(f, g) is one-to-one on A.
2. The set

⋃2m
i=1 Peri(f [A]) is countable.

3. The map f [A] is continuous and invertible.
Theorem 7.2. Let f be a diffeomorphism on R

n. For almost every g ∈ C1(Rn,R), if there
is a quasidifferentiable induced map f̄ satisfying
1.
⋃2m

i=1 Peri(f̄) is countable and
2. for each p ∈ {1, . . . ,m} and y ∈ Perp(f̄) we have

Df̄p(y)[Tyφ(f, g)(A)] 	= γ · I for every γ ∈ R,(7.1)

then the following hold.
1. The delay coordinate map φ(f, g) is a diffeomorphism on A.
2. The set

⋃2m
i=1 Peri(f [A]) is countable.

3. For each p ∈ {1, . . . ,m} and each x ∈ Peri(f [A]), we have
Dfp(x)[TxA] 	= γ · I for every γ ∈ R.(7.2)

7.2. Lyapunov exponents. We conclude section 7 with a discussion of Lyapunov expo-
nents. Assume f and f̄ are quasidifferentiable and invertible on A and φ(A), respectively, with
invertible quasiderivatives at each point x ∈ A and y ∈ φ(A). Suppose φ is a diffeomorphism
on A. Assume y ∈ φ(A) is a regular point for f̄ , and recall that this implies the existence of
a decomposition

R
m =

l⊕
i=1

Ei(y)(7.3)

such that

lim
k→±∞

1

k
log ‖Df̄k(y)v‖ = λj(y) (v ∈ Ej(y) \ {0} and 1 ≤ j ≤ l).

Since the set of regular points R(f̄) is invariant in the sense that
1. y ∈ R(f̄)⇒ f̄k(y) ∈ R(f̄) for all k ∈ Z and
2. Df̄±1(Ei(y)) = Ei(f̄

±1(y)) for i = 1, . . . , l,
we associate the Lyapunov exponents λ1 > · · · > λl with the trajectory (yk). Counting multi-
plicities, there are m Lyapunov exponents associated with (yk), and we label them χ1, . . . , χm

such that

χ1 � χ2 � · · · � χm.(7.4)

In light of Remark 3.10 following the manifold extension theorem, we state the following
definitions.
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Definition 7.3. We say that a Lyapunov exponent λ(y, v) of f̄ is a tangent Lyapunov ex-
ponent if v ∈ Tyφ(A). A Lyapunov exponent λ(y, v) of f̄ is said to be a transverse Lyapunov
exponent if it is not a tangent exponent.

Definition 7.4. A Lyapunov exponent λ(y, v) of f̄ is said to be a true Lyapunov exponent
if it does not depend on the choice of quasiderivative Df̄ and if it is also a Lyapunov exponent
of f at φ−1(y). We say that a Lyapunov exponent λ(y, v) of f̄ is spurious if there exists a
quasiderivative Df̄ for which

lim
k→±∞

1

k
log ‖Df̄k(y)v‖(7.5)

either does not exist or is not a Lyapunov exponent of f at φ−1(y).

Theorem 7.5 (exponent characterization theorem). Assume f and f̄ are quasidifferentiable
and invertible on A and φ(A), respectively, with invertible quasiderivatives at each point x ∈ A
and y ∈ φ(A). Suppose φ is a diffeomorphism on A. Assume that y ∈ φ(A) is a regular point
for f̄ such that dimTzφ(A) = dimTyφ(A) for all z ∈ (yk). The following characterizations
hold for a Lyapunov exponent λ(y, v) of f̄ .

1. If the exponent λ(y, v) is tangent, then it is a true exponent.
2. If the exponent λ(y, v) is transverse, then it is a spurious exponent.

The tangent exponents of f̄ correspond to the tangent exponents of f .

Remark 7.6. The tangent space Tyφ(A) admits the decomposition

Tyφ(A) =
l⊕

i=1

Vi(y),(7.6)

where Vi(y) is a subspace of Ei(y) for i = 1, . . . , l.

Remark 7.7. From a computational point of view, one is interested in constructing algo-
rithms to efficiently and accurately compute the Lyapunov spectrum and identify the true
exponents. The existing technique [3, 19, 15] requires that one modify the ERA by computing
the tangent maps only on the tangent spaces and not on the ambient space R

m. Assuming A is
a smooth submanifold, Mera and Morán [15] state conditions under which this modified ERA
converges. Clearly this technique eliminates the computation of spurious exponents. How-
ever, one has to compute the tangent spaces along the entire orbit. In light of the exponent
characterization theorem, we propose a new algorithm that eliminates the need to compute
these tangent spaces.

Definition 7.8. A forward filtration of R
m is a nested collection of subspaces

∅ = F0(y) ⊂ F1(y) ⊂ F2(y) ⊂ · · · ⊂ Fm(y) = R
m(7.7)

such that

lim
k→+∞

1

k
log ‖Df̄k(y)v‖ = χm−j+1(7.8)

for v ∈ Fj(y) \ Fj−1(y).
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Definition 7.9. A backward filtration of R
m is a nested collection of subspaces

∅ = B0(y) ⊂ B1(y) ⊂ B2(y) ⊂ · · · ⊂ Bm(y) = R
m(7.9)

such that

lim
k→−∞

1

k
log ‖Df̄k(y)v‖ = χj(7.10)

for v ∈ Bj(y) \Bj−1(y).

Suppose that forward and backward filtrations have been computed. Assume that one may
determine computationally if a given (m − 1)-dimensional subspace of R

m contains Tyφ(A).
For j = 1, . . . ,m, compute the Lyapunov vector

vj ∈ Bj ∩ Fm−j+1.(7.11)

We now fix j and determine if vj ∈ Tyφ(A). If Span{vi : i 	= j} ⊃ Tyφ(A), then vj /∈ Tyφ(A). If
Span{vi : i 	= j} � Tyφ(A), then vj ∈ Tyφ(A), and χj is a true Lyapunov exponent. The true
Lyapunov exponents and Tyφ(A) have been determined. It would be interesting to compare
the performance of this algorithm to that of existing ERA techniques.

Proof. Statement 1 follows from the fact that φ is a diffeomorphism on A. We establish
2 with a perturbation argument. Let α > 1, and let d = dimTyφ(A). For each z ∈ (yk) there
exists an enveloping manifold Mz for φ(A) at z with TzMz = Tzφ(A) and dim(Mz) = d. Let

{B(z, rz) : z ∈ (yk)}(7.12)

be a collection of metric balls such that

B(z, rz) ∩ φ(A) ⊂ Int(Mz).(7.13)

By compactness there exists a finite subcover

{
B

(
zi,

rzi
2

)
: i = 1, . . . , N

}
(7.14)

of (yk). We inductively construct a sequence {Df̄k : k = 1, . . . , N} of perturbations of Df̄ .
Let β : Rm → R be a C∞ map such that



(1) 1 ≤ β ≤ α,

(2) β(z) = α for z ∈ B(z1,
rz1
2 ), and

(3) β(z) = 1 on R
m \B(z1, rz1).

(7.15)

For each z ∈ B(z1, rz1) ∩Mz1 , R
m admits the orthogonal decomposition

R
m = Tz(Mz1)⊕ Ez.(7.16)

Using this decomposition, we define Df̄1 as follows.
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1. Df̄1[φ(A) ∩ R
m \B(z1, rz1)] = Df̄ [φ(A) ∩ R

m \B(z1, rz1)].
2. For z ∈ φ(A) ∩B(z1, rz1), define Df̄1(z) by

Df̄1(z)v =

{
Df̄(z)v if v ∈ Tz(Mz1),

β(z)Df̄(z)v if v ∈ Ez.
(7.17)

In this fashion, we inductively construct the family of perturbations {Df̄k : k = 1, . . . , N}.
For v ∈ (Tyφ(A))

⊥, we have

lim k→∞
1

k
log ‖Df̄k

N (y)v‖ ≥ λ(y, v) + log(α).(7.18)

Since α > 1 was arbitrary, it follows that if λ(y, v) is transverse, then it is spurious.
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Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs∗

Darryl D. Holm† and Martin F. Staley‡

Abstract. We investigate the following family of evolutionary 1+1 PDEs that describes the balance between
convection and stretching for small viscosity in the dynamics of one-dimensional nonlinear waves in
fluids:

mt + umx︸ ︷︷ ︸
convection

+ b uxm︸ ︷︷ ︸
stretching

= ν mxx︸ ︷︷ ︸
viscosity

with u = g ∗m.

Here u = g ∗m denotes u(x) =
∫∞
−∞ g(x− y)m(y) dy. This convolution (or filtering) relates velocity

u to momentum density m by integration against the kernel g(x). We shall choose g(x) to be an
even function so that u and m have the same parity under spatial reflection. When ν = 0, this
equation is both reversible in time and parity invariant. We shall study the effects of the balance
parameter b and the kernel g(x) on the solitary wave structures and investigate their interactions
analytically for ν = 0 and numerically for small or zero viscosity.

This family of equations admits the classic Burgers “ramps and cliffs” solutions, which are stable
for −1 < b < 1 with small viscosity.

For b < −1, the Burgers ramps and cliffs are unstable. The stable solution for b < −1 moves
leftward instead of rightward and tends to a stationary profile. When m = u − α2uxx and ν = 0,
this profile is given by u(x) � sech2(x/(2α)) for b = −2 and by u(x) � sech(x/α) for b = −3.

For b > 1, the Burgers ramps and cliffs are again unstable. The stable solitary traveling wave for
b > 1 and ν = 0 is the “pulson” u(x, t) = cg(x− ct), which restricts to the “peakon” in the special
case g(x) = e−|x|/α when m = u − α2uxx. Nonlinear interactions among these pulsons or peakons
are governed by the superposition of solutions for b > 1 and ν = 0,

m(x, t) =
N∑
i=1

pi(t) δ(x− qi(t)), u(x, t) =

N∑
i=1

pi(t) g(x− qi(t)).

These pulson solutions obey a finite-dimensional dynamical system for the time-dependent speeds
pi(t) and positions qi(t). We study the pulson and peakon interactions analytically, and we determine
their fate numerically under adding viscosity.

Finally, as outlook, we propose an n-dimensional vector version of this evolutionary equation
with convection and stretching, namely,

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection

+ ∇uT · m + (b− 1)m(divu)︸ ︷︷ ︸
stretching

= 0

for a defining relation, u = G ∗ m. These solutions show quasi-one-dimensional behavior for n, k =
2, 1 that we find numerically to be stable for b = 2. The corresponding superposed solutions of
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the vector b-equation in n dimensions exist, with coordinates x ∈ Rn, s ∈ Rk, n − k > 0, and 2N
parameters Pi(s, t),Qi(s, t) ∈ Rn,

m(x, t) =

N∑
i=1

∫
Pi(s, t) δ

(
x − Q i(s, t)

)
ds, m ∈ Rn,

u(x, t) =

N∑
i=1

∫
Pi(s, t)G

(
x − Q i(s, t)

)
ds, u ∈ Rn.

These are momentum surfaces (or filaments for k = 1), defined on surfaces (or curves) x = Q i(s, t),
i = 1, 2, . . . , N . For b = 2, the Pi(s, t),Qi(s, t) ∈ Rn satisfy canonical Hamiltonian equations for
geodesic motion on the space of n-vector valued k-surfaces with cometric G.

Key words. symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations,
reduction; Hamilton’s principle; Hamiltonian structures, symmetries, variational principles, conser-
vation laws; Hamiltonian systems on groups of diffeomorphisms and on manifolds of mappings and
metrics

AMS subject classifications. 70H33, 70H25, 37K05, 37K65
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1. Introduction.

1.1. The b-family of fluid transport equations. We shall investigate a one-dimensional
version of fluid convection and stretching that is described by the family of 1+1 evolutionary
equations

mt + umx︸ ︷︷ ︸
convection

+ b uxm︸ ︷︷ ︸
stretching

= 0 with u = g ∗m(1.1)

in independent variables time t and one spatial coordinate x.
We shall seek solutions for the fluid velocity u(x, t) that are defined either on the real line

and vanishing at spatial infinity or on a periodic one-dimensional domain. Here u = g ∗ m
denotes the convolution (or filtering)

u(x) =

∫ ∞

−∞
g(x− y)m(y) dy,(1.2)

which relates velocity u to momentum density m by integration against kernel g(x) over the
real line. We shall choose g(x) in the defining relation (1.2) to be an even function so that u
and m have the same parity.

The family of equations (1.1) is characterized by the kernel g and the real dimensionless
constant b, which is the ratio of stretching to convection. The function g(x) will determine
the traveling wave shape and length scale for (1.1), while the constant b will provide a balance
or bifurcation parameter for the nonlinear solution behavior. Special values of b will include
the first few positive and negative integers.

The quadratic terms in (1.1) represent the competition, or balance, in fluid convection
between nonlinear steepening and amplification due to b-dimensional stretching. Equation

324
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(1.1) with b �= −1 arises in the nonlinear dynamics of shallow water waves, as shown in [7, 17,
18]. Equation (1.1) with b = 2 and b = 3 appears in the theory of integrable PDEs [7, 17, 15].
The three-dimensional analogue of (1.1) with b = 2 was introduced in a larger variational
context in [26, 27]. Applying the proper viscosity to this three-dimensional analogue with
b = 2 and enforcing incompressibility produces the Navier–Stokes-alpha model of turbulence
[9]. The one-dimensional version of this turbulence model is

mt + umx︸ ︷︷ ︸
convection

+ b uxm︸ ︷︷ ︸
stretching

= ν mxx︸ ︷︷ ︸
viscosity

with u = g ∗m.(1.3)

We shall compare our analysis of (1.1) with numerical simulations of (1.3) for small viscosity.

1.2. Outline of the paper. After summarizing previous investigations of particular cases
in the b-family of convection equations (1.1), section 2 discusses its symmetries and other
general properties such as parity and reversibility. Section 3 discusses the derivation of the
b-equation (1.1) among a family of asymptotically equivalent equations for unidirectional
shallow water waves. Section 4 discusses the traveling waves for (1.1) and derives their pulson
solutions, which may be generalized functions for b > 1. Section 5 analyzes the interaction
dynamics of the pulson solutions for any positive b and any g. Section 6 specializes the analysis
of the pulson solutions to the peakons, for which g(x) = e−|x|/α is a peaked pulse of width
α, and b is taken to be arbitrary. In section 7, we add viscosity to the peakon equation and
describe our numerical methods for illustrating the different types of behavior that may arise
in the initial value problems for peakon solutions with b > 0, b = 0, and b < −1. Section 8 uses
these numerical methods to determine how viscosity affects the fate of the peakons. Section 9
provides a synopsis of the figures. Section 10 summarizes the paper’s main conclusions, and
section 11 provides the outlook for generalizing the present work to higher dimensions.

2. History and general properties of the b-equation. Camassa and Holm [7] derived the
following equation for unidirectional motion of shallow water waves in a particular Galilean
frame:

mt + umx︸ ︷︷ ︸
convection

+ 2uxm︸ ︷︷ ︸
stretching

= − c0ux − γ uxxx︸ ︷︷ ︸
dispersion

with m = u− α2uxx.(2.1)

Here m = u − α 2uxx is a momentum variable, partial derivatives are denoted by subscripts,
the constants α 2 and γ/c0 are squares of length scales, and c0 =

√
g′h is the linear wave speed

for undisturbed water of depth h at rest under gravity g′ at spatial infinity, where u and m
are taken to vanish. Any constant value u = u0 is also a solution of (2.1).

Equation (2.1) was derived using Hamiltonian methods in [7] and was shown in [17] also
to appear as a water wave equation at quadratic order in the asymptotic expansion for uni-
directional shallow water waves in terms of their two small parameters (aspect ratio and
wave height). The famous Korteweg–de Vries equation (KdV) appears at linear order in this
asymptotic expansion and is recovered from (2.1) when α2 → 0. Both KdV at linear order
and its nonlocal nonlinear generalization in (2.1) at quadratic order in this expansion have
the remarkable property of being completely integrable by the isospectral transform (IST)
method. The IST properties of KdV solitons are well known. The IST properties of (2.1)
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were discovered in [7] and were analyzed completely for the case that the initial distribution
of momentum m(x, 0) does not change sign in [6]. See also [10] for additional analysis of the
scattering problem for the Camassa–Holm (CH) equation for this class of initial conditions.
For an initial distribution of momentum that changes sign, the IST properties of the CH
equation (2.1) remains an open problem.

3. Deriving b-equation for shallow water.

3.1. Linear and nonlinear balances in shallow water waves. The primary physical mech-
anism for the unidirectional propagation of solitary shallow water waves is the balance between
nonlinear steepening and linear dispersion. This balance is nearly unique at linear order in
an asymptotic expansion in the KdV

ut + c0ux︸ ︷︷ ︸
Propagation

+
3ε1
2
uux +

3ε2
20

uxxx︸ ︷︷ ︸
Balance

= 0.(3.1)

Here the expansion parameters satisfy ε1 ≥ ε2 > ε21 and are defined by ε1 = a/h and ε2 =
h2/l2 in terms of wave amplitude a, mean water depth h, and typical horizontal length scale
l (e.g., a wavelength). KdV possesses the famous sech2 solitary wave solution u(x, t) =
u0 sech

2((x− ct)
√
u0/γ/2 ) for u0 = 2(c− c0)/ε1 and γ = 3ε2/(5ε1); see [1].

The Benjamin–Bona–Mahoney equation (BBM)

ut + c0ux︸ ︷︷ ︸
Propagation

+
3ε1
2
uux − 3ε2

20
c−10 uxxt︸ ︷︷ ︸

Balance

= 0(3.2)

has a solitary wave with the same sech2 shape, but with γ replaced by γ ′ = cγ/c0; see
[1]. BBM is asymptotically equivalent to KdV at order O(ε1, ε2). In comparison, the linear
dispersion relation for BBM matches the exact relation for shallow water waves better than
KdV. However, KdV is Galilean invariant, while BBM is not. And, of course, KdV is a
completely integrable soliton equation, while BBM is not.

Beyond KdV and BBM at linear order, the asymptotic expansion at quadratic order in the
small parameters ε1 and ε2 produces an infinite family of shallow water wave equations that
are asymptotically equivalent to each other at quadratic order in the shallow water expansion
parameters [18]. The equations in this family are related to each other by a continuous three-
parameter group of nonlinear nonlocal transformations of variables introduced in [33, 34, 35],

u = v + ε1(a1v
2 + a2vx∂

−1
x v) + ε2a3vxx,(3.3)

in which (a1, a2, a3) are the three real parameters of the group. This transformation group
was first introduced for determining normal forms of asymptotic shallow water wave equations
by Kodama in [33, 34, 35].

Among the family of asymptotically equivalent shallow water wave equations at quadratic
order accuracy in the small parameters ε1 = a/h and ε2 = h2/l2 are several equations that are
completely integrable. As for KdV at linear order, these integrable shallow water equations
at quadratic order possess soliton solutions that interact via elastic collisions. In particular,
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the equation in the KdV hierarchy with fifth-order derivatives (KdV5) appears amongst these
integrable equations, as shown in [37].

The family of asymptotically equivalent shallow water equations that emerges at quadratic
order accuracy also contains the following subfamily derived in [18] in which the constant
parameter b depends on the group parameters (a1, a2, a3) appearing in the Kodama transfor-
mation (3.3),

mt + c0ux + ε1(umx + bmux) +
3ε2
20
uxxx = 0,(3.4)

where m = u − (19ε2/60)uxx. For any b �= −1, an asymptotically equivalent shallow water
equation may be achieved by a Kodama transformation. However, the case b = −1 violates
the asymptotic ordering, and the corresponding Kodama transformation is singular for b = −1
[18]. Notice that (3.4) is not Galilean invariant.

The cases b = 2 and b = 3 are special values for the b-equation (3.4). The case b = 2
restricts (3.4) to the integrable CH [7]. The case b = 3 in (3.4) recovers the Degasperis–Procesi
equation (DP) [16], which was shown to be integrable in [15]. These two cases exhaust the
integrable candidates for (3.4), as was shown using Painlevé analysis in [15]. The b-family
of equations (3.4) was also shown in [38] to admit the symmetry conditions necessary for
integrability only in the cases b = 2 for CH and b = 3 for DP.

3.2. Other work related to (3.4) with b = 2. Equation (3.4) with b = 2 was first
derived by using asymptotic expansions directly in the Hamiltonian for Euler’s equations in
the shallow water regime and was thereby shown to be bi-Hamiltonian and IST-integrable in
[7]. Additional details of its derivation and the analysis of its peakon solutions, as well as a
numerical solution of the initial value problem for (3.4) with b = 2, were provided in [8]. Its
periodic solutions were treated in [2, 3, 4, 5] and references therein.

Equation (3.4) with b = 2 was recently rederived as a shallow water equation using asymp-
totic methods via three different approaches in [21, 17, 32]. These three derivations used
different variants of the method of asymptotic expansions for shallow water waves. A recent
paper [14] also obtains (3.4) with b = 2 as a model for waves in hyperelastic rods.

Hereditary symmetries. The paper [19] rederives (3.4) with b = 2 from general asymptotic
considerations and claims that the equation was already obtained in [24, 23] by the theory
of hereditary symmetries. Indeed, before [7], families of integrable equations similar to (3.4)
with b = 2 could have been obtained amidst a comprehensive list of other integrable equations
provided by the theory of hereditary symmetries [20]. However, the integrable equation (3.4)
with b = 2 was not written explicitly, nor was it derived physically as a water wave equation,
and its solution properties were not studied before [7]. See [25] for an insightful discussion of
how the integrable equation (3.4) with b = 2 relates to the theory of hereditary symmetries.

3.3. Higher-order nonlinear nonlocal integrable balance. KdV in (3.1) and the cases
b = 2 (CH) and b = 3 (DP) of (3.4) are three completely integrable Hamiltonian equations that
possess solitons as traveling waves. In all of these equations, the leading-order balance that
confines the traveling wave soliton occurs between nonlinear steepening and linear dispersion.
Physically, this is also the leading-order asymptotic balance for shallow water waves. However,
the parameter b in (3.4) introduces additional possibilities for higher-order balances, including
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the nonlinear nonlocal balance occurring in the following dispersionless case of CH that was
studied previously for b = 2 in [7]:

mt + umx + bmux︸ ︷︷ ︸
Nonlinear balance

= 0, with m = u− α2uxx and lim
|x|→∞

u = 0.(3.5)

To obtain (3.5) from (3.4), one absorbs the linear dispersion terms in (3.4) by a Galilean
transformation and a velocity shift followed by a rescaling. Recall that (3.4) is not Galilean
invariant; so Galilean transformations do not preserve the functional form of its solutions.
Even in the absence of linear dispersion, the nonlinear and nonlocal terms that remain in
(3.5) can still balance to produce a confined solitary traveling wave pulse u(x, t) = ce−|x−ct|/α,
called the peakon [7].

The peakon solutions and other properties of dispersionless DP for the case b = 3 in (3.5)
were studied in [15]. The properties of the class of dispersionless equations consisting of (3.5)
for b = 2 with the more general defining relation u = g ∗ m in (1.2) for any even kernel
g(x) = g(−x) were studied in [22]. The CH peakon case is recovered for g(x) = e−|x|/α.

The peakon solution of (3.5) moves at a speed equal to its amplitude and has a jump in
derivative at its peak. Peakons for either b = 2 or b = 3 are true solitons that interact via
elastic collisions under CH dynamics or DP dynamics, respectively [7], [15]. In addition, the
CH and DP initial value problems are both completely integrable as Hamiltonian systems using
the IST method for an isospectral linear eigenvalue problem whose purely discrete spectrum
gives the asymptotic speeds of the peakons [7], [15]. Figure 2 shows the evolution under
dispersionless CH for the case b = 2 in (3.5) of a Gaussian initial velocity distribution of unit
area and width 5α. In fact, peakon solutions exist for (3.5) with any value of b. However, we
shall find numerically that the stability of these peakon solutions requires b > 1. For the case
b = 2, stability of the single peakon was proved in [13].

Burgers equation. The dispersionless limit of KdV in (3.1) upon rescaling velocity u is the
Burgers equation

ut + uux − ν uxx = 0,(3.6)

in which we have added constant viscosity ν. The Burgers solution is the classic ramp and
cliff shown arising from a Gaussian initial condition in Figure 1. In the ramp/cliff solution,
nonlinear steepening is balanced by linear viscosity to produce the “cliff” whose width is
controlled by the magnitude of ν. The “ramp” is the self-similar u ≈ x/t part of the solution
for which the viscous term vanishes.

Total momentum. The equations KdV, BBM, CH, and DP and the other b-equations (3.5)
with u = g ∗ m and Burgers all preserve the area M =

∫∞
−∞ u dx (total momentum) for a

solution u that vanishes at spatial infinity.

3.3.1. CH peakon solutions. Linear dispersion was absorbed in (3.4) by a Galilean trans-
formation and a velocity shift. For b = 2, this procedure reduces the CH (2.1) with lin-
ear dispersion to the following purely nonlinear evolution equation that contains competing
quadratically nonlinear terms representing convection and stretching:

mt + umx︸ ︷︷ ︸
convection

+ 2uxm︸ ︷︷ ︸
stretching

= 0, with m = u− α2uxx.(3.7)
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This is a special case of (1.1) or (3.5), for which b = 2 and g(x) = e−|x|/α in the defining
relation (1.2). The traveling wave solution of (3.7) is the “peakon,” u(x, t) = ce−|x−ct|/α found
in [7], where e−|x|/α is the Green function for the Helmholtz operator that relates m and u.
The interactions among N peakons are governed by the 2N -dimensional dynamical system
for the speeds pi(t) and positions qi(t), i = 1, . . . , N, appearing in the superposed solution

u(x, t) =

N∑
i=1

pi(t) e
−|x−qi(t)|.(3.8)

As shown in Camassa and Holm [7], a closed integrable Hamiltonian system of ordinary
differential equations for the speeds pi(t) and positions qi(t) results upon substituting the
superposition of peakons (3.8) into (3.7). This integrable system governs the dynamics of the
peakon interactions.

A variant of (3.7) with coefficient b = 2 → b = 3,

mt + umx︸ ︷︷ ︸
convection

+ 3uxm︸ ︷︷ ︸
stretching

= 0, with m = u− α2uxx,(3.9)

was first singled out for further analysis by Degasperis and Procesi [16]. Degasperis, Holm, and
Hone [15] discovered that this b = 2 → b = 3 variant of (3.7) also possesses superposed peakon
solutions (3.8) and is completely integrable by the isospectral transform method. Thus, the
N -peakon solution (3.8) is a completely integrable dynamical system under the evolution of
either (3.7) or (3.9), but these two integrable cases have different dynamics for the speeds
pi(t) and positions qi(t) of the peakons. The proof that N -peakon solutions (3.8) exist for any
b in (3.5) follows by direct substitution of the solution ansatz into the equation.

3.3.2. FH pulson solutions. Fringer and Holm [22] extended the zero-dispersion shallow
water equation (3.7) for the peakons to the “pulson” equation, which is contained in the family
of equations (1.1) for b = 2,

mt + umx︸ ︷︷ ︸
convection

+ 2uxm︸ ︷︷ ︸
stretching

= 0, with u = g ∗m.(3.10)

Here u = g ∗m denotes the convolution (or filtering)

u(x) =

∫ ∞

−∞
g(x− y)m(y) dy(3.11)

that relates velocity u to momentum density m by integration against the kernel g(x). Fringer
and Holm [22] chose g(x) to be an even function so that u and m have the same parity. They
studied the effects of the shape of the traveling wave u(x, t) = cg(x − ct) on its interactions
with other traveling waves in the superposed solution,

u(x, t) =
N∑
i=1

pi(t) g(x− qi(t)).(3.12)
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This superposed solution of traveling wave forms with time-dependent speeds pi(t) and posi-
tions qi(t), i = 1, . . . , N , revealed that the nonlinear interactions among these pulsons occur
by elastic two-pulson scattering even though the Fringer–Holm pulson equation (3.10) is not
integrable for an arbitrary choice of the kernel g. When g(x) = e−|x|/α is assumed, the pulson
equation for b = 2 in (3.10) specializes to the peakon equation for b = 2 in (3.7). The proof
that N -pulson solutions (3.12) exist for any b in (1.1) or (3.10) follows by direct substitution
of the solution ansatz into the equation. The resulting reduced, or collective, dynamics for
the speeds pi(t) and positions qi(t) of the pulsons depends upon the value of b in (3.10) and
the choice of the function g in the defining relation (3.11).

3.4. Discrete symmetries: Reversibility, parity, and signature. Equation (1.1) for m is
reversible, or invariant under t → −t and u → −u. The latter implies m → −m. Hence
the transformation u(x, t) → −u(x,−t) takes solutions into solutions, and, in particular, it
reverses the direction and amplitude of the traveling wave u(x, t) = cg(x− ct).

We chose g(x) to be an even function so that m and u = g ∗ m would both have odd
parity under mirror reflections. Hence (1.1) is invariant under the parity reflections u(x, t) →
−u(−x, t), and the solutions of even and odd parity form invariant subspaces.

Equation (1.1) implies a similar reversible parity invariant equation for the absolute value
|m|:

∂t |m|+ u|m|x + b ux|m| = 0, with u = g ∗m.(3.13)

So the positive and negative components m± = 1
2(m ± |m|) satisfy (1.1) separately. Also, if

m is initially zero, it remains so. This is conservation of the signature of m.

3.5. Lagrangian representation. If m1/b is well defined, (1.1) may be written as the
conservation law

∂tm
1/b + ∂x(m

1/bu) = 0,(3.14)

and (3.13) for the absolute value implies

∂t |m|1/b + ∂x(|m|1/bu) = 0.(3.15)

Adding and subtracting (3.14) and (3.15) implies

∂t (m
1/b)± + ∂x

(
(m1/b)±u

)
= 0 with (m1/b)± =

1

2
(m1/b ± |m|1/b).(3.16)

Consequently, regions of positive and negative m are both transported by the velocity u =
g ∗m, and their boundaries propagate so as to separately preserve the two integrals∫ ∞

−∞
(m1/b)± dx.(3.17)

The shared velocity relation u = g ∗m allows a transformation to Lagrangian coordinates X±
defined by

dX± = (m1/b)±(dx− udt) so that ∂tX± + u∂xX± = 0.(3.18)
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This formal transformation is not strictly defined where (m1/b)± vanishes. However, by (3.16),
regions where (m1/b)± vanishes do not propagate and do not contribute to the integrated value
of X± =

∫ x
−∞(m1/b)±(y, 0) dy. Hence these regions may be identified and excluded initially.

The formal inverse relation holding in the remaining regions,

dx = (m1/b)−1± dX± + udt,(3.19)

implies that

dx

dt

∣∣∣
X±

= u(x, t),(3.20)

so the Lagrangian trajectories x = x(X±, t) of positive and negative integrated initial values
of X± =

∫ x
−∞(m1/b)±(y, 0) dy are transported by the same velocity u = g ∗m.

3.6. Preservation of the norm ‖m‖L1/b for 0 ≤ b ≤ 1. If |m|1/b is well defined, the
continuity equation form (3.15) of (1.1) implies conservation of∫ ∞

−∞
|m|1/b dx =

∫ ∞

−∞
|m0|1/b dx, where m0(x) = m(x, 0).(3.21)

This integral is conserved for all b but defines only a norm (the L1/b norm ‖m‖L1/b) in the
closed interval 0 ≤ b ≤ 1. In the limit b→ 0 this becomes the L∞ norm, |m|max. Hence, when
b = 0, (1.1) has both a maximum principle and a minimum principle for m. Such a principle
is meaningful only if m1/b is an ordinary function, e.g., if m is not a generalized function, such
as the delta functions that occur for the peakons we shall discuss below.

Thus the L1/b norm ‖m‖L1/b is conserved by (1.1), provided |m|1/b is well defined for the
closed interval 0 ≤ b ≤ 1. One may also define the corresponding conserved norm for 1/m in
the closed interval −1 ≤ b ≤ 0, provided |1/m|1/b is well defined on this interval.

3.7. Lagrangian representation for integer b. Fluid convection means transport of a
quantity by the fluid motion. Examples of transported fluid quantities are circulation (a one-
form) in Kelvin’s theorem for the Euler equations and its exterior derivative the vorticity (a
two-form, by Stokes theorem) in the Helmholtz equation. For a Lagrangian trajectory x(X, t)
satisfying x(X, 0) = X and

dx = (m1/b)−1dX + udt,(3.22)

we have seen that the conservation law (3.14) implies

m1/b(x, t)dx = m1/b(X, 0)dX,(3.23)

provided that m1/b is a well-defined function. The last issue may be avoided when b is an
integer, as follows. In one dimension, higher-order differential forms may be created by using
the direct, or tensor, product, e.g., dx⊗ dx = dx⊗2. Consequently, the tensor product of each
side of (3.23) b times gives1

m(x, t)dx⊗b = m(X, 0)dX⊗b.(3.24)

1Cases with positive integer values of b will allow m to be a generalized function. Cases with noninteger
values of b will revert to (3.23), for which m is required to be a classical function.
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Taking the partial time derivative of this equation at constant Lagrangian coordinate X and
using dx/dt|X = u yield (1.1) in the form

d

dt

∣∣∣
X

(
m(x, t)dx⊗b

)
= (mt + umx + b uxm)dx⊗b = 0.(3.25)

Thus, when the parameter b in (1.1) is an integer, it may be regarded geometrically as the
number of dimensions that are brought into play by coordinate transformations of the quantity
mdx⊗b associated with m. Cases of (1.1) with negative integer b < 0 may be interpreted as

d

dt

∣∣∣
X

(
m
(
∂x
)⊗(−b) )

= 0.(3.26)

For example, the case b = −1 may be written as2

d

dt

∣∣∣
X
(m∂x) = (mt + umx − uxm)∂x = 0,(3.27)

in which the difference of terms (umx−uxm)∂x is the commutator of the vector fields u∂x and
m∂x on the real line. The rest of the paper will remain in the Eulerian (spatial) representation.

3.8. Reversibility and Galilean covariance. Equation (1.1) is reversible; i.e., it is invari-
ant under the discrete transformation u(x, t) → −u(x,−t). Equation (1.1) is also Galilean
covariant for all b. In fact, (1.1) keeps its form under transformations to an arbitrarily moving
reference frame for all b. This includes covariance under transforming to a uniformly moving
Galilean frame. However, only in the case b = 0 is (1.1) Galilean invariant, assuming that m
Galileo-transforms in the same way as u. If so, then (1.1) transforms under

t→ t+ t0, x→ x+ x0 + ct, u→ u+ c+ u0, m→ m+ c+ u0(3.28)

to the form

mt + umx + buxm+ u0mx + bux(c+ u0) = 0, with u = g ∗m.(3.29)

Thus (1.1) is invariant under space and time translations (constants x0 and t0) and covariant
under Galilean transforms (constant c) and acquires linear dispersion terms under velocity
shifts (constant u0). Equation (1.1) regains Galilean invariance if m is Galilean invariant.
However, the dispersive term u0mx introduced by the constant velocity shift u0 �= 0 breaks
the reversibility of (1.1) even if m is invariant under this shift.

3.9. Integral momentum conservation. Equation (3.14) implies that M =
∫∞
−∞mdx is

conserved for any g when b = 1. However, when g(x) is even, the family of equations (1.1)
also conserves the total momentum integralM for any b. This is shown by directly calculating
from (1.1) that

d

dt

∫ ∞

−∞
m(x) dx = (1− b)

∫ ∞

−∞

∫ ∞

−∞
m(x)g ′(x− y)m(y) dx dy = 0,(3.30)

2Remarkably, this nonlinear equation for b = −1 has stationary plane wave solutions, u(x) = cos(kx), and
exponential solutions, u(x) = e±κx.
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in which the double integral vanishes as the product of an even function and an odd function
under interchange of x and y, when g ′(−x) = −g ′(x). Hence, for even g(x),M =

∫∞
−∞mdx is

conserved for either periodic or vanishing boundary conditions and for any b. We shall assume
henceforth that g(x) is even and, moreover, that the integral

∫
mg ∗mdx is sign-definite so

that it defines a norm (the kinetic energy)

‖m‖2g =
∫ ∞

−∞
mg ∗mdx =

∫ ∞

−∞

∫ ∞

−∞
m(x) g(x− y)m(y) dx dy ≥ 0.(3.31)

This kinetic energy norm is conserved by (1.1), provided b = 2.

4. Traveling waves and generalized functions. Its invariance under space and time trans-
lations ensures that (1.1) admits traveling wave solutions for any b. Let us write the traveling
wave solutions as

u = u(z) and m = m(z), where z = x− ct,(4.1)

and let prime ′ denote d/dz.

4.1. Case b = 0.

4.1.1. Pulsons for b = 0. For b = 0, (1.1) is Galilean invariant and its traveling wave
solutions satisfy

(u(z)− c)m′(z) = 0, z = x− ct,(4.2)

where prime ′ denotes d/dz. Equation (4.2) admits generalized functions m ′(z)  δ(z)
matched by u − c = 0 at z = 0. The velocity u is given by the integral of the Green
function that relates m and u = g ∗m,

u− c  c

[∫
g(y) dy

]z
0

.(4.3)

4.1.2. Peakons, ramps, and cliffs for b = 0. When g(x) = e−|x|/α (the Green function
for the one-dimensional Helmholtz operator), we have m = u − α2uxx. Consequently, the
equation m′ = u′ − α2u′′′ = ±2δ(z) with u− c = 0 at z = 0 is satisfied by

u− c = ±c
[∫
e−|y |/α dy

]z
0

= ±c sgn(z)(1− e−|z|/α).(4.4)

This represents a rightward moving traveling wave that connects the left states u− c = ±c to
the same two right states.

Definition 4.1 (peakons). The symmetric solutions u = ±ce−|z|/α, with a jump in derivative
at z = 0, are the peakons, for which m = u− α2uxx and g(x) = e−|x|/α.

Definition 4.2 (cliffs). The antisymmetric solutions u = ±c sgn(z)(1−e−|z|/α) (with u−c =
±c connecting to u− c = ∓c), with no jump in derivative at z = 0, are the regularized shocks
(cliffs). These propagate rightward but may face either leftward or rightward, because (1.1) in
the absence of viscosity has no entropy condition that would distinguish between leftward and
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Figure 1. Ramps and cliffs for b = 0. Inviscid b-family, b = 0, α = 1, initial width w = 2.5, 5, 10.

rightward facing solutions. For more discussion of entropy conditions for the cliff solutions,
see [28].

Definition 4.3 (ramps). Equation (1.1) also has ramp-like similarity solutions u  x/t when
g(x) = e−|x|/α for any b. These may emerge in the initial value problem for the peakon case
of (1.1) and interact with the peakons and cliffs.

Remark 4.1 (first integral for b = 0 traveling waves). For b = 0, the traveling wave equation
(4.2) apparently has only the first integral for m = u− α2uxx,

(u− c)(u− α2u′′)− u2

2
+
α2

2
u′ 2 = K.(4.5)

Thus, perhaps surprisingly, we have been unable to find a second integral for the traveling
wave equation for peakons when b = 0.

Remark 4.2 (reversibility). Reversibility means that (1.1) is invariant under the transfor-
mation u(x, t) → −u(x,−t). Consequently, the rightward traveling waves have leftward mov-
ing counterparts under the symmetry c→ −c. The case of constant velocity u = ±c is also a
solution.

Figure 1 shows that the ramp and cliff pattern develops in the velocity profile un-
der the peakon equation (1.1) with g(x) = e−|x|/α for a set of Gaussian initial conditions
(5
√
π)−1 exp(−(x − 50)2/w) of increasing widths w = 2.5, 5, 10 for α = 1 and b = 0. Appar-

ently, the ramp solution is numerically stable, but the coexisting peakon solution is not stable
in this case. A complete stability analysis of these various solutions is outside the scope of the
present paper. Instead we shall investigate the solutions of (1.1) by numerically integrating
selected examples.
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4.2. Case b �= 0. For b �= 0, the conservation law (3.14) for traveling waves becomes

(
(u− c)m1/b

) ′ = 0 ,(4.6)

which yields after one integration

(u− c)bm = K ,(4.7)

where K is the first integral. For g(x) = e−|x|/α, so that m = u− α2uxx, this becomes

(u− c)b(u− α2u ′′) = K .(4.8)

For u− c �= 0, we rewrite this as

α2u ′′ = u−K(u− c)−b(4.9)

and integrate again to give the second integral in two separate cases,

α2u ′ 2 =

{
u2 − 2K

1−b(u− c)1−b + 2H for b �= 1 ,

u2 − 2K log(u− c) + 2H for b = 1 .

We shall rearrange this into quadratures:

± dz

α
=

du[
u2 − 2K

1−b(u− c)1−b + 2H
]1/2 for b �= 1(4.10)

and

± dz

α
=

du[
u2 − 2K log(u− c) + 2H

]1/2 for b = 1 .(4.11)

For b = 1 and K �= 0, the integral in (4.11) is transcendental.

4.2.1. Special cases of traveling waves for b �= 0.
• For K = 0 the two quadratures (4.10) and (4.11) are equal, independent of b, and
elementary, thereby yielding the traveling wave solutions

e−|z|/α =
u+

√
u2 + 2H

c+
√
c2 + 2H

,(4.12)

with u− c = 0 at z = 0.
• For H = 0 (4.12) recovers the peakon traveling wave.
• For H > 0 (4.12) gives a rightward moving traveling wave that is a continuous defor-
mation of the peakon.

• For H > 0 and c = 0 (4.12) gives stationary solutions of the form

u+
√
u2 + 2H  e−|z|/α .(4.13)
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Figure 2. Peakons for b = 2. Inviscid b-family, b = 2, α = 1, initial width w = 2.5, 5, 10.

4.3. Case b > 0.

4.3.1. Pulsons for b > 0. Equation (1.1) for b > 0 has nontrivial solutions vanishing as
|z| → ∞ that allow K = 0 in (4.7) so that

(u− c)bm = 0 .(4.14)

This admits the generalized function solutions

m = cδ(z) and u = g ∗m = cg(z) ,(4.15)

matched by u − c = 0 at z = 0. This is the pulson traveling wave, whose shape in u is given
by the kernel g. The constant velocity case u = c is a trivial traveling wave.

Remark 4.3 (pulson and peakon traveling waves). The pulson solution (4.15) requires g(0)
= 1 and g ′(0) = 0. We shall assume for definiteness that the even function g(z) achieves
its maximum at g(0) = 1 so that the symmetric pulson traveling wave u(x, t) = cg(x − ct)
moves at the speed of its maximum, which occurs at its center of symmetry. For example, the
peakon u(x, t) = ce−|x−ct| moves at the speed of its peak.

4.3.2. Peakons for b > 1. Equation (4.8), for which g(x) = e−|x|/α, yields the peakon
traveling wave

u(z) = ce−|z|/α and m(z) = u− α2u ′′ = 2cδ(z/α)(4.16)
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Figure 3. Peakons for b = 3. Inviscid b-family, b = 3, α = 1, initial width w = 2.5, 5, 10.

when K = 0.

Figures 2 and 3 show the effects of varying the width w of a Gaussian initial condition
(5
√
π)−1 exp(−(x − 50)2/w) for the peakon equation in a periodic domain when α = 1 and

b = 2, 3. As the width of the initial Gaussian increases, the figures show that more peakons
of width α = 1 are emitted. (This is consistent with conservation of momentum.) The
peakons are observed to be stable for b > 1, they propagate as solitary traveling waves, and
they interact elastically. We shall discuss the peakon interactions in more detail in sections 6
through 9.

4.4. Case b < 0. We shall examine the cases b = −0.5,−1,−2,−3,−4. Numerical results
for b = −2 and b = −3 are described in section 4.4.6. For other values of b < 0, the analysis is
similar, but it involves less elementary considerations such as transcendental or hyperelliptic
functions. The numerics shown later will demonstrate that the elementary solutions discussed
here, many of them stationary, do tend to emerge in numerical integrations of the initial value
problem for (1.1) with b ≤ −1.

4.4.1. Case b = −1/2. Figure 4 shows that a ramp and cliff pattern develops in the
velocity profile under the peakon equation (1.1) with g(x) = e−|x|/α for a set of Gaussian
initial conditions (5

√
π)−1 exp(−(x − 100)2/w) of increasing width w = 10, 15, 20 for α = 1

and b = −1/2. Apparently, the ramp solution is numerically stable for b = −1/2.
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Figure 4. Ramps and cliffs for b = −1/2. Inviscid b-family, b = −1/2, α = 1, initial width w = 10, 15, 20.

4.4.2. Case b = −1. For b = −1, (4.10) becomes

± dz

α
=

du[
u2 −K(u− c)2 + 2H

]1/2 ,(4.17)

which integrates to

e−|z|/α =
u+

√
u2 −K(u− c)2 + 2H +Kc

c+
√
c2 + 2H +Kc

,(4.18)

with u− c = 0 at z = 0. (K = 0 and H = 0 recover the peakon traveling wave.)
Remark 4.4 (stationary plane wave solutions for b = −1). Equation (1.1) for b = −1 is sat-

isfied for any wavenumber k by

m = cos(k(x− ct) + φ0) and u = ĝ(k) cos(k(x− ct) + φ0) ,(4.19)

where ĝ(k) is the Fourier transform of the kernel g(x) and φ0 is a constant phase shift. In
the absence of linear dispersion, these solutions are stationary, c = 0. When linear dispersion
is added to (1.1), these solutions are the one-dimensional analogues of Rossby waves in the
two-dimensional quasi-geostrophic equations.
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Figure 5. Nearly stationary solutions for b = −1. Inviscid b-family, b = −1, α = 1, initial width
w = 10, 15, 20.

Figure 5 shows the velocity profiles under evolution by the peakon equation, (1.1) with
g(x) = e−|x|/α, for a set of Gaussian initial conditions of increasing width w = 10, 15, 20 for
α = 1 and b = −1. Evidently, the coexisting peakon solution for b = −1 does not emerge
because K �= 0 and H �= 0 for this initial condition. Instead, the stable solution is essentially
stationary with a slight rightward drift and leaning slightly to the right. The reason for this
lethargic propagation becomes clear upon writing the b-equation solely in terms of the velocity
u(x, t) as

ut + (b+ 1)uux = α2(uxxt + uuxxx + buxuxx)(4.20)

= α2∂x

(
uxt + uuxx +

b− 1

2
u2x

)

= α2∂2x

(
ut + uux +

b− 3

2
u2x

)
.

Remark 4.5 (b = −1 is a turning point). When b = −1 the nonlinear steepening term (b+
1)uux vanishes in (4.20) and the residual propagation is due to its nonlinear “curvature terms”
with higher-order derivatives. In the parameter regime b > −1 (resp., b < −1) the solutions
of (1.1) or (4.20) move rightward (resp., leftward), provided the curvature terms on the right-
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hand side of (4.20) are either negative or sufficiently small.

Remark 4.6 (short wave limit equation). The high wavenumber, or short wave, limit of
(4.20) is

∂2x

(
ut + uux +

b− 3

2
u2x

)
= 0 .(4.21)

For b = 2 and limx→−∞ ux = 0, this integrates to become the Hunter–Saxton equation [31].
For b = 3, it is the second derivative of the Burgers equation.

4.4.3. Case b = −2 stationary solutions. For b = −2, the traveling wave quadrature
(4.10) becomes an elliptic integral,

± dz

α
=

d(u− c)[
u2 − 2K

3 (u− c)3 + 2H
]1/2 .(4.22)

The hyperbolic limit of this equation for H = 0 vanishes at infinity for the stationary solution
(c = 0) to give

u(z) =
3

2K
sech2

z

2α
.(4.23)

4.4.4. Case b = −3 stationary solutions. For b = −3, the hyperbolic limit H = 0 of
(4.10) is

± dz

α
=

du[
u2 − K

2 (u− c)4
]1/2 ,(4.24)

which for c = 0 is

± dz

α
=

du

u
[
1− K

2 u
2
]1/2(4.25)

and may be integrated in closed form to obtain a continuous deformation of the peakon,

e−|z|/α

1 +
√
1−K/2

=
u

1 +
√
1−Ku2/2

for b = −3 , c = 0 , and H = 0.(4.26)

Rearranging (4.26) and scaling u by u0 give

u(z) =
u0

A
2 e

|z|/α + (1− A
2 )e

−|z|/α ,(4.27)

with A = 1 +
√
1−K/2 so that A ∈ [1, 2] for K ∈ [0, 2]. For A = 1, we have u(z) =

u0 sech (z/α), and for A = 2, we recover the stationary peakon, u(z) = u0 e
−|z|/α.
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Figure 6. Stationary solutions for b = −2. Inviscid b-family, b = −2, α = 1, initial width w = 10, 15, 20.

4.4.5. Case b = −4 stationary solutions. For b ≤ −4, the analytical expressions for
the cnoidal waves become less elementary, because the integral in (4.10) is then hyperelliptic.
However, our numerics show that the dynamical behavior for b = −4 is similar to that of
the cases b = −2 and b = −3 shown in Figures 6–7. Namely, a series of transient leftward
propagating pulses, or leftons, of width alpha emerge and tend to a nearly steady state.
Consistent with momentum (area) conservation and the tendency toward pulses of width
alpha, the number of emerging leftons increases with the width of the initial Gaussian. At a
longer time scale, this train of pulses appears to tend toward stationary (c→ 0).

4.4.6. Numerical results for b = −2 and b = −3. Figures 6 and 7 show that a series of
leftons in the velocity profile emerges under the peakon equation for a set of Gaussian initial
conditions of increasing width w = 10, 15, 20 for α = 1 and b = −2,−3. Apparently these are
not peakons, because the velocity at which they move is not equal to their height. The leftons
emerge from the initial Gaussian in order of height and then tend toward a nearly stationary
state. The number of emerging pulses increases with the width of the initial Gaussian, as
expected from momentum (area) conservation and the tendency toward pulses of width alpha,
and the leftward speed of the emerging pulses increases with the magnitude of b. The latter is
consistent with the coefficient (b+1) of the nonlinearity in (4.20) as b becomes more negative.

Figure 8 shows the leftons at time T = 2500, versus u(x)  sech2(x/(2α)) for b = −2,
and versus u(x)  sech(x/α) for b = −3. By this time, the leftons have become stationary
solutions with c = 0 for both b = −2 and b = −3.
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Figure 7. Stationary solutions for b = −3. Inviscid b-family, b = −3, α = 1, initial width w = 10, 15, 20.

5. Pulson interactions for b > 0. As we have seen in section 4.3.1, the b-family of
equations (1.1) admits the pulson traveling wave solution (4.15) for b > 0. The interaction
dynamics among N of these pulsons is obtained by superposing the traveling wave solutions
u(x, t) = cg(x− ct) as

u(x, t) =
N∑
i=1

pi(t)g(x− qi(t)) and m(x, t) =

N∑
i=1

pi(t)δ(x− qi(t))(5.1)

for any b > 0 and u = g ∗m, where the function g is even so that g ′(0) = 0 and is bounded
and we may set g(0) = 1. For these superpositions of pulsons to be exact solutions, the
time-dependent parameters pi(t) and qi(t) must satisfy the following N -dimensional particle
dynamics equations obtained by substituting (5.1) into (1.1):

ṗi = (1− b) pi

N∑
j=1

pj g
′(qi − qj) = (1− b)

∂GN

∂qi
,(5.2)

q̇i =

N∑
j=1

pj g(qi − qj) =
∂GN

∂pi
.(5.3)
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Figure 8. Stationary solutions for b = −2 versus u(x) � sech2(x/(2α)), and for b = −3 versus u(x) �
sech(x/α). Inviscid b-family, b = −2,−3, α = 1, initial width w = 10.

Here the generating function GN is obtained by restricting the norm ‖m‖2g in (3.31) to the
class of superposed traveling wave solutions (5.1), as

GN =
1

2

N∑
i,j=1

pipj g(qi − qj) .(5.4)

Thus the symmetric kernel g(x) determines the shape of the traveling wave solutions (5.1),
and these traveling waves interact nonlinearly via the pulson dynamics of pi(t) and qi(t) with
i = 1, . . . , N in (5.2) and (5.3) for b > 0. We shall see that the character of these interactions
depends vitally on the value of b.

5.1. Pulson interactions for b = 2. When b = 2, (5.2) and (5.3) describe the canonical
dynamics of a Hamiltonian system with N degrees of freedom. These are the geodesic pulson
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Figure 9. Peakons of width α for b = 2: collisions. Inviscid b-family, b = 2, α = 5, initial width w = 5.

equations studied in Fringer and Holm [22], in which the following results are obtained:
• Equation (1.1) conserves the kinetic energy 1

2‖m‖2g = 1
2

∫∞
−∞mg ∗mdx.

• Equations (5.2) and (5.3) describe canonical geodesic motion in an N -dimensional config-
uration space whose cometric is gij(q) = g(qi − qj).

• The generating function GN is the kinetic energy Hamiltonian for the canonical geodesic
motion.

• The solutions in (5.1) behave as particle-like pulses whose pairwise interactions as deter-
mined by (5.2) and (5.3) comprise nonlinear, but elastic, scattering events.

• The pairwise interactions for the pulsons can be solved analytically for any symmetric
function g(x).

Remark 5.1. As we shall show, the last two statements also hold for any b > 1.

5.2. Peakon interactions for b = 2 and b = 3: Numerical results.
• Figure 9 shows the evolution of the velocity profiles in the 2-peakon and 3-peakon
interactions for b = 2, with g(x) = e−|x|/α and a periodic domain. The 3-peakon
interaction decomposes into a series of 2-peakon interactions. These simulations verify
the analytical results for the 2-peakon interaction to three significant figures over
propagation distances of about sixty peakon widths.

• Figure 10 shows the evolution of the velocity profiles in the 2-peakon and 3-peakon
interactions for b = 3, with g(x) = e−|x|/α and a periodic domain.

• Figure 11 shows that peakons of initial width greater than α break up into peakons
of width α under the evolution of the peakon equation in a periodic domain at fixed
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Figure 10. Peakons of width α for b = 3: collisions. Inviscid b-family, b = 3, α = 5, initial width w = 5.

values of α = 1 and b = 2, 3. The emitted peakons are stable, propagate as solitary
traveling waves, and interact elastically. Conversely, a peakon or other initial condition
that is narrower than α will decompose into two oppositely moving trains of peakons
and antipeakons, each of width α.

5.3. Pulson-pulson interactions for b > 0 and symmetric g. For N = 2, the pulson
dynamics in (5.2) and (5.3) for b > 0 reduces to

dp1
dt

= (1− b)
∂G

∂q1
,

dp2
dt

= (1− b)
∂G

∂q2
,(5.5)

dq1
dt

=
∂G

∂p1
,

dq2
dt

=
∂G

∂p2
,(5.6)

and the generating function from (5.4) is given by

G =
1

2
(p21 + p22) + p1p2 g(q1 − q2) .(5.7)

The equations are canonically Hamiltonian only for b = 2, which includes the CH case for
which g(q1 − q2) = e−|q1−q2| gives the peakon solutions.
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Figure 11. Peakons of width > α for b = 2, 3: emergence of width-α peakons. Inviscid b-family, b = 2, 3,
α = 1, initial width w = 5.

Conservation laws and reduction to quadrature. Besides the total momentum

P = p1 + p2 ,(5.8)

the 2-pulson system for b > 0 and symmetric g also conserves a second quantity that is
quadratic in p1 and p2, namely,

H = p1p2
(
1− g(q1 − q2)

)b−1
.(5.9)

For a Hamiltonian system with two degrees of freedom, this second conservation law would
be enough to ensure integrability by Liouville’s theorem. Even in the present case of b > 0
without a Hamiltonian structure, this will be sufficient to reduce the 2-pulson system to
quadratures.3

Following the analysis for the case b = 2 and arbitrary g in Fringer and Holm [22], we
introduce sum and difference variables as

P = p1 + p2 , Q = q1 + q2 , p = p1 − p2 , q = q1 − q2 .(5.10)

In these variables, the generating function (5.7) becomes

G =
1

4
P 2(1 + g(q)) +

1

4
p2(1− g(q)) ,(5.11)

3When b = 1, the momenta p1 and p2 are separately conserved, and the problem immediately reduces to
quadratures in q = q1 − q2 and Q = q1 + q2.
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and the second constant of motion (5.9) becomes

H =
1

4
(P 2 − p2)

(
1− g(q)

)b−1
.(5.12)

Likewise, the 2-pulson equations of motion transform to sum and difference variables as

dP

dt
= 2(1− b)

∂G

∂Q
= 0 ,

dQ

dt
= 2

∂G

∂P
= P (1 + g(q)) ,

dp

dt
= 2(1− b)

∂G

∂q
=

1

2
(1− b)(P 2 − p2)g ′(q) ,

dq

dt
= 2

∂G

∂p
= p(1− g(q)).

Eliminating p2 between the formula for H and the equation of motion for q yields

(
dq

dt

)2
= P 2

(
1− g(q)

)2 − 4H
(
1− g(q)

)3−b
.(5.13)

We rearrange this into the following quadrature:

dt =
dg(q)

g ′(q)
√
Z
, Z = P 2

(
1− g(q)

)2 − 4H
(
1− g(q)

)3−b
.(5.14)

This simplifies to the quadratic Z = P 2(1 − g(q))2 − 4H when b = 3. For the peakon case,
we have g(q) = eq so that g ′(q) = g(q) and the quadrature (5.14) simplifies to an elementary
integral for b = −1, 0, 1, 2, 3. Having obtained q(t) from the quadrature, the momentum
difference p(t) is found from (5.12) via the algebraic expression

p2 = P 2 − 4H(
1− g(q)

)b−1 ,(5.15)

in terms of q and the constants of motion P and H. Finally, the sum Q(t) is found by a
further quadrature. The remainder of the solution for arbitrary b and g closely follows Fringer
and Holm [22] for the case b = 2.

Upon writing the quantities H, P , and G as

H = c1c2, P = c1 + c2, G =
1

2
c21 +

1

2
c22 =

1

2
P 2 −H,(5.16)

in terms of the asymptotic speeds of the pulsons, c1 and c2, we find the relative momentum
relation

p2 = (c1 + c2)
2 − 4c1c2(

1− g(q)
)b−1 .(5.17)

This equation has several implications for the qualitative properties of the 2-pulson collisions.
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Definition 5.1. Overtaking, or rear-end, pulson collisions satisfy c1c2 > 0, while head-on
pulson collisions satisfy c1c2 < 0.

The pulson order q1 < q2 is preserved in an overtaking, or rear-end, collision when b > 1.
This follows, as stated in Proposition 5.2.

Proposition 5.2 (preservation of pulson order). For overtaking, or rear-end, collisions when
b > 1, the 2-pulson dynamics preserves the sign condition q = q1 − q2 < 0.

Proof. Suppose the peaks were to overlap in a collision for b > 1, thereby producing q = 0
during a collision. The condition g(0) = 1 implies that the second term in (5.17) diverges for
b > 1 when the overlap occurs. However, this divergence would contradict p2 ≥ 0.

Consequently, seen as a collision between two initially well-separated “particles” with
initial speeds c1 and c2, the separation q(t) reaches a nonzero distance of closest approach
qmin in an overtaking, or rear-end, collision that may be expressed in terms of the pulse
shape, as in Corollary 5.3.

Corollary 5.3 (minimum separation distance). The minimum separation distance reachable
in 2-pulson collisions with c1c2 > 0 is given by

(
1− g(qmin)

)b−1
=

4c1c2
(c1 + c2)2

.(5.18)

Proof. Set p2 = 0 in (5.17).

Remark 5.2. We shall use result (5.18) later in checking the accuracy of our numerical
simulations of these 2-pulson interactions.

Proposition 5.4 (head-on collisions admit q → 0). The 2-pulson dynamics allows the over-
lap q → 0 when b > 1 in head-on collisions.

Proof. Because p2 ≥ 0, the overlap q → 0 implying g → 1 is only possible in (5.17) with
b > 1 for c1c2 < 0, that is, for the case of head-on collisions.

Remarks about head-on collisions. For b > 1, (5.17) implies that p2 → ∞ diverges when
q → 0 in head-on collisions. The case b = 1 is regular, and (5.17) reduces to the constant
relation p2 = (c1 − c2)

2. For 0 < b < 1, the quantity p2 no longer diverges when q → 0, and
the solution for the relative momentum in head-on collisions is again regular.

5.4. Pulson-antipulson interactions for b > 1 and symmetric g.

Head-on pulson-antipulson collision. We consider the special case of completely antisym-
metric pulson-antipulson collisions, for which p1 = −p2 = p/2 and q1 = −q2 = q/2 (so that
P = 0 and Q = 0). In this case, the quadrature formula (5.14) reduces to4

±(t− t0) =
1√−4H

∫ q(t)

q(t0)

dq ′
(
1− g(q ′)

)(3−b)/2 ,(5.19)

and the second constant of motion in (5.12) satisfies

−4H = p2
(
1− g(q)

)b−1
.(5.20)

4For b = 3, the quadrature formula (5.19) for the separation distance in the pulson-antipulson collision
reduces to straight-line motion, q(t) − q(t0) = ±2c(t− t0).
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After the collision, the pulson and antipulson separate and travel oppositely apart so that
asymptotically in time g(q) → 0, p → 2c, and H → −c2, where c (or −c) is the asymptotic
speed (and amplitude) of the pulson (or antipulson). Setting H = −c2 in (5.20) gives a
relation for the pulson-antipulson (p, q) phase trajectories for any kernel,

p = ± 2c(
1− g(q)

)(b−1)/2 .(5.21)

Notice that p diverges for b > 1 (and switches branches of the square root) when q → 0+

because g(0) = 1. In contrast, p remains constant for b = 1 and vanishes for b < 1 (and again
switches branches of the square root) when q → 0+. Note that our convention for switching
branches of the square root allows us to keep q > 0 throughout, so the particles retain their
order.

Remark about preservation of particle identity in collisions. The relative separation distance
q(t) in pulson-antipulson collisions is determined by following a phase point along a level
surface of the second constant of motion H in the phase space with coordinates (q, p). Because
H is quadratic, the relative momentum p has two branches on such a level surface, as indicated
by the ± sign in (5.21). At the pulson-antipulson collision point, both q → 0+ and either
1/p → 0+ or p → 0+, so following a phase point through a collision requires that one must
choose a convention for which a branch of the level surface is taken after the collision. Taking
the convention that p changes sign (corresponding to a “bounce”) but q does not change sign
(so the “particles” keep their identity) is convenient, because it allows the phase points to
be followed more easily through multiple collisions. This choice is also consistent with the
pulson-pulson and antipulson-antipulson collisions. In these other “rear end” collisions, as
implied by (5.17), the separation distance always remains positive, and again the particles
retain their identity.

Theorem 5.5 (pulson-antipulson exact solution). The exact analytical solution for the pul-
son-antipulson collision for any b and any symmetric g may be written as a function of position
x and the separation between the pulses q for any pulse shape or kernel g(x) as

u(x, q) =
c(

1− g(q)
)(b−1)/2

[
g(x+ q/2)− g(x− q/2)

]
,(5.22)

where c is the pulson speed at sufficiently large separation and the dynamics of the separation
q(t) is given by the quadrature (5.19) with

√−4H = 2c.
Proof. The solution (5.1) for the velocity u(x, t) in the head-on pulson-antipulson collision

may be expressed in this notation as

u(x, t) =
p

2
g(x+ q/2)− p

2
g(x− q/2) .(5.23)

In using (5.21) to eliminate p, this solution becomes (5.22).
Figure 12 shows the exact solutions for the peakon-antipeakon collision in the cases b = 1,

b = 2, and b = 3. The positive and negative peaks approach each other until the solution
develops a negative vertical slope in finite time. As the separation q → 0, the positive and
negative peaks “bounce,” thereby reversing polarity, after which they separate in opposite
directions.
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Figure 12. Peakon-antipeakon collisions for b = 1, 2, 3. Inviscid b-family, b = 1, 2, 3, α = 1, initial width
w = 1.

5.5. Specializing pulsons to peakons for b = 2 and b = 3. We now restrict to g(x) =
e−|x|, the Green function for the one-dimensional Helmholtz operator satisfying

(
1− d2

dx2

)
e−|x| = 2δ(x) .(5.24)

In this case, m = u − α2uxx, and the pulson traveling wave solution is given by u(x, t) =
cg(x− ct) = ce−|x−ct|, has a discontinuity in derivative at its peak, and is called the peakon.
For b = 2 and b = 3 in the peakon case, the main results are the following:

• For b = 2 and g(x) = e−|x|, (1.1) becomes the zero-dispersion limit of the integrable
CH for shallow water waves discovered in Camassa and Holm [7]. Upon restoring
its linear dispersion, this equation was recently proved to be a higher-order accurate
asymptotic description of shallow water waves in Dullin, Gottwald, and Holm [17].

• For b = 3 and g(x) = e−|x|, (1.1) becomes the integrable PDE studied in Degasperis,
Holm, and Hone [15].

• When g(x) = e−|x|, the N -peakon dynamics for both b = 2 and b = 3 turns out to be
integrable—as is the dynamics of the original PDE (1.1). The solutions of the initial
value problem for (1.1) for both b = 2 and b = 3 may be found analytically by using
the IST method.

• The two cases b = 2 and b = 3 have quite different isospectral eigenvalue problems.
These are discussed in Camassa and Holm [7] and in Dullin, Gottwald, and Holm [17]
for the case b = 2, and in Degasperis, Holm, and Hone [15] for the case b = 3. See also
Beals, Sattinger, and Szmigielski [6] for a discussion of solving the inverse isospectral
problem using classical methods for the case b = 2 for initial momentum distributions
m(x, 0) of a single sign.

6. Peakons of width α for arbitrary b. When g = e−|x|/α, we may invert the velocity-
momentum relation u = g∗m by using the Green function expression (5.24) with the Helmholtz
operator to find m = u − α2uxx. Hence (1.1) may be rearranged into the local momentum
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conservation law,

mt = − ∂

∂x

(
mu+

b− 1

2
u2 − b− 1

2
α2u2x

)
.(6.1)

This conservation law for peakons may also be rewritten in convection form:

ut + uux = − τx with (1− α2∂2x)τ =
b

2
u2 +

3− b

2
α2u2x .(6.2)

The two forms (6.1) and (6.2) of the b-family of equations (1.1) suggest that values b = 0, 1, 3
are special. These values of b are natural candidates for boundaries, or bifurcation points for
changes in solution behavior.

Equation (6.2) describes peakons of shape g(x) = e−|x|/α. This peakon equation will form
the basis of the rest of our study.

6.1. Slope dynamics for peakons: Inflection points and the steepening lemma when
1 < b ≤ 3. We shall consider solution dynamics of (6.2) in the peakon case satisfying (4.16)
or, equivalently, (1.1) with g(x) = e−|x|/α, which satisfies

(1− α2∂2x)e
−|x|/α = 2αδ(x) .(6.3)

For this case, and with vanishing boundary conditions at spatial infinity, (6.2) and (6.3) imply
the peakon equation on the real line,

ut + uux = − 1

2α

∫ ∞

−∞
e−|x−y |/α(buuy + (3− b)α2uyuyy

)
dy .(6.4)

Taking the x-derivative gives the equation for the slope ux(x, t)

uxt + uuxx + u2x = − 1

2α

∂

∂x

∫ ∞

−∞
e−|x−y |/α(buuy + (3− b)α2uyuyy

)
dy

=
1

2α2

∫ ∞

−∞
e−|x−y |/α sgn (x− y)

(
buuy + (3− b)α2uyuyy

)
dy .(6.5)

We shall use these expressions to prove the following.
Proposition 6.1 (peakon steepening lemma). For b in the range 1 < b ≤ 3, a sufficiently

negative slope at an inflection point of u will become vertical in finite time under the dynamics
of the peakon equation (6.4).

Proof. Following Camassa and Holm [7], we shall consider the evolution of the slope ux
at an inflection point x = x̄(t). Define the slope at the inflection point as s(t) = ux(x̄(t), t)
and note that uxx(x̄(t), t) = 0. Then (6.5) yields the following evolution equation for s(t):

ds

dt
+ s2 =

1

2α2

∫ ∞

−∞
e−| x̄(t)−y |/α sgn (x̄(t)− y)

1

2

∂

∂y

(
bu2 + (3− b)α2u2y

)
dy.(6.6)

Integrating by parts using the definition |y| = y sgn (y) so that d|y|/dy = sgn (y)+2yδ(y) and
recalling that yδ(y) = 0 give

ds

dt
= −

(
b− 1

2

)
s2 +

b

2α2
u2 − 1

2α2

∫ ∞

−∞
e−| x̄(t)−y |/α 1

2α

(
bu2 + (3− b)α2u2y

)
dy.
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Hence, in the range 0 ≤ b ≤ 3, the last term is negative and we have the slope inequality

ds

dt
≤ −

(
b− 1

2

)
s2 +

b

2α2
u2 for 0 ≤ b ≤ 3 .(6.7)

We suppose the solution satisfies (bu2/α2) < M for some constant M .5 Then

ds

dt
≤ −

(
b− 1

2

)
s2 +

M

2
for 0 ≤ b ≤ 3 .(6.8)

Consequently, if b > 1,

dX

1−X2
= d coth−1(X) ≤

√
M for X =

√
b− 1

M
s .(6.9)

This implies, for s ≤ −√
M initially negative, that

s ≤
√
M coth

(
σ +

√
b− 1

M

M

2
t

)
for 1 < b ≤ 3 ,(6.10)

where the dimensionless integration constant σ < 0 determines the initial slope, which is
negative. Under these circumstances, the slope at the inflection point must become vertical
by time t = −2σ/√M(b− 1).

Remarks for 1 < b ≤ 3.
• If the initial condition is antisymmetric for 1 < b ≤ 3, then the inflection point at
u = 0 is fixed and dx̄/dt = 0 due to the mirror reflection symmetry (u, x) → (−u,−x)
admitted by (6.4). In this case, M = 0, and (6.8) implies

ds

dt
≤ −

(
b− 1

2

)
s2 ⇒ s(t) ≤ −2

b− 1

(
1

t0 − t

)
.(6.11)

Hence verticality s = −∞ will develop in finite time, regardless of how small the initial
slope |s(0)|, provided it is negative, s(0) < 0, as in Figure 12. If the initial slope is
positive, then under this evolution it will relax to zero from above.

• Consequently, traveling wave solutions of (6.4) cannot have the usual sech-like shape for
solitons because inflection points with sufficiently negative slope can produce unsteady
changes in the shape of the solution profile.

• In this context, for b = 2, a result in [11] shows that the slope of the solution u(x, t) is
always bounded if the initial distribution of momentum m(x, 0) does not change sign.

Caveat. Strictly speaking, the formal proof of the peakon steepening lemma in Proposition
6.1 requires additional regularity assumptions on the initial data, since the slope function s(t)
is generally not differentiable. However, provided that the initial data is regular enough,
e.g., initial velocity in the Sobolev space u(x, 0)∈H2(R), this formal argument can be made
rigorous. See Theorem 2.1 in [12] for an example. Under this additional regularity assumption,
one finds that (6.7) and (6.8) in the proof hold almost everywhere in time, but the result of
the Proposition (6.10) holds everywhere.

5If this inequality is violated, we have another type of singularity. However, for b = 2, the constant M can
be estimated using a Sobolev inequality. In fact, M = 4H1(u)/α

2 because for this case we have

max
x∈R

[u2(x, t)] ≤ 1

α

∫ ∞

−∞
(u2 + α2u2

x) dx = 2H1 = const for b = 2 .
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6.2. Cases 0 ≤ b ≤ 1. In the range 0 ≤ b ≤ 1, we have from (3.21) that∫ ∞

−∞
|m|1/b dx =

∫ ∞

−∞
|m0|1/b dx , where m0(x) = m(x, 0) .(6.12)

This conservation law implies an elliptic regularity estimate showing that the slope s = ux is
always bounded under the dynamics of the peakon equation (6.4). See [30] for a proof of this
result and more discussion of its implications.

7. Adding viscosity to peakon dynamics. In the remainder of this paper, we shall restrict
our one-dimensional considerations to the peakon case g(x) = e−|x|/α with length scale α and
investigate the fate of the peakon solutions when viscosity is introduced for given values of
b and α. For purposes of comparison with previous results in the literature, we shall also
extend (1.1) to a new family of equations that includes the Burgers equation by introducing
two additional real parameters. These are the viscosity ν and a multiplier β for the stress, or
pressure gradient.

First, we shall introduce constant viscosity ν > 0 into (1.1) to form the viscous b-family
of equations for the peakon case g(x) = e−|x|/α as follows:

mt + umx︸ ︷︷ ︸
convection

+ b uxm︸ ︷︷ ︸
stretching

= ν mxx︸ ︷︷ ︸
viscosity

, with m = u− α2uxx .(7.1)

As in (4.20), this equation with viscosity may be expressed solely in terms of the velocity
u(x, t) as

ut + (b+ 1)uux − νuxx = α2(uxxt + uuxxx + buxuxx − νuxxxx)(7.2)

= α2∂x

(
uxt + uuxx − νuxxx +

b− 1

2
u2x

)

= α2∂2x

(
ut + uux − νuxx +

b− 3

2
u2x

)
.

Thus the nonlinear steepening term increases with b as (b+1)uux. When α→ 0, the previous
equation reduces to

ut + (b+ 1)uux − νuxx = 0,(7.3)

and one then recovers the usual Burgers equation either by rescaling dimensions or by setting
b = 0. For b = 2, (7.1) is the one-dimensional version of the three-dimensional Navier–Stokes-
alpha model for turbulence [9]. For b = −1, the evolution in (7.2) occurs only by higher-order
terms.

The viscous b-family of peakon equations (7.1) may be rearranged into two other equivalent
forms that are convenient for introducing a stress multiplier. These are either its equivalent
conservative form,

mt = − ∂

∂x

(
mu+

b− 1

2
u2 − b− 1

2
α2u2x

)
+ ν mxx ,(7.4)

or its equivalent convective form,

(1− α2∂2x)
(
ut + uux − νuxx

)
= − ∂x

(
b

2
u2 +

3− b

2
α2u2x

)
.(7.5)
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Stress multiplier β. Next, we shall introduce a stress multiplier β as a second parameter
that for β �= 1 deforms the convective form of the viscous b-family of equations (7.5) into the
following family of Burgers-like equations with four parameters b, α, ν, and β:

ut + uux − νuxx = −β τx with (1− α2∂2x)τ =
b

2
u2 +

3− b

2
α2u2x .(7.6)

When β = 0, the Burgers-αβ equation (7.6) recovers the usual Burgers equation. When β = 1,
(7.6) recovers the viscous b-family of peakon equations (7.1).

We shall seek solutions of the Burgers-αβ equation (7.6), either on the real line and
vanishing at spatial infinity or in a periodic domain, for various values of its four parameters
b, α, ν, and β. Under these boundary conditions, when β → 1, (7.6) recovers the convective
form (7.5) of the viscous b-family for peakons with g(x) = e−|x|/α. Thus the viscous b-family
of equations (7.1)–(7.5) deforms into the Burgers-αβ equation (7.6) when β �= 1, and the
Burgers-αβ equation (7.6) reduces to the usual Burgers equation when β = 0. We shall be
interested in the effects of the four parameters b, α, ν, and β on the solutions of the Burgers-
αβ equation (7.6). We shall be interested especially in the fate of the peakon solutions upon
introducing the parameters ν and β so as to retain H1α control of the velocity. As we shall see,
such control requires a special relation between the parameters b and β, namely, (3− b)β = 1.

7.1. Burgers-αβ equation: Analytical estimates.
Proposition 7.1 (H1α control of the velocity). The Burgers-αβ equation (7.6) controls the α-

weighted H1 norm of the velocity

‖u‖2H1
α
=

∫ ∞

−∞

(
u2 + α2u2x

)
dx

for α2 �= 0, provided (3− b)β = 1.
Proof. The spatial derivative of the Burgers-αβ equation (7.6) yields the dynamics for the

slope s = ux as

ut + uux − νuxx = −βτx ,
st + usx + s2 − νsxx = −β τxx , with s = ux ,

−α2τxx = b

2
u2 +

3− b

2
α2 u2x − τ .

In turn, these slope dynamics equations imply the following evolution of the α-weighted H1

density (cf. (6.6)):

∂

∂t

(
1

2
u2 +

α2

2
s2
)
=

∂

∂x

(
1

3

(
1− bβ

2

)
u3 + βuτ +

α2

2
us2 + νuux + να2ssx

)

− νu2x − να2s2x +
α2

2

(
(3− b)β − 1

)
s3 .

Thus, provided

(3− b)β = 1 ,
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the last term will vanish. Under this condition, for periodic or vanishing boundary conditions,
the α-weighted H1 norm

‖u‖2H1
α
=

∫ ∞

−∞

(
u2 + α2u2x

)
dx

will decay monotonically under the Burgers-αβ dynamics for α2 �= 0.
Remarks.
• When ν → 0 in the Burgers-αβ equation, the α-weighted H1 norm is conserved for
(3 − b)β = 1. This relation cannot be satisfied for b = 3. Thus the proof of decay
of the α-weighted H1 norm under the Burgers-αβ dynamics is inconclusive for ν �= 0
when b = 3. However, one can expect on physical grounds that this norm will also
decay for b = 3 if ν is sufficiently large.

• We shall restrict our remaining considerations to those values of b and β for which
the α-weighted H1 norm is bounded or decays monotonically. In one dimension,
this control of the α-weighted H1 norm implies the solution for the velocity will be
continuous.

• Namely, we shall consider the following cases with (3 − b)β = 1: (b = 0, β = 1/3),
(b = 1, β = 1/2), and (b = 2, β = 1).

Proposition 7.2 (Burgers-αβ steepening lemma). For b and β in the range (3 − b)β ≤ 2 a
sufficiently negative slope at an inflection point of velocity u will become vertical in finite time
under the dynamics of the inviscid Burgers-αβ equation (7.6) with ν = 0.

Proof. The proof follows that for the peakon steepening lemma in Proposition 6.1 and uses
the slope equation following from the Burgers-αβ equation (7.6) with ν = 0 that corresponds
to (6.5) for the peakons, modified to include β,

uxt + uuxx + u2x = − β

2α

∂

∂x

∫ ∞

−∞
e−|x−y |/α(buuy + (3− b)α2uyuyy

)
dy

=
β

2α2

∫ ∞

−∞
e−|x−y |/α sgn (x− y)

(
buuy + (3− b)α2uyuyy

)
dy .(7.7)

Equation (7.7) yields the inviscid Burgers-αβ evolution of the slope s(t) = ux(x̄(t), t) at an
inflection point x = x̄(t) as

ds

dt
≤ −(2− (3− b)β

)s2
2
+
βM

2
for 0 ≤ b ≤ 3 .(7.8)

This holds provided we assume the solution satisfies (bu2/α2) < M for some constant M .
Consequently, if 2− (3− b)β > 0, we have

dX

1−X2
= d coth−1(X) ≤

√
M for X =

√
2− (3− b)β

Mβ
s .(7.9)

For s ≤ −√
M initially negative and β > 0, this implies

s ≤
√
M coth

(
σ +

√
2− (3− b)β

Mβ

M

2
t

)
for 0 ≤ 3− 2

β
< b ≤ 3 ,(7.10)
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where the dimensionless integration constant σ < 0 determines the initial slope, which is
negative. Under these circumstances, provided the inflection point continues to exist, its

negative slope must become vertical by time t = −2σ
M

√
Mβ

2−(3−b)β .
Caveat. As for the peakon steepening lemma in Proposition 6.1, this formal proof for

Proposition 7.2 via the slope dynamics for s(t) requires an additional assumption of regu-
larity on the initial data to make it rigorous. Under the additional regularity assumption
u(x, 0)∈H2(R), one may show as in [12] that (7.8) holds almost everywhere in time, while the
result (7.10) holds everywhere.

Corollary 7.3 (inviscid Burgers-αβ shocks). Solutions of the inviscid Burgers-αβ equation
(7.6) with ν = 0 that remain continuous in velocity must develop negative vertical slope in
finite time.

Proof. According to Proposition 7.1, continuity of the velocity and hence control of the
H1 norm ‖u‖H1

α
require that (3− b)β = 1. This is in the parameter range where Proposition

7.2 applies. Consequently, verticality will form at an inflection point of negative slope under
the dynamics of the inviscid Burgers-αβ equation (7.6) with ν = 0 for (3− b)β ≤ 2.

Remark 7.1. Hence, to remain continuous without viscosity, the solution of the inviscid
Burgers-αβ equation must either develop verticality at an inflection point of negative slope or
evolve to eliminate such points entirely.

7.2. Burgers-αβ traveling waves for β(3− b) = 1 and ν = 0. For ν = 0, the Burgers-
αβ equation (7.6) has traveling waves given by

(u− c)u ′ + βτ ′ = 0 and τ − α2τ ′′ =
b

2
u2 +

3− b

2
α2(u ′)2 ,(7.11)

which yield after one integration

u2

2
− c u+ βτ = K,(7.12)

where K is the first integral. Consequently, we find

τ − α2τ ′′ =
1

β

(
K + c u− u2

2
+ α2

(
(u− c)u ′′ + (u ′)2

))
.(7.13)

The second equation in (7.11) integrates for the special case of β(3− b) = 1,

2Ku+ cu2 − βu3 + α2(u− c)(u ′)2 = 2H.(7.14)

For the special case K = 0 = H, this becomes

α2(u− c)(u ′)2 = (βu− c)u2 for β(3− b) = 1,(7.15)

and we recover the peakon solution u(z) = ce−|z|/α for β = 1. In the general case that K �= 0
and H �= 0, we rearrange (7.14) into the following quadrature for inviscid Burgers-αβ traveling
waves:

± dz

α
=

(u− c)1/2 du[
2H − 2Ku− cu2 + βu3

]1/2 for β(3− b) = 1 and ν = 0 .(7.16)

In what follows, we shall consider the cases (b = 0, β = 1/3), (b = 1, β = 1/2), and (b = 2,
β = 1) when ν �= 0.
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Figure 13. Effect of increasing α for b = 0. Viscous b-family, b = 0, α = 1/4, 1, 4, ν = 0.005, initial width
w = 5.

8. The fate of peakons under (1) adding viscosity and (2) Burgers-αβ evolution.

8.1. The fate of peakons under adding viscosity. The four figures mentioned below show
the effects on the initial value problem for the viscous b-equation (7.1) of varying α and b at
fixed viscosity for an initial velocity distribution given by a peakon of width w = 5 and initial
height U  0.1. The parameter b takes the values b = 0, 1, 2, 3. In these four figures, the
resolution is 213 points on a domain size of 200 with viscosity ν = 0.005. This corresponds to
a grid-scale Reynolds number of Re∆x = U∆x/ν = O(1) for velocity U  0.1. The pair of
figures after these four then shows the effects on the same problem of increasing viscosity ν
at fixed α for b = 2 and b = 3.

Figure 13 shows three plots of the evolution of the velocity profile under the viscous b-
equation (7.1) of an initial peakon of width five, as a function of increasing α = 1/4, 1, 4 at
fixed viscosity ν = 0.005 for b = 0. The peakon leans to the right and develops a Burgers-
like triangular shock, or ramp and cliff, whose width increases and peak height decreases as
α increases. These three plots show no discernable differences for b = 0 as the viscosity is
decreased to ν = 10−6. Hence the width of the cliff in the ramp and cliff structure for b = 0
is set by the value of α in this range of parameters.

Figure 14 shows three plots of the same type of evolution from a peakon initial condition
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Figure 14. Effect of increasing α for b = 1. Viscous b-family, b = 1, α = 1/4, 1, 4, ν = 0.005, initial width
w = 5.

of width w = 5, as α is varied for b = 1. The front of the ramp and cliff structure propagates
faster and is sharper for b = 1 than for b = 0 when α = 1/4 and α = 1. This increase in
speed appears to occur because the coefficient increases in the steepening term (b+ 1)uux in
(7.2). A nascent peakon begins to form close behind the front at the top of the ramp and then
eventually gets absorbed into the ramp and cliff. For α = 4, however, this nascent peakon
forms more completely and nearly escapes.

Figure 15 again shows three plots of the evolution from a peakon initial condition of width
w = 5 as α is varied, this time for b = 2. The ramp and cliff structure is faster for b = 2 than
for b = 1 when α = 1/4. When α = 1, a series of three nascent peakons forms close behind
the front and then overtakes the ramp and cliff structure and slightly affects its propagation
before eventually being absorbed. For α = 4, however, the initial peakon simply propagates
and decays under viscosity, although it is slightly rounded at the top.

Figure 16 also shows three plots of the evolution from a peakon initial condition of width
w = 5 as α is varied, this time for b = 3. The ramp and cliff structure moves faster yet, and
a single nascent peakon appears just behind the front already for α = 1/4. When α = 1, a
series of three nascent peakons forms initially close behind the front, and they nearly escape
before being slowed by viscosity. The leading peakon decays and slows due to viscosity. Then
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Figure 15. Effect of increasing α for b = 2. Viscous b-family, b = 2, α = 1/4, 1, 4, ν = 0.005, initial width
w = 5.

the following ones overtake and collide with the ones ahead as the ramp and cliff structure
forms. These collisions occur at higher relative velocity for b = 3 than for b = 2, and they
significantly affect the propagation and eventual formation of the ramp and cliff. In contrast,
for α = 4, the initial peakon keeps its integrity and simply propagates rightward and decays
under viscosity. The propagating peakon for α = 4 at this viscosity decays more slowly and
is sharper at the top for b = 3 than for b = 2.

Remark 8.1 (exchange of stability). To see the exchange of stability between the ramp and
cliff structure and the peakon as b changes, we perform the following numerical experiment.
First, we run the viscous b-equation (7.1) with b = 0, α = 1, ν = 10−5, and an initial peakon
of width w = 5. As we see in Figures 17 and 18, this evolves into the ramp and cliff formation
even for nearly zero viscosity. Once the final ramp and cliff state is formed, we then use it as
the new initial condition for (7.1) with either b = 2 or b = 3. The new evolution breaks the
ramp and cliff structure into peakons, and the new final state is a rightward moving train of
peakons ordered by height.

For Figures 19 and 20, we ran the same numerical experiment, this time with a value α = 5
equal to the width of the initial peakon. The initial peakon “borrows from the negative” to
form a ramp, which is not quite antisymmetric because the total area of the initial peakon
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Figure 16. Effect of increasing α for b = 3. Viscous b-family, b = 3, α = 1/4, 1, 4, ν = 0.005, initial width
w = 5.

must be preserved. At time T = 150, we switch to b = 2 (top plot) or b = 3 (bottom plot)
and again observe a train of stable peakons emerging from the now unstable ramp.

Finally, for Figures 21 and 22, we again run the numerical experiment with α = 1 and
an initial peakon width w = 5 but this time changing to b = −2 or b = −3 after the ramp
has formed. The new evolution breaks the ramp and cliff structure into leftons like those in
Figures 6 and 7.

Remark 8.2 (increasing viscosity). The effect of increasing viscosity on the evolution of the
peakon initial condition can be estimated from the α-scale Reynolds number defined by

Reα = Uα/ν = (α/∆x)Re∆x .

For (α/∆x) = 40, U = 0.1, and increasing viscosity ν, the Reynolds numbers Re∆x and Reα
decrease as

Re∆x  2, 0.2, 0.02 and Reα = 80, 8, 0.8 for ν = 0.01, 0.1, 1.0.

Perhaps not surprisingly, when Reα = O(1), the viscosity will diffuse through the initial
peakon before it can fully form. Figures 23 and 24 show that this effect increases as Reα
decreases.
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Figure 17. Exchange of stability between ramps and peakons for b = 0, 2, 3, when width > α. Viscous
b-family, b = 0 → 2, 3, α = 1, ν = 10−5, initial width w = 5.

8.2. The fate of peakons under Burgers-αβ evolution. Figures 25 and 26 show the
effects on the peakon initial value problem for the Burgers-αβ evolution of varying α and b
with (3−b)β = 1 at constant viscosity. We shall consider the following cases with (3−b)β = 1:

b = 0, β = 1/3, ν = 0.005, α = 1/4, 1, 4, and

b = 1, β = 1/2, ν = 0.005, α = 1/4, 1, 4.

Remark 8.3 (lowering β has little effect on the ramp and cliff). Lowering β to follow (3 −
b)β = 1 instead of keeping β = 1 has little effect on the development of the ramp and cliff
solution for b = 0 and b = 1. Lowering β for these cases only makes the activity slightly less
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Figure 18. Exchange of stability between ramps and peakons for b = 0, 2, 3, when width > α: profiles.
Viscous b-family, b = 0 → 2, 3, α = 1, ν = 10−5, initial width w = 5.

lively at the front for (b = 0, β = 1/3) and (b = 1, β = 1/2) than for the corresponding cases
of b = 0 and b = 1 with β = 1 in Figures 13 and 14. This lessened activity at lower β can only
be discerned in the solution for the largest value α = 4. The remaining case (b = 2, β = 1)
recovers the viscous b-equation (7.1) for b = 2 in Figure 15, in which the larger b produces
much livelier steepening and hence more activity at the front of the rightward moving pulses.

9. Numerical results for peakon scattering and initial value problems. We shall begin by
summarizing the results in the figures given earlier, and then we shall describe the numerical
methods used in producing them and discuss some of the ways we verified and validated the
results.
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Figure 19. Exchange of stability between ramps and peakons for b = 0, 2, 3, when width = α. Viscous
b-family, b = 0 → 2, 3, α = 5, ν = 10−5, initial width w = 5.

9.1. Peakon initial value problems.

9.1.1. Inviscid b-family of equations.

Ramps and cliffs for b = 0. Figure 1 shows the formation of a ramp and cliff pattern for
b = 0, α = 1, and a set of Gaussian initial conditions of increasing width w = 2.5, 5, 10.

Peakons for b = 2, 3. Figures 2 and 3 show the formation of peakons for b = 2, b = 3,
α = 1, and a set of Gaussian initial conditions of increasing width w = 2.5, 5, 10.

Ramps and cliffs for b = −1/2. Figure 4 shows the formation of a ramp and cliff pattern for
b = −1/2, α = 1, and a set of Gaussian initial conditions of increasing width w = 10, 15, 20.
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Figure 20. Exchange of stability between ramps and peakons for b = 0, 2, 3, when width = α: profiles.
Viscous b-family, b = 0 → 2, 3, α = 5, ν = 10−5, initial width w = 5.

Stationary solutions for b ≤ −1. Figure 5 shows an essentially stationary solution with
a slight rightward drift and leaning slightly to the right due to nonlinear curvature terms
with higher-order derivatives in (4.20) for α = 1 and a set of Gaussian initial conditions of
increasing width w = 10, 15, 20. For the same α and the same set of initial conditions, Figures
6 and 7 show the emergence of leftons.

Figure 8 shows the leftons at time T = 2500 for the b = −2 case versus the analytical
u(x)  sech2(x/(2α)) from (4.23), and for the b = −3 case versus the analytical u(x) 
sech(x/α).

Peakons of width α for b = 2, 3. Figures 9 and 10 show 2-peakon and 3-peakon interactions
for b = 2 and b = 3 beginning with initial peakons of width w = α = 5.

Peakons of width > α for b = 2, 3. Figure 11 shows the emergence of peakons of width
α = 1 when we begin with peakons of width w = 5 greater than α for b = 2 and b = 3.
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Figure 21. Exchange of stability between ramps and leftons for b = 0,−2,−3, when width > α. Viscous
b-family, b = 0 → −2,−3, α = 1, ν = 10−5, initial width w = 5.

Peakon-antipeakon collisions for b = 1, 2, 3. Figure 12 shows the dynamics of a peakon-
antipeakon collision for b = 1, b = 2, and b = 3 for α = 1 at four successive times.

9.1.2. Viscous b-family of equations.

Effect of α for b = 0, 1, 2, 3. Figures 13–16 show the evolution of an initial peakon of width
w = 5 as a function of increasing α = 1/4, 1, 4 at fixed viscosity ν = 0.005 for b = 0, b = 1,
b = 2, and b = 3.

Exchange of stability between ramps and peakons. Figures 17 and 18 show the exchange of
stability between ramps and peakons suggested in the previous four figures, with α = 1 and
an initial peakon of width w = 5, but this time with a very small viscosity ν = 10−5 so that
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Figure 22. Exchange of stability between ramps and leftons for b = 0,−2,−3, when width > α: profiles.
Viscous b-family, b = 0 → −2,−3, α = 1, ν = 10−5, initial width w = 5.

the peakons, when stable, do not noticeably decay. The exchange of stability occurs when we
switch from b = 0 to b = 2 or b = 3. Figures 19 and 20 again show the exchange of stability,
this time using α = 5 so that the initial peakon has width α.

Exchange of stability between ramps and leftons. Figures 21 and 22 show the exchange of
stability as in Figures 17 and 18, but we switch to b = −2 or b = −3 instead and see the
emergence of stable leftons from the ramp.

Effect of viscosity for b = 2, 3. Figures 23 and 24 show the effect of increasing viscosity
ν = 0.01, 0.1, 1 on the evolution of an initial peakon of width w = 5, with α = 1 and b = 2 or
b = 3.

9.1.3. Burgers-αβ equation.

Effect of α when (3− b)β = 1. Figures 25 and 26 show the effect of increasing α = 1/4, 1, 4
on the evolution of an initial peakon of width w = 5 for fixed ν = 0.005 and two sets of values
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Figure 23. Effect of increasing viscosity for b = 2. Viscous b-family, b = 2, α = 1, ν = 1/100, 1/10, 1,
initial width w = 5.

for b and β for which (3− b)β = 1: b = 0, β = 1/3 for the first figure, and b = 1, β = 1/2 for
the second figure.

9.2. Description of our numerical methods. For our numerical runs we advanced (6.2),
(7.5), and (7.6) with an explicit, variable timestep, fourth/fifth-order Runge–Kutta–Fehlberg
(RKF45) predictor/corrector. We selected the timestep for numerical stability by trial and
error, while our code selected the timestep for numerical accuracy (not to exceed the timestep
for numerical stability) according to the well-known formula from numerical analysis,

hi = γhi−1
(

ε|hi−1|
||ūi − ûi||

)1/p
.(9.1)

This is used in the following way. At step i of the calculation, we know the predicted solution
ūi, the corrected solution ûi, and the previous timestep hi−1. The predictor’s order of accuracy
is p = 4, while the corrector’s order of accuracy is p+1. A new timestep hi is chosen from (9.1)
based on the old timestep hi−1 and the norm of the difference between the current predicted
and corrected solutions. We used a very strict relative error tolerance per timestep, ε = 10−8,
a safety factor γ = 0.9, and an L2 norm || · ||2.
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Figure 24. Effect of increasing viscosity for b = 3. Viscous b-family, b = 3, α = 1, ν = 1/100, 1/10, 1,
initial width w = 5.

We computed spatial derivatives using fourth-order finite differences, generally at resolu-
tions of 213 = 8192 or 214 = 16384 zones. To invert the Helmholtz operator in transforming
between m(x, t) and u(x, t), we convolved m(x, t) with the Green function in Fourier space.
When the numerical approximation of the nonlinear terms had aliasing errors in the high
wavenumbers, we applied the high pass filtered artificial viscosity

ν(k) =



0 if 0 ≤ k ≤ N

3 ,
3δ
N

(
k − N

3

)
if N

3 < k < 2N
3 ,

δ if 2N
3 ≤ k ≤ N,

(9.2)

where δ = 0.01 for the present simulations. N is one-half the number of zones, because for
each zone we have both a Fourier sine coefficient and a Fourier cosine coefficient.

The quality of the numerical convergence may be checked analytically in the case of rear-
end 2-pulson collisions, for which (5.18) in Corollary 5.3 yields

g(qmin) = g(q)
∣∣∣
p=0

= 1−
(

4c1c2
(c1 + c2)2

)1/(b−1)
.(9.3)
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Figure 25. Effect of increasing α when (3 − b)β = 1, for b = 0 and β = 1/3. Burgers-αβ, b = 0,
α = 1/4, 1, 4, β = 1/3, ν = 0.005, initial width w = 5.

For peakons with b = 2 and g(x) = e−|x|/α, this formula gives the minimum separation,

qmin = −2α ln
(
c1 − c2
c1 + c2

)
> 0 .(9.4)

When c1 = 1, c2 = 1/2, and α = 5, as in Figure 9, this formula implies qmin = 10 ln 3 =
10.9861. Our numerical results with the resolution of 214 zones yield qmin = 11.0049. The
very small discrepancy, less than 0.2%, occurs largely because our numerical measurement of
qmin is obtained by examining the peakon positions at each internal timestep in the code, while
the code’s time discretization effectively means we are unlikely to land exactly on the time at
which the minimum separation occurs. The code’s true accuracy is thus better than the above
measure indicates, because the intermediate steps involved in advancing the solution from one
discrete time to the next with an RKF45 method cancel the higher-order discretization errors.

Likewise, for peakons with b = 3 and g(x) = e−|x|/α, formula (9.3) gives the minimum
separation,

qmin = −α ln
(
1−

√
c1c2

(c1 + c2)/2

)
> 0 .(9.5)
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Figure 26. Effect of increasing α when (3 − b)β = 1, for b = 1 and β = 1/2. Burgers-αβ, b = 1,
α = 1/4, 1, 4, β = 1/2, ν = 0.005, initial width w = 5.

When c1 = 1, c2 = 1/2, and α = 5, as in Figure 10, this formula implies qmin = 5 ln (3/(3 −√
8)) = 14.3068. This time our numerical results yield qmin = 14.2924, a discrepancy of only

0.1%.

Of course, the two-body collision is rather simple compared to the plethora of other multi-
wave dynamics that occurs in this problem. For this reason, we also checked the convergence
of our numerical algorithms by verifying that the relative phases of the peakons in the various
figures remained invariant under grid refinement. Moreover, the integrity of the waveforms in
our figures attests to the convergence of the numerical algorithm—after scores of collisions,
the waveforms given by the Green function for each case are still extremely well preserved.
The preservation of these soliton waveforms after so many collisions would not have occurred
unless the numerics had converged well.

10. Conclusions. Equation (1.1) introduced a new family of reversible, parity invariant,
evolutionary 1+1 PDEs describing motion by convection and stretching,

mt + umx︸ ︷︷ ︸
convection

+ b uxm︸ ︷︷ ︸
stretching

= 0 , with u = g ∗m.(10.1)
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We analyzed the transformation properties and conservation laws of this family of equations,
which led us to choose g to be an even function. Then we classified its traveling waves and
numerically identified the bifurcations of its traveling wave solutions as a function of the
balance parameter b. For some choices of the convolution kernel g(x) we studied its particle-
like solutions and their interactions when b > 1. These were obtained by superposing N
traveling wave solutions u(x, t) = cg(x− ct) as

u(x, t) =
N∑
i=1

pi(t)g(x− qi(t)) and m(x, t) =

N∑
i=1

pi(t)δ(x− qi(t))(10.2)

for any real constant b and u = g ∗m, in which the function g is even g(−x) = g(x), so that
g ′(0) = 0, and is bounded, so we may set g(0) = 1.

Following [22], we call these solutions “pulsons.” We have shown that for any b > 1, once
they are initialized on their invariant manifold (which may be finite-dimensional), the pulsons
undergo particle-like dynamics in terms of the moduli variables pi(t) and qi(t), with i =
1, . . . , N . The pulson dynamics we studied for b > 1 in this framework on a finite-dimensional
invariant manifold displayed all of the classical soliton interaction behavior for pulsons found
in [22] for the case b = 2. This behavior included pairwise elastic scattering of pulsons,
dominance of the initial value problem by confined pulses, and asymptotic sorting according
to height—all without requiring complete integrability. Thus the “emergent pattern” for b > 1
in the nonlinear evolution governed by the convection equation (1.1) was the rightward moving
pulson train, ordered by height. The moduli variables pi(t) and qi(t) are collective coordinates
on an invariant manifold for the PDE motion governed by (1.1). Once initialized for b > 1,
these collective degrees of freedom persist and emerge as a train of stable pulses, arranged in
order of their heights, that then undergo particle-like collisions.

In contrast, the emergent pattern in the Burgers parameter region 0 ≤ b < 1 is the classic
ramp and cliff structure as in Figure 13. That the behavior should depend on the value of b
is clear from the velocity form of (1.1) written in (7.2),

ut + (b+ 1)uux − νuxx = α2(uxxt + uuxxx + buxuxx − νuxxxx)(10.3)

= α2∂x

(
uxt + uuxx − νuxxx +

b− 1

2
u2x

)

= α2∂2x

(
ut + uux − νuxx +

b− 3

2
u2x

)
.

Thus nonlinear terms in this equation change sign at four integer values of the parameter b.
Nonlinear α2-terms change sign when b = 0, 1, 3. Also, the nonlinear steepening term increases
with b as (b+1)uux. So this term changes sign when b = −1. In the parameter regime b > −1
(resp., b < −1), the solutions of (1.1) move rightward (resp., leftward), provided the terms on
the right-hand side of (10.3) are sufficiently small.

Three regions of b. We found that the solution behavior for (1.1) changes its character
near the boundaries of the following three regions in the balance parameter b.
(B1) In the stable pulson region b > 1, the steepening lemma for peakons proven for 1 < b ≤ 3

in Proposition 6.1 allows inflection points with negative slopes to escape verticality
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b<−1 −1<b≤1 1<b

Figure 27. Leftons (b < −1), ramps and cliffs (−1 < b ≤ 1), and peakons (b > 1) are solutions of the
b-family of equations, mt + umx + buxm = 0, with m = u− α2uxx.

by producing a jump in spatial derivative at the peak of a traveling wave that elimi-
nates the inflection points altogether. Pulson behavior dominates this region, although
ramps of positive slope are also seen to coexist with the pulsons. When b ≤ 1, we
found the solution behavior of the convection equation (1.1) changed its character and
excluded the pulsons entirely.

(B2) In the Burgers region 0 ≤ b ≤ 1, the L1/b norm of the variable m is controlled6 and the
solution behavior is dominated by ramps and cliffs, as for the usual Burgers equation.
Similar ramp and cliff solution properties hold for the region −1 ≤ b ≤ 0, for which the
L1/b norm of the variable 1/|m| is controlled. At the boundary of the latter region, for
b = −1, the convection equation (1.1) admits stationary plane waves as exact nonlinear
solutions.

(B3) In the steady pulse region b < −1, pulse trains form that move leftward from a positive
velocity initial condition (instead of moving rightward, as for b > −1). These pulse
trains seem to approach a steady state.

Figure 27 illustrates this solution behavior in the region (B3) at left, (B2) in the center,
and (B1) at right. For illustrative purposes, the curves are drawn at different scales; recall
that the evolution of (1.1) preserves the area under the curve.

Effects of viscosity. Almost any numerical investigation will introduce some viscosity or
other dissipation. Consequently, we studied the fate of the peakons when viscosity was added
to the b-family in (7.1). Viscous solutions of (7.1) for the peakon case g(x) = e−|x|/α with
α = 1 were studied in each of the three solution regions (B1)–(B3). In the Burgers region
(B2) near b = 0, we focused on the shock-capturing properties of the solutions of (1.1), and
this family of equations was extended for β �= 1 to the Burgers-αβ equation (7.6),

ut + uux − νuxx = −β τx with (1− α2∂2x)τ =
b

2
u2 +

3− b

2
α2u2x .(10.4)

According to Proposition 7.1, the Burgers-αβ equation (10.4) controls the α-weighted H1

norm of the velocity for α2 �= 0, provided (3 − b)β = 1. This analytical property guided
our study of this new equation by identifying a class of equations for which a priori estimates
guarantee continuity of the solution u(x, t). The shock-capturing properties of the Burgers-αβ
equation (10.4) and its α→ ∞ limit will be reported in a later paper [28].

11. Outlook: The vector b-equation for compressible motion of momentum filaments
and surfaces in n dimensions. We shall generalize to n dimensions the one-dimensional
pulson solutions of (1.1) with defining relation (1.2) studied earlier in section 5.

6For b = 0, this is a maximum principle for |m|.
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11.1. n-dimensional vector b-equation. In n-dimensional vector notation, the b-equation
(1.1) may be written explicitly in Euclidean coordinates as a PDE for a covector function
m(x, t) : Rn ×R1 → Rn. Namely,

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection

+ ∇uT · m+ (b− 1)m(divu)︸ ︷︷ ︸
stretching

= 0(11.1)

for a defining relation

u = G ∗ m ≡
∫
G(|x − y|)m(y) d ny,(11.2)

in which we assume the function (filter) G(|x|) is isotropic. To interpret the stretching terms
in the vector b-equation (11.1), we shall recall the interpretation of the scalar b-equation (1.1)
as preservation at constant Lagrangian coordinate X of the differential form (3.24),

m(x, t)dx⊗b = m(X, 0)dX⊗b.(11.3)

Taking the partial time derivative of this equation at constant Lagrangian coordinate X and
using dx/dt|X = u yield (1.1), as shown earlier in (3.25).

To lift this interpretation of the vector b-equation to n dimensions, we regard the momen-
tum m(x, t) as the vector coefficient in an invariant one-form density expressed as

m(x, t) · dx ⊗ (dV )⊗ (b−1) = m(X, 0) · dX ⊗ (dV0)
⊗ (b−1) ,(11.4)

where dV = d nx and dV0 = d nX are, respectively, the Eulerian and Lagrangian volume
elements. The symbol ⊗ denotes tensor product. Taking the partial time derivative of this
equation at constant Lagrangian coordinate X and using d

dt |Xx = u yield

d

dt

∣∣∣
X

(
m · dx ⊗ (dV )⊗ (b−1)

)
=
dm

dt

∣∣∣
X
· dx ⊗ (dV )⊗ (b−1)

+ m · du ⊗ (dV )⊗ (b−1)(11.5)

+ (b− 1)m · dx ⊗ (∇ · u)(dV )⊗ (b−1) = 0.

We have used the identities, d
dt |Xdx = du = u,jdx

j and d
dt |XdV = (divu)dV for the La-

grangian time derivatives of the line element dx and the volume element dV . Collecting
coefficients in (11.4) yields the vector b-equation (11.1) and explains the sources of its convec-
tion and stretching terms.

Equivalently, in terms of the operators div, grad and curl, in two dimensions and three
dimensions, the Euclidean coordinate vector b-equation (11.1) becomes

∂

∂t
m − u × curlm+∇(u · m) + (b− 1)m(divu) = 0.(11.6)
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Euler–Poincaré (EP) equation. Setting b = 2 in the vector b-equation in either of its equiv-
alent forms, (11.1) or (11.6), yields the pressureless Euler–Poincaré (EP) equation, whose
abstract form is [26, 27]

∂

∂t
m+ ad∗um = 0 , m =

δ7[u]

δu
,(11.7)

and ad∗um is defined as in (11.1) for b = 2. Thus we have the EP equation for pressureless
compressible motion in vector notation:

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection

+ ∇uT · m+m(divu)︸ ︷︷ ︸
EP stretching

= 0 , m =
δ7[u]

δu
.(11.8)

When the Lagrangian 7[u] is taken as the kinetic energy, which is also a norm, 7[u] = 1
2‖u‖2,

then the EP equation (11.8) describes geodesic motion on the diffeomorphism group, with
respect to this kinetic energy norm.

For b = 2, the scalar product of the EP equation in div-grad-curl form (11.6) with the
velocity u shows that evolution under this equation preserves the kinetic energy,

∫
u · m d nx ≡ 〈u , m〉,(11.9)

as a constant of the motion, only for this value of b. For the case that velocity is defined in
terms of momentum as u = G ∗ m in (11.2), we shall assume that the convolution kernel G
may be taken as the Green function for a symmetric positive definite operator Qop. We may
then write

Qopu = m,(11.10)

where u satisfies appropriate boundary conditions for the relation u = G ∗ m to be satisfied.
When Qop is assumed to be a symmetric positive definite operator, the kinetic energy in (11.9)
will define a kinetic energy norm ‖u‖2 that may be written as

‖u‖2 =
∫

u · m d nx =

∫
u ·Qopu d

nx = 〈u , Qopu〉(11.11)

for appropriate boundary conditions at spatial infinity. Hence we have the following proposi-
tion.

Proposition 11.1 (b = 2 vector b-equation for geodesic motion). When the defining relation
(11.2) between momentum m and velocity u may be written equivalently in operator form as
(11.10) with a symmetric positive definite operator Qop for which (11.11) defines a norm, then
for b = 2 the vector b-equation (11.1), or (11.6), describes geodesic motion on the diffeomor-
phism group, with respect to this kinetic energy norm.

EP equation for computational anatomy. Thus the EP equation (11.8) describes geodesic
motion when the Lagrangian 7[u] is the kinetic energy, which is also a norm. This EP equation
has the same form as the template matching equation [40], which is used in computational
anatomy [39].
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11.2. n-dimensional analogues of pulsons for the vector b-equation. The momentum
for the one-dimensional pulson solution (5.1) on the real line is supported at points via the
Dirac delta measures in its solution ansatz,

m(x, t) =
N∑
i=1

pi(t) δ
(
x− qi(t)

)
, m ∈ R1 .(11.12)

For the vector b-equation (11.1), or (11.6), we shall develop n-dimensional analogues of these
one-dimensional pulson solutions by generalizing the solution ansatz to allow measure-valued
n-dimensional vector solutions. In these solutions, the momentum m ∈ Rn is supported on
codimension-k subspaces Rn−k moving with the flow, where k ∈ [1, n] is an integer. In an
example in section 11.2.3, we shall consider a two-dimensional vector momentum m ∈ R2

in the plane that is supported on one-dimensional curves (momentum fronts). Likewise, in
three dimensions, one could consider two-dimensional momentum surfaces (sheets) and one-
dimensional momentum filaments, each moving with the local flow velocity. The corresponding
vector momentum ansatz that we shall use is a vector version of the pulson solutions (11.12),
namely,

m(x, t) =
N∑
i=1

∫
Pi(s, t) δ

(
x − Q i(s, t)

)
ds , m ∈ Rn .(11.13)

Here, Pi,Qi ∈ Rn for i = 1, 2, . . . , N . For example, when n − k = 1 so that the Lagrangian
coordinate s ∈ R1 is one-dimensional, the delta function in solution (11.13) supports an evolv-
ing family of vector-valued curves, which we shall call momentum filaments. (For simplicity
of notation, we suppress the implied subscript i in the arclength s for each Pi and Qi.) The
defining relation u = G∗m in (11.2) implies that the velocity corresponding to the momentum
filament ansatz (11.13) is

u(x, t) = G ∗ m =

N∑
j=1

∫
Pj(s

′, t)G
(
x − Q j(s

′, t)
)
ds′.(11.14)

The function (filter) G(|x|) defined in (11.2) is isotropic, so G′(0) = 0. We shall choose
G(0) = 1, so Pj(s

′, t) is the velocity of the jth filament at x = Q j(s
′, t), and s′∈R1 is a

Lagrangian coordinate along the filament. Just as for the one-dimensional case of the pulsons
in (5.2) and (5.3), we shall show that substitution of the n-dimensional solution ansatz (11.13)
and (11.14) into the vector b-equation (11.1) produces a closed system of equations for the
n-dimensional vector parameters Qi(s, t) and Pi(s, t), i = 1, 2, . . . , N . When b = 2, these
equations will become geodesic Hamiltonian equations for canonically conjugate variables,
Qi(s, t) and Pi(s, t).

11.2.1. Momentum filaments in Rn. For definiteness, we shall consider the example
of momentum filaments, for which the parameter s is one-dimensional. Such filaments have
vector-valued momentam ∈ Rn supported on one-dimensional space curves in Rn, so s ∈ R1 in
(11.13) is the arclength parameter of one of these curves. This solution ansatz is reminiscent
of the Biot–Savart law for vortex filaments, although the flow is not incompressible. The
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dynamics of momentum surfaces, for s ∈ Rk with k < n, follow essentially the same analysis
as that given below for k = 1.

Substituting the momentum filament ansatz (11.13) for s ∈ R1 and its corresponding
velocity (11.14) into the vector b-equation (11.1) and then integrating against a smooth test
function φ(x) imply the following equations, in which summation is explicit on j ∈ 1, 2, . . . , N
and there is no sum on i:

∂

∂t
Qi(s, t) =

N∑
j=1

∫
Pj(s

′, t)G
(
Qi(s, t)− Qj(s

′, t)
)
ds′,(11.15)

∂

∂t
Pi(s, t) = −

N∑
j=1

∫ (
Pi(s, t)·Pj(s

′, t)
) ∂

∂Qi(s, t)
G
(
Qi(s, t)− Qj(s

′, t)
)
ds′

− (b− 2)Pi(s, t)

N∑
j=1

∫
Pj(s

′, t) · ∂

∂Qi(s, t)
G
(
Qi(s, t)− Qj(s

′, t)
)
ds′.

The dot productPi·Pj denotes the inner, or scalar, product of the two vectorsPi andPj inR
n.

Thus, the solution ansatz (11.13) yields a closed set of integro-partial-differential equations
(IPDEs) given by (11.15) for the vector parameters Qi(s, t) and Pi(s, t) with i = 1, 2, . . . , N .
Equations (11.15) for the n-dimensional dynamics of the momentum filaments should be
compared with the one-dimensional pulson equations (5.2) and (5.3). Note that b = 2 is a
simplifying special case.

11.2.2. Canonical Hamiltonian dynamics of momentum filaments in Rn for b = 2. For
b = 2, the momentum filament equations (11.15) simplify to canonical Hamiltonian equations,

∂

∂t
Qi(s, t) =

δHN

δPi
,

∂

∂t
Pi(s, t) = − δHN

δQi
.(11.16)

The corresponding Hamiltonian function HN : (Rn ×Rn)⊗N → R is

HN =
1

2

∫∫ N∑
i , j=1

(
Pi(s, t) · Pj(s

′, t)
)
G
(
Qi(s, t)− Q j(s

′, t)
)
ds ds′.(11.17)

This Hamiltonian arises by substituting the momentum ansatz (11.13) into the kinetic energy
norm (11.11). Thus, for b = 2, the evolutionary IPDE system (11.15) represents canonically
Hamiltonian motion on the space of curves in Rn. Moreover, this Hamiltonian motion for
b = 2 is geodesic with respect to the cometric given on these curves in (11.17) by the Green
function G. The Hamiltonian HN = 1

2‖P‖2 in (11.17) for this motion defines the norm ‖P‖
in terms of this cometric.

Summary. The momentum filament ansatz (11.14) reduces or collects the solution of the
evolutionary vector b-equation (11.1) for b = 2 in n spatial dimensions into the system (11.15)
of 2N evolutionary IPDEs in one spatial dimension (arclength along each filament). For b = 2,
the collective equations describe geodesic flow on the space of vector-valued curves in Rn with
respect to the cometric given on these curves in (11.17).
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The momentum filament equations (11.15) are not typical. As far as we know, the IPDEs for
momentum filaments in (11.15) have never been considered before in the literature, even for
the Hamiltonian case b = 2. Even the Hamiltonian evolution of a single momentum filament
interacting with itself has not appeared in the literature to our knowledge. There is a faint
similarity of this system to vortex dynamics for the incompressible Euler equations. However,
there are also fundamental differences. The main difference from the Hamiltonian motion
of vortex filaments is that the momentum filaments possess inertia, while vortex filaments
do not. Thus N vortex filaments in an incompressible flow are described by N first-order
equations, while N momentum filaments in a pressureless compressible flow are described by
the 2N first-order equations in (11.15). The main question one would like to answer is, “When
do the momentum filament solutions represent the dominant emergent pattern in the initial
value problem for the vector b-equation (11.1)?” The next subsection reports an example
in which this occurs, for momentum filaments in the plane, in a certain approximation for
two-dimensional shallow water waves.

11.2.3. Zero-dispersion shallow water waves in two dimensions: Two interesting
choices for the operator Qop when b = 2. The operator Qop in the momentum relation
m = Qopu in (11.10) corresponding to m = u − α2uxx in the one-dimensional CH (3.7) for
zero-dispersion shallow water waves may be defined in two dimensions as either of two natural
choices,

m = u − α2∆u or m = u − α2∇ divu.(11.18)

For the first choice of momentum definition in (11.18), the vector EP equation (11.8) cor-
responds to the (pressureless) Euler-alpha model, whose Lagrangian 7[u] = 1

2‖u‖2 is the
conserved H1 norm7

‖u‖2H1 =

∫
u · (1− α2∆)u dx dy =

∫
|u|2 + α2(divu)2 + α2|curlu|2 dx dy .

The last equality assumes either homogeneous or periodic boundary conditions so that bound-
ary terms may be neglected upon integrating by parts.

For the second natural choice of momentum in (11.18), the conserved kinetic energy norm
becomes instead

‖u‖2KS =

∫
u · (1− α2∇ div )u dx dy =

∫
|u|2 + α2(divu)2 dx dy,

and kinetic energy conservation no longer controls curlu. This is the norm associated with
vertically averaged kinetic energy that arises when one approximates the Green–Naghdi equa-
tions for shallow water motion by neglecting variations in surface elevation in the potential

7When incompressibility (divu = 0) is imposed as an additional constraint in this Lagrangian via a La-
grange multiplier (the pressure), then the corresponding vector EP equation (11.8) becomes the two-dimensional
Lagrangian averaged Euler equation derived in [26] as a generalization of the one-dimensional CH for incom-
pressible flow. The Hamilton principles defined by the kinetic energy norms ‖u‖2

H1 and ‖u‖2
KS have no pressure

constraint, so their corresponding EP equations (11.8) allow compressible motion.
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energy and in the Lagrange-to-Euler Jacobian.8 The second term proportional to α2 approx-
imates (twice) the vertically averaged kinetic energy due to vertical motion. For more details
of the latter approximation for the two-dimensional CH shallow water equation, see Kruse,
Schreule, and Du [36].

The EP equation (11.8) was numerically integrated in [29] in the form

∂

∂t
m − u × curlm+∇(u · m) +m(divu) = 0(11.19)

for both choices of the momentum-velocity relation in (11.18). This numerical integration
was performed by using a difference scheme that preserved the properties of the operators
div, grad, and curl (divcurl = 0 and curlgrad = 0). The main discovery in the numerical
results of [29] was that the evolution of the geodesic PDE (11.19) was found to be dominated
by the emergent dynamics of momentum filaments, arising from confined initial conditions
for either choice of momentum-velocity relation in (11.18). Thus the momentum filament
solutions in both of these cases were stable, and no other types of solution were observed
in the numerical evolution of (11.19) in the periodic plane. The dynamics of the momentum
filaments that emerged was quasi-one-dimensional, with greater variation of the solution in the
direction transverse to the filaments than along the tangential direction. Thus the interaction
dynamics for the momentum filaments was found to be dominantly in the direction transverse
to the filaments. This meant the filament interaction was governed primarily by elastic-
scattering dynamics reminiscent of the one-dimensional solutions, as seen in soliton dynamics.
In fact, the one-dimensional soliton collision rules were found to provide a good interpretation
of the interactions among the momentum filaments. These interactions were found to allow
reconnection of the quasi-one-dimensional momentum filaments. For more information and
discussion of numerical results, see [29].

Acknowledgments. We are grateful to A. Degasperis, A. N. W. Hone, J. M. Hyman,
S. Kurien, C. D. Levermore, R. Lowrie, and E. S. Titi for their thoughtful remarks, careful
reading, and attentive discussions that provided enormous help and encouragement during
the course of writing this paper. We are also grateful to the referees for their thoughtful
comments. One referee pointed out a technical caveat that appeared in the original proofs of
both the peakon steepening lemmas in Propositions 6.1 and 7.2 and showed how to overcome
the caveat without changing the validity of the results. The caveat and its solution are stated
after the formal proofs of these propositions.

8In this approximation for two-dimensional shallow water waves, curlm = curlu and divm =
(1 − α2∆)divu. Thus setting u = ẑ × ∇ψ − ∇φ allows one to solve for the stream function ψ and veloc-
ity potential φ from the momentum m via,

ẑ · curlm = −∆ψ and divm = −∆(1 − α2∆)φ .

These two relations allow one to update the potentials ψ and φ for the velocity u, given the momentum m
at each time step, provided these potentials satisfy boundary conditions that allow inversion of the Laplacian
operator for ψ and the Helmholtz–Laplace operator for φ. Whether these boundary conditions are consistent
with the diffeomorphism group is an open question.
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Abstract. Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The
theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for colli-
sions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum
conservation theorem.

Discretizations of this nonsmooth mechanics are developed by using the methodology of vari-
ational discrete mechanics. This leads to variational integrators which are symplectic-momentum
preserving and are consistent with the jump conditions given in the continuous theory. Specific
examples of these methods are tested numerically, and the long-time stable energy behavior typical
of variational methods is demonstrated.
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1. Introduction. In this paper, we investigate nonsmooth Lagrangian mechanics and its
discretization by means of variational, numerical, and geometric methods. In particular, we
are interested in the problem of rigid-body collisions, for which the velocity, acceleration, and
forces are all nonsmooth or even discontinuous.

We shall begin with a survey of some history and literature to put our own work into
context. The literature and history is of course quite complex with many points of view, so
we focus on selected highlights only.

History and literature: Theory. The problem of collisions has been extensively treated in the
literature since the early days of mechanics. More recently, much work has been done on the
rigorous mathematical foundation of impact problems, in particular, by generalizing Newton’s
law to include forces which are measure-valued and hence can include impulses at the point of
impact. The contact dynamics is thus governed by a measure differential inclusion, a general
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formulation that can directly incorporate impulsive forces and nonsmooth solutions. In this
context, a measure differential inclusion has the form

dv

dt
∈ F (t, x),

dx

dt
= g(t, x, v),

where v(t) and x(t) denote the velocity and the position, F is a set-valued function, and v(·)
is required only to have bounded variation.

The extension of the concept of a differential equation to that of a differential inclusion
was first considered in [12, 13, 14]. These works provide a deep study of ODEs with a
discontinuous right-hand side, but the fact that solutions are required to be continuous in the
phase space makes the theory inapplicable to collisions. Measure differential inclusions can
be found in different contexts in [51, 52], and the use of this concept in rigid-body dynamics
was further developed in [38, 39], where the (unilateral) contact between rigid bodies received
a formulation (called by the author a sweeping process) that combines differential inclusions
with convex analysis. Since then, an extensive literature has been devoted to the theoretical
and numerical study of nonsmooth dynamics within the mathematical framework of measure
differential inclusions.

Substantial progress has been made in the last two decades on the existence and uniqueness
theory for the generalized solutions of rigid-body dynamics. The first rigorous results in this
area were produced in [33] for the case of an inelastic collision with a single convex constraint.
Further results generalized the existence theory to more general contacts in [42, 43], to more
general (nonconvex, but of class C1) constraints in [34], or even to a less regular constraint
for an arbitrary frictionless impact in [32]. The recent works [55, 56] consider the impact
dynamics with friction and give a rigorous mathematical solution to the famous problem of
Painlevé.

In the same elegant framework of differential inclusions, but oriented toward the control
and stability of nonsmooth dynamical systems, we mention the works of Brogliato [6, 7] and
Brogliato, Niculescu, and Orhant [5].

History and Literature: Computations. The measure differential inclusion has also been
proved to be an excellent mathematical foundation for the study of numerical methods for
discontinuous ODEs. It is not within our scope to give a complete account of these meth-
ods, but we refer the reader to the excellent overviews of numerical methods for differential
inclusions in [11] and [30]. In particular, such numerical approaches have been pursued to de-
velop efficient numerical methods for rigid-body dynamics in the sweeping process formalism
in [38, 40, 44, 56].

Various other numerical methods for rigid-body systems have been studied extensively
in the engineering and mathematics literature. We refer to the excellent book [47] for a
comprehensive account of some of these methods. We particularly note the approach that
reduces the contact to a complementarity problem, a concept frequently used in constrained
optimization, to decide at each step which constraints are active.

However, most existing practical codes are based on smoothing techniques, a class of
methods which use a penalty formulation to regularize the problem. This approach relies on
the definition of a proper gap function as a means to detect and penalize the interpenetration;
see, for example, [54, 8, 60, 57]. An obvious weakness of the penalty methods is that they
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cannot handle collisions of irregularly shaped bodies (bodies with corners), where neither
normals nor gap functions can be defined. An elegant solution to this problem is offered by
the nonsmooth analysis approach from [25], where new robust contact algorithms are derived
using the powerful tools of nonsmooth calculus (see [10]).

An important issue in contact dynamics is how to formulate physically correct friction
models, and an extensive body of literature has addressed this problem. Frictional effects are
generally accounted for by introducing a friction law (Coulomb’s law is an example) which
relates the sliding velocity to the contact forces. An alternative approach uses the maximum
dissipation principle, where the friction force cf is required to maximize the rate of energy
dissipation −cTf vrel, where vrel is the relative velocity at the contact, out of all possible friction
forces allowed by a given contact force cn. However, the correct modeling of friction still has
many open questions which generate controversy in various engineering and mathematical
communities. All the various numerical methods for contact that we mentioned above have
introduced friction in the dynamics, and we refer to [2] and [39] for measure differential
inclusion methods, [23, 28, 45, 48, 58, 59, 46, 3] for the complementarity and gap function
formulation, and [41] for the nonsmooth analysis approach.

Variational methodology. Our approach, in contrast, is based on a variational methodology
that goes back to [61] which allows the direct handling of the nonsmooth nature of contact
problems. We also use a variational approach to develop numerical integrators for nonsmooth
rigid-body dynamics. The procedure is based on a discrete Lagrangian principle and automat-
ically generates a symplectic-momentum preserving integrator. Near impact, we introduce a
collision point and a collision time and solve for them using a variational method.

Variational integrators are known to have remarkable near-energy preserving properties,
and we will recover this excellent energy behavior even in the nonsmooth case. We want to
emphasize that the variational point of view is not confined to conservative systems but also
applies to forced and dissipative systems, as demonstrated in [26]. In future works, we will
investigate how forces and friction can be added to our collision algorithm and also how to
incorporate other dissipative effects (inelastic collisions).

Issues addressed in this paper. We first show that, by introducing a space of configuration
trajectories extended by introducing curve parameterizations as variables, the traditional ap-
proach to the calculus of variations can be applied. Moreover, the formulation in the extended
setting enables us to address and give a rigorous interpretation of the sense in which the flow
map of a mechanical system subjected to dissipationless impact dynamics is symplectic. The
nonautonomous variational approach also leads to Weierstrass–Erdmann-type conditions for
impact, in terms of energy and momentum conservation at the contact point (see [19] and
[61]).

On the discrete side, the variational formalism leads to symplectic-momentum preserving
integrators that are consistent with the jump conditions and the continuous theory.

The theory of geometric integration (see, for example, [50] and [18]) is typically concerned
with smooth Hamiltonian or Lagrangian systems posed on smooth spaces. These techniques do
not immediately apply to nonsmooth settings, and naive applications can result in extremely
bad behavior, as demonstrated in [56].

Our methods answer an important question posed by [56]: How can geometric integrators
be formulated and implemented for collision problems? In fact, the algorithms developed in
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the present paper show how a symplectic method can be constructed for nonsmooth systems
so that it retains the good behavior normally associated with symplectic methods.

Some work on extensions of geometric integration to collision problems exists. In par-
ticular, [4] has constructed time-symmetric methods for contact, and [21] (see also [20]) has
developed methods for impacts of hard spheres. To date there have been no symplectic meth-
ods for collisions presented, in part due to difficulties with understanding symplecticity in
a nonsmooth setting. However, the variational formulation of continuous time nonsmooth
systems that we develop here is a key which allows us to understand the geometric struc-
ture of the problem, both before and after discretization. Our methods can be considered
extensions of the large body of work on geometric integration of ODEs (see, for example,
[16, 17, 18, 22, 29, 37]).

We caution that the algorithm presented in this paper is implicit and very expensive and
thus may not be appropriate for use with large collision systems. Nonetheless, it is the first
geometric integrator for collision problems and thus serves as a basis for the construction of
more efficient methods in the future. In fact, the methods of this paper have already led to
the development of more computationally feasible collision integrators (see [9]).

We also discuss how nonsmooth analysis techniques [25] can be incorporated into the
variational procedure such that the integrator can cope with nonsmooth contact geometries
(such as corner-to-corner collisions). As we mentioned before, this is the case which most
existing algorithms cannot handle (the standard penalty methods simply fail since no proper
gap function can be defined for such geometries).

Organization of the paper. In section 2, we first consider the time-continuous situation and
extend the conventional setting of geometric Lagrangian mechanics (see, for example, [36]) to
include nonsmooth but still continuous trajectories. This allows us to recover the standard
jump conditions at impact and to prove that the flow map of the system is symplectic in the
extended sense.

To apply the standard geometric mechanical tools in nonsmooth situations, it is necessary
to formulate the problem so that the space of admissible trajectories of the system has a
smooth manifold structure. To do this, we work in the extended framework, where both
configuration variables and time are considered as functions of a fixed parameter space. This
is the same approach as that used in multisymplectic mechanics (see [15, 35]), where it was
introduced to allow the consideration of right, or horizontal, transformations of the system.

Next, in section 3, we discretize the variational structure of the system, based on the
concept of discrete mechanics (see [37] for an overview and history), to obtain variational
integrators for collision problems. By discretizing the variational structure, rather than some
generalized equations of motion, we are able to show that our methods have various geometric
properties, including the preservation of momentum maps and symplectic structures.

Finally, in section 4, we consider particular examples of our variational integrators for
collision problems and investigate their behavior on a number of sample problems of rigid-body
collisions. In the appendix, we lay the foundations of some future work by briefly discussing
possible uses of the nonsmooth calculus approach (see [25]) in the context of variational
collision integrators.
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1.1. Overview of the continuous model. Before we begin with the body of the paper,
we will first give a brief overview of the main ideas and techniques used. This is not a rigorous
treatment, but everything stated here will be precisely defined and proven later.

Consider the system defined by the Lagrangian L(q, q̇) = 1
2 q̇
TMq̇ − V (q), where M is a

mass matrix and V is a potential function. Here q = (q1, . . . , qn) is a vector of configuration
variables which lives in the configuration manifold q ∈ Q. We now consider a subset C ⊂ Q,
which we call the admissible set and which represents those configurations for which no contact
is occurring. The boundary ∂C of the admissible set is all of those points at which contact
has just occurred but for which no interpenetration is taking place.

We now consider a trajectory q(t) which maps q : [0, T ] → Q such that q(t) ∈ C, except
at a particular time ti for which q(ti) ∈ ∂C. The time ti is thus the time at which contact
occurs, and we allow the trajectory q(t) to be nonsmooth but still continuous at this time.

Proceeding in the standard way for Lagrangian mechanics, we construct the action of the
trajectory by integrating the Lagrangian along q(t). We then compute variations of the action
with respect to variations in both the curve q(t) and the impact time ti, holding the endpoints
of the curve fixed, to give

δ

∫ T

0
L
(
q(t), q̇(t)

)
dt

=

∫ ti

0

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇

]
dt+

∫ T

ti

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇

]
dt

−
[
L(q, q̇) · δti

]t+i
t−i

=

∫ ti

0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt+

∫ T

ti

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt

−
[
∂L

∂q̇
· δq + L

]t+i
t−i
,

where we have used integration by parts and the condition δq(T ) = δq(0) = 0. Requiring that
the variations of the action be zero for all δq implies that on the intervals away from ti the
integrand must be zero, giving the well-known Euler–Lagrange equations

∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
= 0.

For the particular form of the Lagrangian chosen above, this is simply

Mq̈ = −∇V (q),

which is Newton’s equation of mass times acceleration equals force, and this equation describes
the motion of the system away from impact.

Not only must the two integrals in the variation equation be zero, but the jump term at
ti must also be zero. Here it is necessary to recall that the curve at time ti must lie in the
boundary ∂C of the admissible set, and differentiating this relationship q(ti) ∈ ∂C gives the
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condition

δq(ti) + q̇(ti) · δti ∈ T∂C,

which states that the combined variation on the left-hand side must be in the tangent plane
to ∂C at the impact point. The space of allowable δq(ti) and δti is spanned by the set of
δq(ti) ∈ T∂C with δti = 0, together with the additional variation δq(ti) = −q̇(ti) with δti = 1.
Substituting each of these into the jump term in the variation equation gives the two relations

[
∂L

∂q̇

∣∣∣∣
t+i

− ∂L

∂q̇

∣∣∣∣
t−i

]
· δq(ti) = 0 for all δq(ti) ∈ T∂C,

[
∂L

∂q̇
· q̇ − L

]
t+i

−
[
∂L

∂q̇
· q̇ − L

]
t−i

= 0.

When the Lagrangian is of the form kinetic minus potential, as above, these can be written
as

q̇(t+i )− q̇(t−i ) ∈ NC(qi(t)),(1a)

EL(t
+
i )− EL(t

−
i ) = 0,(1b)

where the energy is EL(q, q̇) = 1
2 q̇
TMq̇ + V (q) and NC(q) is the normal cone to ∂C at q.

The first of these two equations states that the jump in velocity at the impact point must
be orthogonal to the boundary ∂C, while the second equation states that energy must be
conserved during the impact. Together these two equations constitute a system of n equations
which describe the evolution of the system during the collision.

It is well known that the system described by the Euler–Lagrange equations has many
special properties. In particular, the flow on state space is symplectic, meaning that it con-
serves a particular two-form, and if there are symmetry actions on phase space, then there
are corresponding conserved quantities of the flow, known as momentum maps. All of these
geometric properties can be proven directly from the variational principle used above, and so
they also hold for nonsmooth systems. Later we will see how this can be precisely formulated.

1.2. Overview of the discrete model. Discrete variational mechanics is based on replac-
ing the position q and velocity q̇ with two nearby positions q0 and q1 and a timestep h. These
positions should be thought of as being two points on a curve at time h apart so that q0 ≈ q(0)
and q1 ≈ q(h) for some short curve segment q(t).

We next consider a discrete Lagrangian Ld(q0, q1, h), which we think of as approximating
the action integral along the curve segment between q0 and q1. For concreteness, consider the
very simple approximation given by

Ld(q0, q1, h) = h

[(
q1 − q0
h

)T
M

(
q1 − q0
h

)
− V (q0)

]
.

This is simply the rectangle rule applied to approximate the action integral, with the velocity
being approximated by the difference operator.
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Now consider a discrete curve of points {qk}Nk=0 in C and corresponding times tk = kh,
together with a special impact point q̃ ∈ ∂C and an impact time t̃ = αti−1 + (1− α)ti. Here
α ∈ [0, 1] is a parameter which interpolates t̃ with the interval [ti−1, ti]. Given such a discrete
trajectory

(q0, t0), . . . , (qi−1, ti−1), (q̃, t̃), (qi, ti), . . . , (qN , tN ),

we calculate the discrete action along this sequence by summing the discrete Lagrangian on
each adjacent pair, with the timestep being the difference between the pair of times. Following
the continuous derivation above, we compute variations of this action sum with respect to
variations in the qk as well as q̃ and α (and hence t̃), with the boundary points q0 and qN held
fixed. This gives

δ

[
i−2∑
k=0

Ld(qk, qk+1, h) + Ld(qi−1, q̃, αh)

+ Ld(q̃, qi, (1− α)h) +
N−1∑
k=i

Ld(qk, qk+1, h)

]

=
N−1∑
k=0

[
D1Ld(qk, qk+1, h) · δqk +D2Ld(qk, qk+1, h) · δqk+1

]

=
i−2∑
k=1

[
D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)

]
· δqk

+
N−1∑
k=i+1

[
D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)

]
· δqk

+
[
D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh)

]
· δqi−1

+
[
D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)

]
· δq̃

+
[
D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h)

]
· δqi

+
[
D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h)

]
· hδα,

where we have rearranged the summation and we have used the fact that δq0 = δqN = 0. This
calculation is illustrated graphically in Figure 1.

If we now require that the variations of the action be zero for any choice of δqk, then we
obtain the discrete Euler–Lagrange equations

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h) = 0,

which must hold for each k away from the impact time. For the particular Ld chosen above,
we compute

D2Ld(qk−1, qk, h) =M

(
qk − qk−1

h

)
,

D1Ld(qk, qk+1, h) = −
[
M

(
qk+1 − qk

h

)
+ h∇V (qk)

]
,
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∂C
q̃

αh
qi−1

h

qi−2

(1− α)h

qi
h

qi+1

Figure 1. The discrete variational principle for collisions.

and so the discrete Euler–Lagrange equations are

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk).

This is clearly a discretization of Newton’s equations, using a simple finite difference rule for
the derivative.

If we take initial conditions (q0, q1), then the discrete Euler–Lagrange equations define a
recursive rule for calculating the sequence {qk}Nk=0. Regarded in this way, they define a map
FLd : (qk, qk+1) 
→ (qk+1, qk+2), which we can think of as a one-step integrator for the system
defined by the continuous Euler–Lagrange equations, away from impact.

Near impact, we must consider the other equations which are implied by the discrete vari-
ation equation being zero. Assume that we have used the discrete Euler–Lagrange equations
to compute the trajectory up until the pair (qi−2, qi−1), just before impact. Now we have the
equation

D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh) = 0,

which becomes

M

(
q̃ − qi−1

αh

)
−M

(
qi−1 − qi−2

h

)
= −αh∇V (qi−1).

Combining this with the condition that q̃ ∈ ∂C we obtain n+1 equations to be solved for the
n + 1 unknowns q̃ and α. We thus now know the point and time of contact. Next, we recall
that q̃ ∈ ∂C, and so its variations must lie in the tangent space. This means that we have the
pair of equations

[
D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)

]
· δq̃ = 0 for all δq̃ ∈ T∂C,

D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h) = 0,
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which become

M

(
qi − q̃

(1− α)h

)
−M

(
q̃ − qi−1

αh

)
+ (1− α)h∇V (q̃) ∈ NC(q̃),

[
1

2

(
qi − q̃

(1− α)h

)T
M

(
qi − q̃

(1− α)h

)
+ V (q̃)

]

−
[
1

2

(
q̃ − qi−1

αh

)T
M

(
q̃ − qi−1

αh

)
+ V (qi−1)

]
= 0.

These are discrete versions of (1), and they give n equations to be solved for qi. Finally, we
use the equation

D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h) = 0,

which is

M

(
qi+1 − qi

h

)
−M

(
qi − q̃

(1− α)h

)
= −∇V (qi),

to solve for qi+1, and then we can revert to using the standard discrete Euler–Lagrange
equations to continue away from the impact.

The power of the variational approach becomes apparent when we consider the geometric
properties of the discrete system. Just as in the continuous case, we can derive conservation
laws of the discrete system directly from the variational principle. In particular, we will see
that there is a conserved discrete symplectic form, and conserved discrete momentum maps
arise from symmetries. In addition, in section 4, we will investigate the numerical behavior
of the discrete system, regarded as an integrator for the continuous problem, and we will see
that it also has excellent long-time stable energy behavior.

To understand the geometry and properties of both the continuous and discrete nonsmooth
mechanics, however, we now need to return to the beginning and develop a more rigorous
treatment of the variational procedure.

2. Continuous model. As noted in the introduction, the basic methodology used here
is that of variational mechanics and variational discretizations. Clearly, a generalization to
the nonsmooth setting of the autonomous, smooth variational mechanics cannot be done in
a straightforward way. One of the major obstacles is that the lack of smoothness for the
mappings prevents us from using the differential calculus on the manifold of mappings, as one
essentially does in the smooth case (see [36]).

The main issue addressed in this section is how to overcome this difficulty and how to
derive the conservation of quantities such as energy, momentum maps, and the symplectic
form using a variational approach. The approach we use is to extend the problem to the
nonautonomous case so that both configuration variables and time are functions of a separate
parameter τ . This allows the impact to be fixed in τ space while remaining variable in both
configuration and time spaces, and it means that the relevant space of configurations will
indeed be a smooth manifold, as we shall prove.
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To make our variational procedure clear, we initially consider only the frictionless, purely
elastic impact problem. In the last subsection, however, we show how the results can be
extended to deal with friction and nonelastic impacts.

2.1. Lagrangian mechanics in a nonsmooth setting. Consider a configuration manifold
Q and a submanifold with boundary C ⊂ Q which represent the subset of admissible config-
urations. Let ∂C be called the contact set, and let L : TQ→ R be a regular Lagrangian.

Remark. Similar results are obtained if we considered the configuration Q a manifold with
boundary and the contact set to be ∂Q.

Let us now consider the path space defined by

M = T × Q([0, 1], τi, ∂C,Q),

where

T = {ct ∈ C∞([0, 1],R) | c′t > 0 in [0, 1]},
Q([0, 1], τi, ∂C,Q) = {cq : [0, 1] → Q | cq is a C0, piecewise C2 curve,

cq(τ) has only one singularity at τi, cq(τi) ∈ ∂C}.
A path c ∈ M is thus a pair c = (ct, cq). Given a path, we can form the associated curve
q : [ct(0), ct(1)] → Q by

q(t) = cq(c
−1
t (t)),

and we denote by C the space of all these paths q(t) ∈ Q.
The theory we will develop applies to rigid-body impact problems, such as a particle

bouncing on a rigid wall or two rigid bodies colliding, where the submanifold ∂C is obtained
from the condition that interpenetration of matter cannot occur. The moment of impact τi
is fixed in the τ space but is allowed to vary in the t space according to ti = ct(τi); thus the
setting we suggest is not restrictive in this sense.

We use a nonautonomous formulation of an autonomous mechanical system in order to
achieve smoothness of the manifold of mappings, as one can see from the following lemmas.

Lemma 2.1. T is a smooth manifold.
Proof. T is an open set in C∞([0, 1],R), which is a smooth manifold (see [36]). Then T

is a submanifold of C∞([0, 1],R) and thus a manifold.
Lemma 2.2. Q([0, 1], τi, ∂C,Q) is a smooth manifold.
Proof. Fix a chart U in Q such that U ∩ ∂C �= ∅ and U ∩ ∂C is a chart in ∂C. Consider

the set
QU = Q([0, τi], U)×Q([τi, 1], U)× (U ∩ ∂C),

where
Q([0, τi], U) = {q : [0, τi] → Q | q is a C∞ curve, q(τi) ∈ U},
Q([τi, 1], U) = {q : [τi, 1] → Q | q is a C∞ curve, q(τi) ∈ U}.

An element c ∈ Q([0, 1], τi, ∂C,Q) is the inverse image of the origin for some map gU : QU →
R

2n given by

gU (q1(τ), q2(τ), qi) =

(
q1(τi)− qi
q2(τi)− qi

)
,
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where we denote the dimension of Q by n. One can prove that 0 is a regular value of gU , and
then the set g−1

U (0) is a submanifold of QU , and thus it has a manifold structure.
Now {g−1

U (0)}U represents a covering of Q([0, 1], τi, ∂C,Q), where each element of the
covering is a manifold. The elements of the covering satisfy the compatibility conditions
necessary to ensure that Q([0, 1], τi, ∂C,Q) itself is a manifold (see [1]).

Corollary 2.3. M is a smooth manifold.
Remark. The theory can be easily extended to a problem involving more than one impact

by simply taking multiple points τi at which the trajectory is nonsmooth.
Note that the tangent space at q ∈ Q can be written as

TqQ = {v : [0, 1] → TQ | v is a C0 piecewise C2 map , v(τi) ∈ Tq(τi)∂C},

which will be a convenient form below when we consider variations of trajectories. The tangent
space to the path space M is then given by TM = TT × TQ.

Remark. As we have noted above, fixing the impact point τi in τ space allows us to
rigorously define what we mean by a variation of the impact point in t space. This is similar
to the introduction of a parameterized spacetime in [35] and [31].

The action map G : M → R is given by

G(ct, cq) =

∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ,(2)

where c′ denotes the derivative with respect to τ .
Remark. c′q(τ) does not exist at τi, but the definition makes sense nonetheless.
If q is the associated curve for c ∈ M, by the change of coordinates s = ct(τ) we can also

write G as

G(q) =

∫ ct(1)

ct(0)
L(q(s), q̇(s))ds,(3)

where q̇ denotes the derivative with respect to t.
Define the extended configuration manifold to be Qe = R × Q and the second order sub-

manifold of T (TQe) to be

Q̈e =

{
d2c

dτ2
(0) ∈ T (TQe) | c : [0, 1] → Qe is aC

2 curve

}
.(4)

Now we can derive the equations of motion and the jump conditions in a purely variational
way, by taking variations of the actions with respect to the path. This leads to the following
fundamental theorem.

Theorem 2.4. Given a Ck Lagrangian L, k ≥ 2, there exist a unique Ck−2 mapping EL :
Q̈→ T ∗Qe and a unique Ck−1 one-form ΘL on TQe such that for all variations δc ∈ TcM of
c we have

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ +ΘL(c
′) · δ̂c|τ

−
i

0 +ΘL(c
′) · δ̂c|1

τ+
i
,(5)
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where

δ̂c(τ) =

((
c(τ),

∂c

∂τ
(τ)

)
,

(
δc(τ),

∂δc

∂τ
(τ)

))
.

The mapping EL is called the Euler–Lagrange derivative and the one-form ΘL is called the
Lagrangian one-form. In coordinates they have the expression

EL(c′′) =
[
∂L

∂q
c′t −

d

dτ

(
∂L

∂q̇

)]
dcq +

[
d

dτ

(
∂L

∂q̇

c′q
c′t

− L

)]
dct,(6)

ΘL(c
′) =

[
∂L

∂q̇

]
dcq −

[
∂L

∂q̇

c′q
c′t

− L

]
dct.(7)

Proof. Consider δc ∈ TcM. We calculate dG(c) · δc using the definition (see [36])

dG(c) · δc = d

dλ
G(cλ)

∣∣∣∣
λ=0

,(8)

where cλ is a curve in M with c0 = c and dcλ

dλ |λ=0 = δc. Splitting cλ into components

cλ = (cλt , c
λ
q ), we then have ( ddλc

λ
t |λ=0,

d
dλc

λ
q |λ=0) = (δct, δcq), and we can calculate

dG · δc =
∫ 1

0

[
∂L

∂q
δcq +

∂L

∂q̇

(
δc′q
c′t

− c′qδc′t
(c′t)2

)]
c′t dτ +

∫ 1

0
Lδc′t dτ.

Now we split the integral
∫ 1
0 into

∫ τi
0 +

∫ 1
τi
in order to integrate the δc′q and δc′t terms by parts.

Some straightforward algebra then leads to (5).

2.2. Hamilton’s principle of critical action. Hamilton’s principle of critical action tells
us that we should consider critical points of the action function. Therefore, let us define the
space of solutions ML ⊂ M to be the set of all paths c ∈ M which satisfy dG(c) · δc = 0 for
all variations δc ∈ TcM which are zero at the boundary points 0 and 1.

Using (5), we can see that c is a solution if it satisfies

∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ +ΘL(c
′)|τ

+
i

τ−i
· δ̂c(τi) = 0(9)

for all variations δc ∈ TcM.

From (9) it is clear that c is a solution iff the Euler–Lagrange derivative is zero on smooth
portions and the Lagrangian one-form has a zero jump at τi. Splitting EL(c′′) into the two
components, we obtain

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 in [t0, ti) ∪ (ti, t1],(10)

d

dt

(
∂L

∂q̇
q̇ − L

)
= 0 in [t0, ti) ∪ (ti, t1],(11)
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where t0 = ct(0), t1 = ct(1), and ti = ct(τi).
In fact, (11) is redundant, as it is a consequence of (10). Indeed, if c is a path satisfying (10)

for all t ∈ (t0, ti) ∪ (ti, t1), then the second component (11) of the Euler–Lagrange equations
is identically satisfied. To see this, we may calculate

d

dt

(
∂L

∂q̇
q̇ − L

)
=

d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ − dL

dt

=

[
∂L

∂q
q̇ +

∂L

∂q̇
q̈

]
− dL

dt

= 0,

where we used (10) to pass from the first to the second line.
The second part (11) of the Euler–Lagrange equations represents the conservation of en-

ergy for an autonomous system, provided the motion is smooth. The energy E : TQ → R is
defined to be

E(q, q̇) =
∂L

∂q̇
(q, q̇) · q̇ − L(q, q̇).

It is not surprising that the second part of the Euler–Lagrange equations (11) is redundant,
since the first part (10) already has the energy evolution built into it.

The previous definition of the energy function allows us to write the Lagrangian one-form
in the compact notation

ΘL =
∂L

∂q̇
dq − Edt,(12)

where we use (q, t) to refer to the two components of c. The conservation of the Lagrangian
one-form at the impact time reads

ΘL|τ−i = ΘL|τ+
i

on TQe|(R × ∂C).(13)

Splitting this into the two components gives

∂L

∂q̇

∣∣∣∣
t=t−i

· δq = ∂L

∂q̇

∣∣∣∣
t=t+i

· δq(14)

for any δq ∈ Tq(ti)∂C and

E(q(t−i ), q̇(t
−
i )) = E(q(t+i ), q̇(t

+
i )).(15)

These equations are the Weierstrass–Erdmann-type conditions for impact. That is, (14) states
that the linear momentum must be conserved in the tangent direction to ∂C, while (15) states
that the energy must be conserved during an elastic impact.

The system of (14) and (15) must be solved for q̇(t+i ). An obvious solution is q̇(t+i ) = q̇(t−i ),
but this is ruled out since the resulting trajectory would no longer lie in the admissible set.
That is, it would violate the physical noninterpenetration condition.
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Remark. Of course, existence and uniqueness for nonsmooth systems are very deep ques-
tions. Here, we will simply remark that for a codimension-one smooth boundary ∂C and
quadratic kinetic energy, solutions to the system (14), (15) exist and are unique locally. The
questions of global existence and uniqueness of solutions for more general Lagrangians is left
for future works.

2.3. Lagrangian flows and conservation of the symplectic form. As we have already
seen, a path c ∈ M is a solution of the variational principle if its associated curve q(t) satisfies
the Euler–Lagrange equations (10) and the jump conditions (14) and (15). It is a well-known
fact that, in the smooth case, such a trajectory is uniquely determined by an initial condition
in TQ. Since we work in a nonsmooth context, we must assume uniqueness of the physical
trajectory at the impact point; we have already discussed in the previous subsection some
conditions under which this actually occurs.

Under this hypothesis, the space CL, defined to be the space of curves q(t) that satisfy (10),
(14), and (15), may be identified with the space of initial conditions (t0, q0, q̇0) on R × TQ.

Based on these remarks, we can define a flow Ft : R × TQ→ R × TQ as

Ft(t0, q0, q̇0) = (t0 + t, q(t0 + t), q̇(t0 + t)),(16)

where q(t) is the unique trajectory in CL corresponding to (t0, q0, q̇0) ∈ R×TQ. The mapping
Ft is called the Lagrangian flow. In the nonsmooth setting, Ft will not necessarily be a smooth
map on the whole of its domain. Later, we will restrict our attention to the parts of the domain
on which Ft is smooth in order to use the derivatives of Ft with respect to the initial conditions
and to time.

Remark. Even though we have worked within an extended configuration manifold formu-
lation up until this point, here we have defined a flow on TQ rather than taking a flow on
TQe with initial conditions in TQe. The reason for doing this is that the derivative t′0 has no
physical meaning, and no mechanical problem has the derivative of time with respect to some
parameter as an initial condition.

Next, we will show in which sense the Lagrangian flow Ft is symplectic. We begin by
relating the previous approach to the one used in the rest of the section.

As we noted above, to any initial condition (t0, q0, q̇0) in R × TQ there corresponds a
unique trajectory q(t) ∈ CL such that (q(t0), q̇(t0)) = (q0, q̇0). Trajectories in CL are unique
up to reparameterization in τ . Accordingly, we can define an equivalence relation in ML by

c0 ∼ c1 iff c0q ◦ (c0t )−1 = c1q ◦ (c1t )−1,(17)

where c0, c1 ∈ ML, c
0 = (c0q , c

0
t ), c

1 = (c1q , c
1
t ). That is, two paths are equivalent if they

have the same associated curve, and so to a given trajectory q(t) in CL there corresponds an
equivalence class ĉ of curves in the extended space.

In a similar manner, we can define an equivalence relation on TQe by

(t0, q0, t
′
0, q

′
0) ∼ (t1, q1, t

′
1, q

′
1) iff t0 = t1, q0 = q1, and

q′0
t′0

=
q′1
t′1
,(18)

which is a pointwise version of the previous equivalence relation (17).
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Now, the quotient space TQe/∼ may be identified with the product R×TQ, and the flow
Ft may be regarded not as a flow on TQe (which would not be desirable, as explained in the
previous remark) but as a flow on the equivalence classes of TQe.

To prove symplecticity for the flow Ft in a precise sense, we must reinterpret Theorem 2.4
by slightly modifying the definition of the Lagrangian one-form ΘL.

That is, Theorem 2.4 stands with the same statement and fundamental relation (5) if
we replace ΘL with the one-form Θ̄L on R × TQ ∼= TQe/∼, where Θ̄L is given by the same
coordinate expression as ΘL, i.e., relation (7). More precisely, (5) becomes

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ + Θ̄L(c̃) · δc̃|τ
−
i

0 + Θ̄L(c̃) · δc̃|1τ+
i
,(19)

where

c̃(τ) =

(
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,

δc̃(τ) =

((
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,

(
δct(τ), δcq(τ),

(
δc′q
c′t

− c′qδc′t
(c′t)2

)
(τ)

))
.

It is exactly this one-form Θ̄L on R × TQ which is preserved by the flow Ft, as we will now
show.

To any fixed (t0, q0, q̇0) ∈ R × TQ we associate the integral curve s 
→ Fs(t0, q0, q̇0) for
s ∈ [0, t]; the value of G on that curve is denoted by Gt and again called the action. Thus we
define the map Gt : R × TQ→ R by

Gt(t0, q0, q̇0) =

∫ t0+t

t0
L (q(s), q̇(s)) ds,(20)

where q(t) ∈ CL is the solution corresponding to (t0, q0, q̇0).

If c = (ct, cq) is any representative in the equivalence class ĉ corresponding to q, we can
write

Ft(t0, q0, q̇0) =

(
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,(21)

where τ = c−1
t (t0 + t).

Consider now an arbitrary curve λ 
→ (tλ0 , q
λ
0 , q̇

λ
0 ) in R×TQ which passes through (t0, q0, q̇0)

at λ = 0. Denote by qλ(t) the unique trajectories in CL corresponding to (tλ0 , q
λ
0 , q̇

λ
0 ) and by

ĉλ their equivalence classes in ML. (At λ = 0 they reduce to q(t) and ĉ, respectively.) We
pick representatives (cλt , c

λ
q ) in ĉ

λ such that for any λ ≥ 0 we have

(cλt )
−1(tλ0 + t) = const(22)

for some t > 0; we denote this common value by τ .
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Then, using (21) and (22), the fundamental (19) becomes

dGt((t0, q0, q̇0)) · (δt0, δq0, δq̇0) = Θ̄L(Ft(t0, q0, q̇0)) · d

dλ
Ft(t

λ
0 , q

λ
0 , q̇

λ
0 )

∣∣∣∣
λ=0

− Θ̄L(t0, q0, q̇0) · d

dλ
(tλ0 , q

λ
0 , q̇

λ
0 )

∣∣∣∣
λ=0

,(23)

where (δt0, δq0, δq̇0) =
d
dλ |λ=0

(tλ0 , q
λ
0 , q̇

λ
0 ).

Taking the exterior derivative of (23), we derive

0 = ddGt = F ∗
t (dΘ̄L)− dΘ̄L.(24)

Defining the Lagrangian symplectic form by ΩL = −dΘ̄L, we now see that relation (24) gives
the symplecticity of the flow in the extended sense

F ∗
t ΩL = ΩL.(25)

Thus we derived conservation of the canonical symplectic structure in the extended sense (see
[24]), namely,

ΩL = ωL + dE ∧ dt,(26)

where ωL = −dθL is the canonical symplectic form. Here, θL represents the component of the
Lagrangian one-form given by (12)

θL =
∂L

∂q̇
dq.(27)

It is the term dE ∧ dt that distinguishes the nonautonomous structure used here from the
autonomous approach, for which the symplectic structure is given only by the canonical sym-
plectic form ωL.

2.4. Noether’s theorem. Suppose that a Lie group G, with Lie algebra g, acts on Q
by the (left or right) action Φ : G × Q → Q. Consider the tangent lift of this action to
TΦ : G × TQ → TQ given by (TΦ)g(vq) = T (Φg) · vq, and for ξ ∈ g define the infinitesimal
generators ξQ : Q→ TQ and ξTQ : TQ→ T (TQ) by

ξQ(q) =
d

dt |t=0

exp(tξ) · q,

ξTQ(vq) =
d

dt |t=0

Tqφt(vq),

where φt is the flow of the vector field ξQ.

In this subsection, we will not use the extended configuration manifold setting with varia-
tions in both time and configuration variables, as is done in the rest of the paper. This means
that we are restricted to symmetries of the configuration variables, which do not involve alter-
ing the time variable. This allows us to deal with most of the interesting physical problems,
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while still keeping the theory relatively simple. For a full account of the conservation of
momentum maps in the extended setting, see [37].

For a fixed initial time t0 ∈ R, define the flow map F̃t : TQ→ TQ by

F̃t(q0, q̇0) = (q(t0 + t), q̇(t0 + t)),(28)

where q(t) is the unique trajectory in CL corresponding to (q0, q̇0) ∈ TQ, as initial condition
at t0.

In the autonomous setting, the Lagrangian one-form Θ̄L reduces to the configuration
component θL given by (27), and the action Gt from (20) becomes the map Ḡt : TQ → R

defined by

Ḡt(q0, q̇0) =

∫ t0+t

t0
L (q(s), q̇(s)) ds.(29)

Define the Lagrangian momentum map JL : TQ→ g∗ to be

JL(vq) · ξ = θL · ξTQ(vq).

We will now show that when the group action is a symmetry of both the Lagrangian and the
submanifold ∂C, then the momentum maps are conserved quantities of the flow.

A Lagrangian L : TQ → R is said to be infinitesimally invariant under the lift of the
group action Φ : G×Q→ Q if dL · ξTQ = 0 for all ξ ∈ g, and in this case the group action is
said to be a symmetry of the Lagrangian.

In proving the following theorem, we will essentially use the assumption that the group
action Φ leaves the boundary ∂C of the collision set invariant (locally). An example where
this assumption is valid is the case of two or more irregular bodies (for example, binary
astroids) moving in space under gravitational forces. In this case, the collision set is invariant
to translations and rotations (G = SE(3)).

Theorem 2.5 (Noether’s theorem). Consider a Lagrangian system L : TQ → R which is
infinitesimally invariant under the lift of the (left or right) group action Φ : G × Q → Q.
Under the assumption that the group action leaves ∂C invariant (locally), the corresponding
Lagrangian momentum map JL : TQ→ g∗ is a conserved quantity of the flow so that JL◦F̃t =
JL for all times t.

Proof. The group action of G on Q induces a group action of G on the space C of paths
q(t) in Q by pointwise action so that Φg(q)(t) = Φg(q(t)). The tangent lift of Φ acting on C
will thus be the pointwise group action of the tangent lift of Φ group action on Q. From this
we derive

dG(q) · ξC(q) =
∫ t1

t0
dL · ξTQ dt,

and so, symmetries of the Lagrangian induce symmetries of the action. This implies that Φg
leaves the space of solutions CL of the Euler–Lagrange equations invariant, and so we may
restrict Φg to CL.
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Furthermore, the flow map F̃t : TQ → TQ commutes with the tangent lift of Φ on C:
F̃t ◦ TΦg = TΦg ◦ F̃t. Differentiating this with respect to g in the direction ξ gives

T (F̃t) · ξTQ = ξTQ ◦ F̃t.
We now follow the same idea used to prove symplecticity of the flow map Ft and identify the
space of solutions CL with the space of initial conditions TQ. For an initial condition vq ∈ TQ
and corresponding solution curve q ∈ CL, we thus have

dG(q) · ξC(q) = dḠt(vq) · ξTQ(vq)
= ((F̃t)

∗(θL)− θL)(vq) · ξTQ(vq)(30)

from (23).
To derive (30), one uses the assumption that the group action Φ leaves ∂C invariant

(locally). More precisely, it is essential that the path curves qλ ∈ C corresponding to vλq =
ηλ(vq) (by ηλ we denote the flow of ξTQ on TQ) have exactly the same impact time ti as the
curve q. We conclude this from the relation

qλ(ti) = Φexp(λξ)(q)(ti) = exp(λξ) · q(ti)
as well as the assumption on the group action and the condition that q(ti) ∈ ∂C.

As the left-hand side of (30) is always zero, the previous identity gives

(θL · ξTQ) ◦ F̃t = θL · ξTQ,
which is the definition of conservation of the momentum map. We complete the proof by
noting that the argument above is valid for all times t ∈ R.

2.5. Forcing and friction. In this subsection, we extend the theory developed so far to
include forcing and friction. To do this in the variational framework, we turn from using
Hamilton’s principle to the Lagrange–d’Alembert extension of it.

The usual force field description of impact dynamics contains a given external force, a
normal contact force field over the area in contact, and a friction force field required to be
self-equilibrated and tangential to the surfaces in contact.

Following [36], we define the exterior force field as a fiber-preserving map F : TQe → T ∗Qe

over the identity, which we write in coordinates as

F : (c, c′) 
→ (c, F (c, c′)).(31)

We use a unified treatment of contact forces (the normal and the frictional forces) by defining
the contact force field to be a map f con : TQe|(∂C × R) → T ∗(∂C × R).

Given a Lagrangian L and the exterior and contact force fields defined as above, the
integral Lagrange–d’Alembert principle for a curve c ∈ M states that

δ

∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ +

∫ 1

0
F (c(τ), c′(τ)) · δc(τ) dτ(32)

+ f con(c(τi), c
′(τi)) · δc(τi) = 0
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for all admissible variations δc vanishing at the endpoints.
Using integration by parts and notation from section 2.1, one can show that (32) is equiv-

alent to
∫ τi

0

[
EL(c′′) + F (c′)

] · δc dτ +
∫ 1

τi

(EL(c′′) + F (c′)) · δc dτ(33)

+ ΘL(c
′)|τ

+
i

τ−i
· δ̂c(τi) + f con(c(τi), c

′(τi)) · δc(τi) = 0.

From (33) we obtain the extended forced Euler–Lagrange equations, which have coordinate
expressions

d

dτ

(
∂L

∂q̇

)
− ∂L

∂q
c′t = Fq in [0, τi) ∪ (τi, 1],(34)

− d

dτ

(
∂L

∂q̇
q̇ − L

)
= Ft in [0, τi) ∪ (τi, 1],(35)

where (Ft, Fq) denote the corresponding components of F .
However, the first part (34) of the extended forced Euler–Lagrange equations has the

energy evolution built into it, as can be seen from

dE

dt
=

d

dt

(
∂L

∂q̇
q̇ − L

)

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇(36)

=
Fq
c′t
q̇,

where we used (34) to pass from the first to the second line.
Therefore, from (35), the time component Ft of the exterior force field must necessarily

be of the form

Ft = −Fq · q̇.(37)

This compatibility condition is a consequence of the fact that the mechanical system is au-
tonomous and the equations must depend only on the associated curve q(t). The nonau-
tonomous approach is relevant only in the context of nonsmooth mechanics, and it is not
surprising that there is no particular gain from this approach wherever the motion is smooth.

Now we turn to (33) and write the remaining terms on the left-hand side in components
to obtain

∂L

∂q̇

∣∣∣∣
t+i

t−i
· δq + f con

q · δq = 0(38)

for any δq ∈ Tq(ti)∂C, and

E(q(t+i ), q̇(t
+
i ))− E(q(t−i ), q̇(t

−
i ))− f con

t = 0.(39)
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Equations (38) and (39) represent the standard jump conditions for an inelastic impact
with friction. Equation (38) gives the jump in the tangential component of the linear momen-
tum due to the frictional forces acting on the tangent plane of the contact submanifold ∂C.
The energy dissipation, given by (39), is due to the tangential frictional forces as well as to
the normal reaction force exerted by the constraint. For frictionless collisions, f cont plays the
same role as the coefficient of restitution from the measure differential inclusion formulation
of contact dynamics [27, 56].

3. Discrete model. We now turn to considering discrete models of contact problems, in
which the continuous time variable is replaced with a discrete time index. The equations of
motion are thus algebraic rather than differential equations, and they can be regarded as an
integrator for the continuous system.

The approach we use is based on discrete variational mechanics (see [37]), in which the
variational principle is discretized and the discrete equations and their conservation properties
are derived as in the continuous case. This has the advantage of automatically capturing much
of the geometric structure of the true problem even in the approximate discrete setting.

3.1. Discrete configurations and equations of motion. Disregard for the moment the
continuous formulation of the previous section, and introduce a fixed timestep h ∈ R. Consider
a discrete Lagrangian Ld : Q×Q→ R, which is a function of two configuration points and the
timestep, so that Ld = Ld(q0, q1, h). The discrete Lagrangian will be chosen to approximate
the continuous action integral over an interval of length h so that

Ld(q0, q1, h) ≈
∫ h

0
L(q, q̇)dt,

where q : [0, h] → R is an exact solution of the Euler–Lagrange equations, for L satisfies the
boundary conditions q(0) = q0 and q(h) = q1.

We now consider an increasing sequence of times

tk = kh for k = 0, . . . , N,

we also fix α̃ ∈ [0, 1], and we let τ̃ = ti−1+ α̃h denote the fixed impact time (corresponding to
τi from the continuous model) and t̃ = ti−1+αh denote the actual impact time (corresponding
to ti). We take α = td(α̃), where td is some strictly increasing function which maps [0, 1] onto
[0, 1] . Thus we assumed only that the step at which the impact occurs is known and not the
impact time t̃, which is allowed to vary according to variations in α.

The discrete path space is defined by

Md = Td ×Qd(α̃, ∂C,Q),(40)

where

Td = {td(α̃) | td ∈ C∞([0, 1], [0, 1]), td onto, t
′
d > 0 in [0, 1]},(41)

Qd(α̃, ∂C,Q) = {qd : {t0, . . . , ti−1, τ̃ , ti, . . . , tN} → Q, qd(τ̃) ∈ ∂C}.(42)
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Remark. The set Td is actually the real interval [0, 1], but we used (41) to define it in order
to emphasize the analogy with the continuous case.

We identify the discrete trajectory with its image

(α, qd) = (α, {q0, . . . , qi−1, q̃, qi, . . . , qN}),
where qk = qd(tk) for k ∈ {0, . . . , N}, q̃ = qd(τ̃), and α = td(α̃). Thus a discrete trajectory
can be regarded as a sequence of points in Q, one of which must be in ∂C, and a single real
number α ∈ [0, 1].

The discrete action map Gd : Md → R is defined by

Gd(α, qd) =
i−2∑
k=0

Ld(qk, qk+1, h) +
N−1∑
k=i

Ld(qk, qk+1, h)(43)

+ Ld(qi−1, q̃, αh) + Ld(q̃, qi, (1− α)h).

As the discrete path space Md is isomorphic to [0, 1] × Q × · · · × ∂C × · · · × Q (N copies of
Q), it can be given a smooth manifold structure.

For qd ∈ Qd(α̃, ∂C,Q), the tangent space TqdQd(α̃, ∂C,Q) is the set of all maps vqd :
{t0, . . . , ti−1, τ̃ , ti, . . . , tN} → TQ such that πQ ◦ vqd = qd and vqd(τ̃) ∈ Tq̃∂C. For simplicity
we will identify vqd with its image in TQ.

The tangent space to the full discrete path space is now TMd = TTd × TQd. At a given
point (α, qd) ∈ Md we will write a tangent vector in T(α,qd)Md as

(δα, δqd) = (δα, {δq0, . . . , δqi−1, δq̃, δqi, . . . , δqN}).
Define the discrete second order manifold to be

Q̈d = Q×Q×Q,

which has the same information content as the continuous second order manifold Q̈.
We now proceed, as in the continuous case, to derive the discrete equations of motion and

the conservation laws from Hamilton’s principle of critical action. We take variations of the
discrete action sum with respect to the discrete path and to the parameter α, as stated in the
following theorem.

Theorem 3.1. Given a Ck discrete Lagrangian Ld : Q × Q × R → R, k ≥ 1, there exist
a unique Ck−1 mapping ELd : Q̈d → T ∗Q and unique Ck−1 one-forms Θ−

Ld
and Θ+

Ld
on the

discrete Lagrangian phase space Q × Q such that, for all variations (δα, δqd) ∈ T(α,qd)Md of
(α, qd), we have

dGd(α, qd) · (δα, δqd)

=
i−2∑
k=1

ELd(qk−1, qk, qk+1) · δqk +
N−1∑
k=i+1

ELd(qk−1, qk, qk+1) · δqk

+ Θ+
Ld
(qN−1, qN ) · (δqN−1, δqN )−Θ−

Ld
(q0, q1) · (δq0, δq1)

+ [D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh)] · δqi−1(44)

+ h [D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h)] · δα
+ i∗(D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)) · δq̃
+ [D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h)] · δqi,
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where i∗ : T ∗Q→ T ∗∂C is the cotangent lift of the embedding i : ∂C → Q.
The map ELd is called the discrete Euler–Lagrange derivative and the one-forms Θ+

Ld
and

Θ−
Ld

are the discrete Lagrangian one-forms. In coordinates these have the expressions

ELd(qk−1, qk, qk+1) = [D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)] dqk(45)

for k ∈ {1, . . . , i− 2, i, . . . , N − 1} and

Θ+
Ld
(qk, qk+1) = D2Ld(qk, qk+1, h) dqk+1,

Θ−
Ld
(qk, qk+1) = −D1Ld(qk, qk+1, h) dqk.

Proof. The formula is derived by straightforward algebra, by computing the derivative of
the discrete action map, and by some rearrangement of the summation. This rearrangement
corresponds to a discrete version of integration by parts, resulting in two boundary terms
which are interpreted as the discrete Lagrangian one-forms.

By using the discrete version of Hamilton’s principle, we consider the paths (α, qd), which
are critical points of the discrete action. Therefore, we define the discrete space of solutions
to be the set of all paths which satisfy dGd(α, q) · (δα, δq) = 0 for all variations (δα, δqd) ∈
T(α,qd)Md which are zero at the boundary points 0 and N .

From (44) we conclude that (α, qd) is a solution iff the discrete Euler–Lagrange derivative
is zero at all k other than {0, i− 1, i, N}. This statement at an arbitrary k reads

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h) = 0(46)

and is known as discrete Euler–Lagrange equations. These describe the motion of the system
away from the impact point by implicitly defining a map (qk−1, qk) 
→ (qk, qk+1).

Near the point of impact, the discrete Hamilton’s principle gives three additional sets of
equations, namely,

D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh) = 0,(47a)

q̃ ∈ ∂C,(47b)

which is a system of n+ 1 equations to be solved for q̃ and α, and

D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h) = 0,(48a)

i∗(D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)) = 0,(48b)

which is a system of n equations for the unknown qi. Finally, we also have

D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h) = 0,(49)

which gives n equations to be solved for qi+1.
A discrete trajectory can thus be formed by starting from an initial condition (q0, q1),

using (46) to solve successively for the qk until the impact time is reached, and then solving
the systems (47), (48), and (49) in turn to obtain q̃, α and then qi and qi+1, before once again
continuing with (46) to complete the trajectory.
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Remark. The discrete energy conservation through the collision depends critically on ex-
actly resolving the collision time with the parameter α. This is also the key feature of the
recent improvements of [41] to the nonsmooth collision methods developed by [25].

3.2. Relationship between discrete and continuous models. Having established the ba-
sic discrete variational mechanics, we now consider how the discrete model can be regarded
as an approximation to the continuous model.

At first glance it appears that the discrete Euler–Lagrange equations are defined only in
terms of pairs of configuration positions. We will now see, however, that they can also be
interpreted as defining a mapping on the cotangent bundle T ∗Q. Define the discrete Legendre
transforms or discrete fiber derivatives F

+Ld,F
−Ld : Q×Q→ T ∗Q as given by

F
+Ld(q0, q1) · δq1 = D2Ld(q0, q1, h) · δq1,

F
−Ld(q0, q1) · δq0 = −D1Ld(q0, q1, h) · δq0,

where h is the timestep in between q0 and q1. We note the implicit dependence on the
timestep of the definition above. This dependence is completely neglected in the constant
timestep discrete variational mechanics or rigorously treated in the nonautonomous setting
(using adaptive timesteps), and we refer to [37] for a complete account of these ideas.

These also can be written

F
+Ld : (q0, q1) 
→ (q1, p1) = (q1, D2Ld(q0, q1, h)),(50a)

F
−Ld : (q0, q1) 
→ (q0, p0) = (q0,−D1Ld(q0, q1, h)).(50b)

If both discrete fiber derivatives are locally isomorphisms, then we say that Ld is regular. We
will generally assume that we are working with regular discrete Lagrangians.

We introduce the notation

p+
k,k+1 = p+(qk, qk+1, h) = F

+Ld(qk, qk+1),(51a)

p−k,k+1 = p−(qk, qk+1, h) = F
−Ld(qk, qk+1)(51b)

for the momentum at the two endpoints of each interval [k, k + 1].
We can now use definitions (50a) and (51) of the discrete fiber derivatives and of the

discrete momenta to see that the discrete Euler–Lagrange equations (46) can be written as

F
+Ld(qk−1, qk) = F

−Ld(qk, qk+1)(52)

or simply

p+
k−1,k = p−k,k+1.(53)

That is, the discrete Euler–Lagrange equations enforce the condition that the momentum at
time k should be the same when evaluated from the lower interval [k − 1, k] or the upper
interval [k, k + 1].

In this interpretation, (48b) represents conservation of the projection of momentum (by
i∗, on T ∗∂C) at the moment of impact

i∗p+(qi−1, q̃, αh) = i∗p−(q̃, qi, (1− α)h),(54)
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which is a discrete version of the jump condition (14) from the continuous case.

To give an interpretation of the discrete equations around the impact time, we define the
discrete energy to be

Ed(qk, qk+1, h) = −D3Ld(qk, qk+1, h).(55)

Using this, we can write (48a) as

Ed(qi−1, q̃, αh) = Ed(q̃, qi, (1− α)h),(56)

so this equation simply represents conservation of discrete energy at the impact time, a discrete
analogue of (15).

Remark. The discrete energy defined in this way is used in [24] and can be motivated in
several ways; first, for Lagrangians of the form of kinetic minus potential energy, and with the
choice of discrete Lagrangians given by

Ld(q0, q1, h) = L

(
γq0 + (1− γ)q1,

q1 − q0
h

)
,(57)

where γ ∈ [0, 1] is an interpolation parameter, the discrete energy gets the usual expression

Ed(q0, q1, h) =
1

2

(
q1 − q0
h

)T
M

(
q1 − q0
h

)
+ V (γq0 + (1− γ)q1).(58)

A second motivation is the fact that the discrete energy becomes exactly the Hamiltonian
when one uses the exact discrete Lagrangian LEd—that is, the discrete Lagrangian is equal to
the action integral taken along exact solutions of the Euler–Lagrange equations.

3.3. Symplecticity of the flow. Define the discrete Lagrangian map FLd : Q×Q→ Q×Q
by

(q0, q1) 
→ (q1, q2),(59)

where q2 is obtained by using the algorithm from section 3.1. A solution (α, qd) ∈ Md is
formed by iteration of the map FLd , and it is uniquely determined by the initial condition
(q0, q1) ∈ Q × Q and the choice of timestep h. Hence we parameterize the discrete solutions
of the variational principle by the initial conditions (q0, q1), and we consider the restriction of
Gd to that solution space.

The discrete fiber derivatives enable us to push the discrete Lagrangian map FLd : Q×Q→
Q×Q forward to T ∗Q. We define the discrete Hamiltonian map F̃Ld : T

∗Q→ T ∗Q by

F̃Ld = F
+Ld ◦ FLd ◦ (F+Ld)

−1,(60)

with the coordinate expression

F̃Ld : (q0, p0) 
→ (q1, p1).(61)
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We note that the discrete Hamiltonian map can be equivalently defined using the other discrete
Legendre transform

F̃Ld = F
−Ld ◦ FLd ◦ (F−Ld)−1.(62)

Define the restricted discrete action map Ĝd : Q × Q → R to be Ĝd(q0, q1) = Gd(α, qd),
where (α, qd) is the corresponding solution in Md such that (qd(t0), qd(t1)) = (q0, q1). Then
(44) becomes

dĜd = (FNLd)
∗Θ+

Ld
−Θ−

Ld
.(63)

Taking a further derivative of this expression and using the fact that d2Ĝd = 0, we obtain

(FNLd)
∗(ΩLd) = ΩLd ,(64)

where ΩLd = dΘ+
Ld

= dΘ−
Ld

is the unique discrete Lagrangian symplectic form, with coordinate
expression

ΩLd(q0, q1) =
∂2Ld

∂qi0∂q
j
1

dqi0 ∧ dqj1.(65)

We have thus proven that the discrete evolution map exactly preserves a discrete symplectic
structure, so, regarding Fd as an integrator for the continuous system, we see that it is
automatically a symplectic method.

Note that the discrete Lagrangian symplectic form is the pullback under either discrete
Legendre transform of the canonical symplectic form on T ∗Q. The discrete Hamiltonian map
F̃Ld : T

∗Q→ T ∗Q thus preserves the canonical symplectic form and the canonical momentum
maps on T ∗Q.

3.4. Discrete Noether theorem. Consider the (left or right) group action Φ : G×Q→ Q
of a Lie group G on Q, with infinitesimal generator as defined in section 2.4. This action can
be lifted to Q × Q by the product Φg(q0, q1) = (Φg(q0),Φg(q1)), which has the infinitesimal
generator ξQ×Q : Q×Q→ T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)).(66)

The two discrete Lagrangian momentum maps J+
Ld
, J−
Ld

: Q×Q→ g∗ are

J+
Ld
(q0, q1) · ξ = Θ+

Ld
· ξQ×Q(q0, q1),(67a)

J−
Ld
(q0, q1) · ξ = Θ−

Ld
· ξQ×Q(q0, q1).(67b)

As in the continuous approach to Noether’s theorem from section 2.4, we are restricted to
symmetries of the configuration variables only. We consider symmetries which do not involve
altering the time variable and thus consider the timestep h to be a fixed constant.

If a discrete Lagrangian Ld : Q × Q → R is such that dLd · ξ = 0, then Ld is said to
be infinitesimally invariant under the group action, and Φ is said to be a symmetry of the
discrete Lagrangian. Note that

dLd · ξ = (Θ+
Ld

−Θ−
Ld
) · ξQ×Q,
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and so, when Ld is infinitesimally invariant under the group action Φ, the two discrete mo-
mentum maps are equal. In such cases, we will use the notation JLd : Q × Q → g∗ for the
unique single discrete Lagrangian momentum map.

Theorem 3.2 (discrete Noether’s theorem). Consider a discrete Lagrangian system Ld : Q×
Q × R → R which is infinitesimally invariant under the lift of the (left or right) action Φ :
G×Q→ Q. If we assume that the action leaves ∂C invariant (locally), then the corresponding
discrete Lagrangian momentum map JLd : Q×Q→ g∗ is a conserved quantity of the discrete
Lagrangian map FLd : Q×Q→ Q×Q so that JLd ◦ FLd = JLd.

Proof. We introduce an action of G on the discrete path space Md by pointwise action
on the configuration components so that Φg : Md → Md is given by Φg(α, qd) = (α,Φg(qd)).
Then the infinitesimal generator ξMd

: Md → TMd is given by

ξMd
(α, qd) = (0, ξQ(q0), . . . , ξQ(qi−1), ξQ(q̃), ξQ(qi), . . . , ξQ(qN )).

From (43) we derive

dGd(α, qd) · ξMd
(α, qd) =

N−1∑
k=0

dLd · ξ,(68)

and so the space of solutions of the discrete Euler–Lagrange equations is invariant under the
action of G, and the Lagrangian map FLd : Q×Q→ Q×Q commutes with the lifted action
Φg : Q×Q→ Q×Q.

Identifying the space of solutions with the space of initial conditions Q×Q and using (63),
we obtain

dGd(α, qd) · ξMd
(α, qd) = dĜd(q0, q1) · ξQ×Q(q0, q1)

= ((FNLd)
∗(Θ+

Ld
)−Θ−

Ld
)(q0, q1) · ξQ×Q(q0, q1).

From (68) and the invariance of the discrete Lagrangian, the left-hand side of the previous
equation is zero, and so we have

(Θ+
Ld

· ξQ×Q) ◦ FNLd = Θ−
Ld

· ξQ×Q.(69)

The last relation is simply the statement of preservation of the discrete momentum map, given
that for symmetry actions there is only a single unique discrete momentum map and that the
above argument holds for all subintervals, including a single timestep.

Observe that JLd is the pullback under F
±Ld of the canonical momentum map JH on T ∗Q

and that JH is thus preserved by F̃Ld .

4. Numerical examples. In this section, we will choose a particular discrete Lagrangian
and illustrate the performance of the algorithm from the previous section on two simple
conservative systems. Here we are particularly interested in the extent to which the variational
integrator preserves the energy for very long time simulations.

The examples that we present very much simplify the issues regarding grazing impacts
and multiple nearby solutions, such as one would encounter in complex collisions (simulation
studies of powder flows, for example). Our algorithm, as presented in this paper, is limited to
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relatively simple situations, when one can readily identify and resolve the impacts. However,
considerable progress has already been made in extending these methods to more practical
schemes which are demonstrated in examples involving very complicated collision sequences
(see [9]).

4.1. The discrete algorithm. For systems of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q),(70)

where M is a mass matrix and V is a potential function, the Euler–Lagrange equations are
given by

Mq̈ = −∇V (q),

which is simply Newton’s equation of mass times acceleration equals force. We consider the
second order discrete Lagrangian

Ld(q0, q1, h) =
h

2

(
q1 − q0
h

)T
M

(
q1 − q0
h

)
− h

(
V (q0) + V (q1)

2

)
,(71)

which is clearly an approximation to the action integral over an interval of length h. The
discrete energy function for this choice of discrete Lagrangian is

Ed(q0, q1, h) =
1

2

(
q1 − q0
h

)T
M

(
q1 − q0
h

)
+

(
V (q0) + V (q1)

2

)
,(72)

and the discrete Euler–Lagrange equations are

M
qk+2 − 2qk+1 + qk

h2
= −∇V (qk+1).(73)

Using the discrete Legendre transform (50a), we can push this algorithm forward on T ∗Q and
obtain a map

(qk, pk) 
→ (qk+1, pk+1)

given by

qk+1 = qk + hM−1pk − h2

2
M−1∇V (qk),

pk+1 = pk − h

2
(∇V (qk) +∇V (qk+1)) .

The integrator defined by the previous set of equations is called the leap-frog/Verlet integrator
and is one of the most popular integration schemes in molecular dynamics. It is a second order
accurate integrator, as one can also infer from the fact that the discrete Lagrangian is second
order (see [37] for details about this theory).
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This equation describes the motion of the discrete system away from the point of impact.
Given a point (qi−1, pi−1) just before impact, we must then solve (47) for q̃ and α, which are

M
q̃ − qi−1

αh
−M

qi−1 − qi−2

h
+ (1 + α)

h

2
∇V (qi−1) = 0,(74a)

q̃ ∈ ∂C.(74b)

Next we solve (48) for qi, which reads

1

2

(
qi − q̃

(1− α)h

)T
M

(
qi − q̃

(1− α)h

)
− 1

2

(
q̃ − qi−1

αh

)T
M

(
q̃ − qi−1

αh

)

+
1

2
(V (qi)− V (qi−1)) = 0,(75a)

i∗
(
M

qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+
h

2
∇V (q̃)

)
= 0.(75b)

To implement the system (75), we write (75b) in a form using Lagrange multipliers. More
precisely, we consider ∂C to have a local representation ∂C = φ−1(0) ⊂ Q, where 0 is a regular
point of the constraint function φ : Q→ R. Then we solve (75a) together with the system

M
qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+
h

2
∇V (q̃) + λ∇φ(q̃) = 0(76)

for the unknowns qi ∈ R
n and λ ∈ R.

Finally, we solve for qi+1 by (49), which is

M
qi+1 − qi

h
−M

qi − q̃

(1− α)h
+ (2− α)

h

2
∇V (qi) = 0,(77)

and we then continue integrating with (73) above.
We can also handle multiple impacts within a single timestep by dividing the impact step

into as many substeps as we need and solving (74) and (75) sequentially for any constraint in-
volved in the impact. We will explicitly derive the equations for the case of two impacts solved
within the timestep (ti−1, ti); generalization to an arbitrary number would be immediate.

If multiple impacts are realized in the timestep (ti−1, ti), then the system (75) will return
a solution qi which is not admissible (qi /∈ C). Let us assume that there is only one additional
impact in the subinterval (t̃, ti) which occurs at the contact point q̃′ ∈ ∂C and time t̃′ = t̃+βh,
with 0 < β ≤ 1− α. Then the conservation of the discrete energy and the momentum at the
impact point q̃, in addition to the condition that q̃′ must lie on ∂C, give the system of n+ 1
equations

1

2

(
q̃′ − q̃

βh

)T
M

(
q̃′ − q̃

βh

)
− 1

2

(
q̃ − qi−1

αh

)T
M

(
q̃ − qi−1

αh

)

+
1

2
(V (q̃′)− V (qi−1)) = 0,(78a)

i∗
(
M
q̃′ − q̃

βh
−M

q̃ − qi−1

αh
+ (α+ β)

h

2
∇V (q̃)

)
= 0,(78b)

q̃′ ∈ ∂C,(78c)
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to be solved for q̃′ and β.
Next, the analogous versions of (78a) and (78b) for the second impact point q̃′ give n

equations for qi:

1

2

(
qi − q̃′

(1− α− β)h

)T
M

(
qi − q̃′

(1− α− β)h

)
− 1

2

(
q̃′ − q̃

βh

)T
M

(
q̃′ − q̃

βh

)

+
1

2
(V (qi)− V (q̃)) = 0,(79a)

i∗
(
M

qi − q̃′

(1− α− β)h
−M

q̃′ − q̃

βh
+ (1− α)

h

2
∇V (q̃′)

)
= 0.(79b)

The case of an arbitrary number of impacts is treated in a similar manner, by dividing the
timestep (ti−1, ti) into as many substeps as needed and sequentially solving systems of type
(78) to find all the contact points and times. Finally, we solve a system of type (79) for qi,
and then we revert to the standard discrete Euler–Lagrange equations to continue away from
the impact.

In the numerical examples, we solve the implicit sets of (74) and (75) with nested Newton
loops.

4.2. Particle colliding with a rigid surface. The first example we consider consists of a
particle with unit mass moving under gravity in the (x, y)-plane and successively colliding and
bouncing on a horizontal rigid floor located at y = 0. This simple system has two degrees of
freedom (the coordinates of the particle) q = (x, y), the configuration manifold is Q = R

2, and
the contact submanifold ∂C is the line y = 0. The particle moves with trajectory q(t) ∈ R

2

in the admissible set y ≥ 0.
The Lagrangian describing this problem is in the form (70), where M is the diagonal 2×2

mass matrix with diagonal elements (m,m) (m denotes the mass of the particle) and V is the
gravitational potential given by

V (q) = mgy.(80)

Here, g denotes the gravitational acceleration.
The discretization we use is (71), the one for which the variational collision integrator was

explicitly derived in the last subsection. The integrator is run with a step size of h = 0.01; the
initial conditions we used in the simulation are q0 = (0, 1) and q̇0 = (−2, 0). We considered a
unitary mass particle (m = 1).

The energy behavior in this case is shown in Figure 2 for a relatively large number of
impacts (1000 impacts). The same pattern is observed if the simulation is carried out for
essentially arbitrarily long times. This fluctuating energy behavior is typical of symplectic
methods. A detailed account on how the variational symplectic methods perform on smooth
conservative systems can be found in [26].

4.3. Rotating nonconvex rigid body colliding with a rigid surface. Now consider a
sequence of collisions and bounces on a horizontal rigid floor for a three-degree-of-freedom
system, namely, a rotating four-point star-shaped rigid body (see Figure 3) moving in a
plane. The convex hull of the star-shaped body is a square with sides of length L. The rigid
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Figure 2. The long-time energy behavior for a particle bouncing on a rigid floor.
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Figure 3. A rotating four point, star shaped rigid body colliding and bouncing on a horizontal rigid floor.

body moves under the gravitational force field in the vertical (x, y) plane. The configuration
manifold Q is SE(2) with local coordinates q = (x, y, θ), where (x, y) ∈ R

2 stand for the
coordinates of the center of mass and θ ∈ [0, 2π] stands for the oriented angle that a line
moving rigidly with the body makes with the horizontal axis. The contact set ∂C given by
the nonpenetration condition is given explicitly by

y =
L

2
(| sin θ|+ | cos θ|) .(81)

The subset of points where y ≥ L
2 (| sin θ|+ | cos θ|) represents the admissible set C ⊂ Q, and

contact occurs whenever the relation becomes an equality.

The Lagrangian describing this problem has the expression (70), where V is the gravita-
tional potential (80) andM is the diagonal 3×3 mass matrix with diagonal elements (m,m, I),
where m is the mass of the body and I is the moment of inertia of the star-shaped body with
respect to the z-axis through its center of symmetry. In terms of m and L, I is given by
I = 29

192mL
2.

We use again the discretization given by (71) and run the variational collision integrator
from section 4.1 with a timestep h = 0.005 and initial conditions q0 = (0, 3.5, 0) and q̇0 =



NONSMOOTH LAGRANGIAN MECHANICS 411

0 0.5 1 1.5 2 2.5 3

x 10
5

38.14

38.16

38.18

38.2

38.22

38.24

Time

E
n

e
rg

y

Figure 4. The long-time energy behavior for a star-shaped rigid body bouncing on a rigid floor. Note the
fluctuating energy behavior typical of symplectic methods.
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Figure 5. Log-log error diagram for the method in the star bounce example, after one collision. The second
order accuracy of the integrator from the smooth setting is preserved through collision. In this case a nonlinear
gravity was used to avoid the degeneracy of the exactly integrable linear gravitational potential.

(−2, 0, 5). We considered the body to have unitary mass m = 1 and a square convex hull
of size L = 1. A long-time (1,500 impacts) energy plot is shown in Figure 4. The long-
time energy behavior appears to be reasonably stable. It is not clear from these numerical
experiments whether this is an indication of a nearby conserved energy, as exists for variational
integrators applied to smooth systems, or simply a fairly stable random walk. More numerical
investigations and analytical work are needed to resolve this question.

We numerically checked the order of accuracy of the algorithm for the star bounce example.
A log-log error diagram after one collision is presented in Figure 5. The numerical results show
that the integrator is second order accurate; i.e., the order of the method is the same as the
order of the discrete Lagrangian Ld. This is in fact a fundamental property of the variational
integrators developed in smooth settings (see [37]), and we believe that it extends to the
nonsmooth setting as well. In our future work on the subject, we intend to formulate and
prove such results for the variational collisional algorithms presented in this paper.
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5. Appendix: Nonsmooth analysis approach. The purpose of this appendix is to discuss
collisions with multibody nonsmooth contact geometries when the contact set ∂C has a large
number of singularities. For example, in granular flows or fragmentation of brittle solids, there
are a large number of fragments undergoing complex collision sequences. For these collisions,
situations like corner-to-corner contact are very likely to occur, and the variational algorithm
from section 3.1 cannot cope with contact in singular points of the contact set ∂C.

However, the nonsmooth analysis (see [10]) provides an efficient analytical tool to formu-
late and treat algorithmically complex contact situations, as shown in [25]. The goal of this
appendix is to combine discrete Lagrangian mechanics with nonsmooth calculus to derive a
variational formulation of the nonsmooth contact (in the sense of nonsmooth admissible con-
figuration sets). The symplectic nature of such an algorithm is poorly understood, but one
can conjecture that future theory on that would depend on approaches like this one.

If C is the admissible set (possibly nonsmooth and nonconvex) of the system, we must
have q(t) ∈ C for all times or, in the discrete case, qk ∈ C for all k. These constraints may be
enforced by adding to the Lagrangian the indicator function IC of C defined by

IC(x) =

{
0 if x ∈ C,

∞ otherwise.
(82)

In the discrete context, this translates into defining a constrained discrete Lagrangian L̃d by
adding contributions from the indicator function. One particular way to do this is

L̃d(qk, qk+1, h) = Ld(qk, qk+1, h)− 1

2
[IC(qk) + IC(qk+1)] .(83)

We use, as before, the variational principle of Hamilton to derive the discrete equations of
motions. Thus the discrete Euler–Lagrange equations become

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)− ∂IC(qk) � 0,(84)

where ∂IC denotes the generalized gradient of the indicator function.
For points q in the interior of C, ∂IC(q) = {0}, while for points on the boundary of C,

∂IC(q) = NC(q), where NC(q) represents the normal cone to C at q defined in the nonsmooth
analysis framework (see [10] for a complete account of the nonsmooth calculus used here).
However, if q is a convex point, NC(q) reduces to the normal cone in the usual convex analysis
sense.

The constrained discrete equations (84) are thus the usual discrete Euler–Lagrange equa-
tions (46) away from the impact. The generalized gradient ∂IC is not trivial only for q̃ ∈ ∂C.
If we specialize (84) for points qi−1, q̃, and qi+1, then we obtain

D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi+1, (1− α)h)− ∂IC(q̃) � 0,(85)

which is a natural generalization of (48b) in the case when q̃ is a singular point of ∂C.
Alternatively, using the previous notation for discrete momenta (51), (85) can be written

as

p+(qi−1, q̃, αh)− p−(q̃, qi+1, (1− α)h) ∈ NC(q̃),(86)
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where we used ∂IC(q̃) = NC(q̃) for q̃ ∈ ∂C. Therefore, (86) generalizes (54) in the case when
q̃ is a corner of ∂C and we cannot define a tangent plane at that point.

For Lagrangians consisting of only kinetic energy and for the particular discretization
(57), the momentum conservation (85) leads to a very interesting geometrical interpretation.
Indeed, for a unitary mass matrix, (85) becomes

q̃ − qi−1

αh
− qi − q̃

(1− α)h
− ∂IC(q̃) � 0.(87)

The inclusion (87) can be rewritten in the form

(1− α)qi−1 + αqi ∈ (I − ∂IC)(q̃).(88)

Now we will connect (88) with the concept of the closest point projection. First recall the
definition of the resolvent of the set-valued operator ∂IC as

R = (I + ∂IC)
−1.(89)

It is a well-known fact that the resolvent of the subgradient of the indicator function of a
convex set is the closest-point projection onto that set (see [49]). Under the assumption that
C̄, the complement of C, is a convex set (see Figure 6), the inclusion (88) can be written as

q̃ = PC̄(qi−α),(90)

where PC̄ represents the closest-point projection operator onto C̄ and qi−α is the convex
combination of the points qi−1 and qi

qi−α = (1− α)qi−1 + αqi.

We will conclude this appendix by the following two remarks which re-emphasize the particular
benefit of the nonsmooth calculus approach.

Remark. Besides its theoretical attractiveness, the nonsmooth analysis approach has a
great advantage over the standard penalty formulation methods in dealing with complex
nonsmooth contact geometries (see [25]) where neither normals nor gap functions may be
defined. Indeed, for such problems penalty methods simply fail.

Remark. The nonsmooth approach also gives the natural framework for constructing time-
adaptive variational integrators for collisions (see [24] and [37]), but we will leave the devel-
opment and illustration of such contact algorithms for future work.

6. Future directions.
Order of accuracy. For systems without collisions, the order of accuracy of the discrete

Lagrangian Ld and the discrete Hamiltonian map F̃d are the same. In principle, this will also
be true for contact algorithms as developed in this paper (see the numerical results presented
in Figure 5), but precise proofs remain to be formulated.

Elastic bodies. Although the numerical simulations presented in section 4 were all for rigid-
body collisions, the discrete variational formalism applies for arbitrary potential energies, such
as those for hyperelastic materials. We have not yet tested these methods for such systems,
however. In this context, it will also be very interesting to use the techniques of section 2.5
to include external forces and dissipative effects.
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Figure 6. Collision at a singular point of the contact set ∂C.

Multisymplectic extensions to PDEs . While PDE contact systems can be first discretized
in space and then treated as a system of contact ODEs in time with the algorithms developed
in this paper, much greater understanding can be gained by a fully space-time variational
formulation of both the continuous and discrete problems. The framework of multisymplectic
mechanics [15] and multisymplectic discretizations [35] is particularly appropriate for this,
and we will treat this subject in a forthcoming paper.
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1. Introduction. Spatially periodic rows of point vortices in a two-dimensional ideal fluid
have long attracted the attention of fluid dynamicists, one of the earliest and the most popular
instances being Kármán’s vortex street [6], [16, photos 94–98]. The general problem is as fol-
lows: analyze the motion of an infinite configuration consisting of vortices z1, . . . , zN ∈ C with
vorticities Γ1, . . . ,ΓN ∈ R together with their translates {zk + 2πrm | k = 1, . . . , N,m ∈ Z},
where 2πr > 0 is the spatial period of translation. Traditionally the problem is analyzed
on the plane C, but in this paper we place the vortices on a cylinder C/2πrZ (Figure 1).
Though the two pictures—periodic planar and cylindrical—are for most purposes equivalent,
as we shall see there are advantages, both conceptual and computational, to working on a
cylinder rather than on the plane. The proviso “for most purposes” is necessary because
the cylindrical picture posits that everything in the dynamics be 2πr-periodic, whereas in
the planar picture one could allow, for example, nonperiodic perturbations to the periodic
row. Physically, however, perturbations are usually due to some small change in the mecha-
nism generating the vortex row, and the simplest type of change generates spatially periodic
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‡Département de Mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal H3C 3J7,
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perturbations. Symmetry-breaking perturbations, which do occur in real fluids and are very
interesting, arise at the next level of complexity. So it is natural to look at the cylindrical
picture first.

We shall be interested in how vortices move relative to one another, more precisely in their
dynamics modulo the translational action of the symmetry group C/2πZ. The basic objects of
interest are relative equilibria and relative periodic orbits. A relative equilibrium is a motion
of vortices that lies entirely in a group orbit (i.e., it looks stationary up to translation), and
a relative periodic orbit is a motion that revisits the same group orbit after some time (i.e.,
it looks periodic in time up to translation). Equilibria and periodic orbits in the ordinary
sense are special examples of relative equilibria and relative periodic orbits. When we wish
to exclude ordinary equilibria or periodic orbits, we speak of relative equilibria or relative
periodic orbits with nonzero drift.

As on the plane, the dynamics of point vortices on a cylinder lends itself to a Hamiltonian
formalism. The model presented here is then a finite-dimensional Hamiltonian approximation
to the vortex dynamics of the Euler equation. This approximation is mathematically very
rich and in the context of the plane can claim a pedigreed history [7, chap. VII], [17]. Con-
versely, the motion of point vortices is amenable to desingularization to a solution of the Euler
equation.

For vortices on the plane or on a sphere, an extensive theory of relative equilibria is
available (especially when the vorticities are identical or opposite) [1, 9, 8]. In contrast,
apart from a study on three vortices on the periodic strip [2] and a study of rings of point
vortices on surfaces of revolution [4], no literature seems to exist on relative equilibria and
relative periodic orbits of N vortices on a cylinder. In this paper we develop the Hamiltonian
formalism for vortex dynamics on a cylinder (section 2), prove that if the vorticities do not
sum to zero a cylinder supports no relative equilibrium with nonzero drift (section 3), classify
equilibria when all vorticities have the same sign (section 3), show that three vortices form a
relative periodic orbit for “small” initial conditions or for vorticities dependent over Q with
zero sum, and establish several results on a class of relative periodic orbits called leapfrogging
[16, photo 79] (section 4), which may be regarded as a splitting of Kármán’s vortex street.

Although Noether’s theorem tells us that associated to any one-parameter group of sym-
metries there is a corresponding first integral, there is a topological hypothesis (that certain
closed 1-forms are exact) which is not fulfilled by the cylinder, and while the subgroup of
horizontal translations R/2πZ ⊂ C/2πZ does have a conserved quantity associated to it, the
subgroup iR of vertical translations does not. However, since any closed 1-form is locally
exact, this subgroup does have locally well-defined first integrals, and one of the novelties of
the present work is to exploit these local first integrals (Theorems 2, 3, and 4).

Many of the results have analogues in the theory of vortices on a torus, i.e., for spatially
biperiodic arrays of vortices.

2. Hamiltonian formalism of vortices on a cylinder. Throughout the paper, cylinder
means the surface C/2πrZ � (R/2πrZ)×R, where r > 0 is some fixed constant, the radius of
the cylinder. The coordinate z = x+iy on C/2πrZ is to be read modulo 2πr, i.e., x ≡ x+2πrn
for all n ∈ Z; the x-axis (which is a circle) is horizontal, and the y-axis is vertical. The phase
space for the motion of vortices z1, . . . , zN with vorticities Γ1, . . . ,ΓN is the product of N copies
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of the cylinder with diagonals removed (to exclude collisions). The Hamiltonian is a weighted
combination H(z1, . . . , zN ) =

∑
k<l ΓkΓlψ(zk, zl) of Green’s functions ψ for the Laplacian on

the cylinder: ∇2ψ(z, z0) = −δz0(z) (see, e.g., [15, section 2]). Hamilton’s equations are

dzk
dt

=
2

i

∂H

∂(Γkzk)
, k = 1, . . . , N.

The quickest way to derive the Hamiltonian on a cylinder is to periodize Green’s function on
the plane ψ(zk, zl) = − 1

2π log |zk−zl| by taking into account contributions from 2πZ-translates.
Formally the periodized Hamiltonian becomes

− 1

2π

∑
n∈Z

∑
k<l

ΓkΓl log |zk − zl − 2πrn|,

which, as it stands, diverges. But, since additive constants in H do not affect the dynamics,
we can subtract a constant divergent series to force the remaining functional part to converge.
Jettisoning − 1

2π

∑
n

∑
k<l ΓkΓl log |2πrn| and pairing terms in n and −n,

H = − 1

2π

∑
k<l

ΓkΓl log

∣∣∣∣∣(zk − zl)
∏
n�1

(
1 −

(
zk − zl
2πrn

)2)∣∣∣∣∣ = − 1

2π

∑
k<l

ΓkΓl log

∣∣∣∣sin zk − zl
2r

∣∣∣∣ .
(2.1)

The equations of motion on a cylinder are therefore

dzk
dt

=
i

4πr

∑
l,l �=k

Γl cotan
zk − zl

2r
, k = 1, . . . , N.(2.2)

For reference, we list expressions in real coordinates:

H = − 1

4π

∑
k<l

ΓkΓl log

{
sin2

(
xk − xl

2r

)
+ sinh2

(
yk − yl

2r

)}
,(2.3)




dxk
dt

= − 1

8πr

∑
l,l �=k

Γl
sinh

yk − yl
r

sin2

(
xk − xl

2r

)
+ sinh2

(
yk − yl

2r

) ,

dyk
dt

=
1

8πr

∑
l,l �=k

Γl
sin

xk − xl
r

sin2

(
xk − xl

2r

)
+ sinh2

(
yk − yl

2r

) ,

k = 1, . . . , N.(2.4)

One noteworthy feature of (2.4) is that as yk − yl → ∞ (infinite vertical separation),
the velocity induced by zl on the vortex zk does not decay to 0 but tends to Γl/4πr, as is
obvious upon calculating in the planar theory the circulation around a tall window of width
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2πr enclosing zl. Another way to interpret the feature is to note that in the planar theory, up
to rescaling, stretching vertical separation amounts to narrowing the spatial period 2πr → 0;
the latter limit produces a vortex sheet (or, more aptly, vortex line in this two-dimensional
theory), which induces a velocity field constant above (and the opposite constant below) the
sheet independently of the distance to the sheet. This is exactly as in two-dimensional electro-
magnetism or gravity, where the force induced by a homogeneous charge or mass distribution
along an infinite line is independent of the distance to the line.

Physically, periodizing the plane with period 2πr and considering N vortices on the re-
sulting cylinder are the same as periodizing with period 2πrn and considering nN vortices
on the resulting wider cylinder. The equivalence between these periodizations is trivial yet
sometimes useful.

Proposition. Let z1, . . . , zN be vortices with vorticities Γ1, . . . ,ΓN on a cylinder of radius
r. Next let z1, . . . , zN , z1 + 2πr, . . . , zN + 2πr, . . . , z1 + 2πrn, . . . , zN + 2πrn be their “n-fold
copies” with corresponding vorticities on a cylinder of radius rn, where n is any strictly positive
integer. Then the dynamics on the cylinder of radius rn covers the dynamics on the cylinder
of radius r.

In particular, given a relative equilibrium or a relative periodic orbit, we can reel off
infinite families of relative equilibria or relative periodic orbits at no extra cost by replicating
the configuration sideways on a wider cylinder.

Remark 1. A torus has the form C/(πZ + τπZ), where the parameter τ ∈ C, Imτ > 0,
controls the conformal class. The Hamiltonian is

H = − 1

2π

∑
k<l

ΓkΓl

{
log |ϑ1(zk − zl|τ)| − (Im(zk − zl))

2

πImτ

}
,

where ϑ1 is the first Jacobian theta function [12, 14, 15].

A cylinder has a translational symmetry of C/2πrZ acting on itself and hence acting
diagonally on the phase space. The plane has a supplementary rotational symmetry z → eiθz,
θ ∈ R; this is lost on the cylinder. Via Noether’s theorem the translational symmetry of
C/2πrZ should give rise to a first integral, a momentum map (z1, . . . , zN ) → ∑

k Γkzk, but
there is a rub: because z’s are defined only modulo 2πr this “momentum map” is not well-
defined as a map to the dual of the Lie algebra of the symmetry group C/2πZ. Nor is it
advisable to treat this “momentum map” as a multivalued function, for generically Γ1, . . . ,ΓN
are independent over Q, and so the ambiguity {2πr

∑
k Γknk | n1, . . . , nN ∈ Z} in the value

of the “map” is dense in R. Nevertheless, the momentum map is locally (i.e., on each chart)
well-defined. From now on, whenever we write

∑
k Γkzk, some suitable ad hoc chart will be

understood.

When
∑

k Γk �= 0, the center of vorticity
∑

k Γkzk/
∑

k Γk is a more intuitive first integral
[7, art. 154]. The next result provides a substitute for center of vorticity when

∑
k Γk = 0.

Theorem 1. Let {z} be vortices on the plane or on a cylinder whose vorticities sum to
zero:

∑
Γ = 0. Suppose the vortices are partitioned into two groups {z′}, {z′′} and within

each group
∑

Γ′ �= 0,
∑

Γ′′ �= 0 so that the center of vorticity for each group is well-defined.
Then the vector connecting the two centers of vorticity is a local first integral (Figure 2).



VORTEX DYNAMICS ON A CYLINDER 421

Figure 2.

Proof. Since
∑

Γ′ +
∑

Γ′′ = 0, the vector in question is∑
Γ′z′∑
Γ′ −

∑
Γ′′z′′∑
Γ′′ =

∑
Γ′z′∑
Γ′ +

∑
Γ′′z′′∑

Γ′ =

∑
Γz∑
Γ′ ,

and
∑

Γz is a local first integral.
Theorem 1 is serviceable in many problems. The simplest illustration is the motion of a

vortex pair z1, z2 with vorticities Γ,−Γ [16, photos 77, 78]. Treating z1 as one group and z2

as the other group, we check against Theorem 1 that z2 − z1 is constant during the motion.
In fact, according to (2.4), the vortex pair on a cylinder forms a relative equilibrium moving
with slope

− sin
x2 − x1

r

/
sinh

y2 − y1

r
.

When x2 − x1 = 0 or πr, the pair moves horizontally. The corresponding configurations on
the plane are the unstaggered or fully staggered cases of Kármán’s vortex street; see also [4].
When z1, z2 are in general position, the corresponding vortex street on the plane translates at
an angle to the horizontal, a case studied in [11]. The “plane limit” r → ∞ yields the angle
of progression of a vortex pair on the plane −(x2 −x1)/(y2 − y1). For a beautiful study of the
stability of variants of vortex streets, see [5].

3. Relative equilibria. The first fact about relative equilibria of vortices on a cylinder is
that there are not many of them.

Theorem 2. Let z1, . . . , zN be vortices with vorticities Γ1, . . . ,ΓN on a cylinder C/2πrZ.
Suppose

∑
k Γk �= 0. Then all relative equilibria are in fact equilibria. Moreover, if all Γ’s

have the same sign, then for each cyclic ordering there exists a unique (up to translation by
C/2πrZ) equilibrium, and all the vortices are aligned on a single horizontal circle.

Proof. If z1, . . . , zN form a relative equilibrium, then all z’s move with some common drift
velocity v. The local first integral should not vary:

0 =
d

dt

∑
k

Γkzk = v
∑
k

Γk,

so
∑

k Γk = 0 or else v = 0.
If the vortices are not aligned on a single horizontal circle, pick a “top vortex” (one with

maximal y-coordinate) and a “bottom vortex” (one with minimal y-coordinate). If all Γ’s
have the same sign, then by (2.4) the velocities of the top and bottom vortices must have
x-components with opposite signs, so this position cannot constitute an equilibrium.
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Now suppose all the vorticities are of the same sign. Fix a cyclic ordering of the vortices,
and place the vortices in order on a single horizontal circle. The Hamiltonian is given by

H = − 1

4π

∑
k<l

ΓkΓl log sin2

(
xk − xl

2r

)
.

One readily checks that this is a convex function of x1, . . . , xN : one first checks that wherever
they are defined the second derivatives satisfy ∂2H/∂xk∂xl < 0 for k �= l and ∂2H/∂x2

k > 0
and

∑
l ∂

2H/∂xk∂xl = 0 for each k; it then follows from a variant of Gershgorin’s theorem
(Lemma 1 below) that 0 is a simple eigenvalue of the Hessian of H and all other eigen-
values are strictly positive. Consequently, on each connected component of the domain of
definition, there is a unique minimum and no other critical point, and different connected
components correspond to different cyclic orderings. This is the same argument as for [9,
Theorem 4.8].

Lemma 1. Let A = (akl) be a symmetric N × N matrix satisfying akl < 0 for k �= l,
and akk > 0,

∑N
l=1 akl = 0 for each k. Then 0 is a simple eigenvalue of A, and all other

eigenvalues are strictly positive.
Proof. Let u = (u1, . . . , un)T be an eigenvector of A with eigenvalue λ, normalized so that

there is an index k for which uk = 1 and |ul| � 1 for all l. The kth row of the equation
Au = λu is akk +

∑
l,l �=k aklul = λ, which in view of the hypotheses on akl may be written∑

l |akl|(1 − ul) = λ. But 1 − ul � 0 and |akl| > 0 for each l; it follows that λ � 0 and λ = 0
if and only if all ul = 1. On the other hand, (1, . . . , 1)T is obviously an eigenvector with
eigenvalue 0.

If the vortices are placed on a single horizontal circle so that successive vorticities have
alternating signs, then we also get the existence of an equilibrium, though the uniqueness
problem is open as the function is no longer convex. In full generality, if the signs are neither
the same nor alternating, the argument for existence fails as H → +∞ for some collisions and
→ −∞ for others.

Remark 2. For N = 2, if Γ1+Γ2 �= 0, we have generically a periodic orbit and exceptionally
an equilibrium of antipodal vortices z, z+πr or a separatrix connecting equilibria. For N > 2,
if
∑

k Γk �= 0 but Γ’s have mixed signs, the equilibria are less severely constrained. For
example, for N = 3, let z1, z2 be vortices with vorticities Γ1,Γ2 > 0. To secure an equilibrium,
the third vortex z3 with vorticity Γ3 < 0 must be placed at one of the two stagnation points
of the velocity field induced by z1, z2, given in view of (2.2) as roots of

Γ1 cotan
z − z1

2
+ Γ2 cotan

z − z2

2
= 0.

Having chosen z3 as one of the roots and thereby immobilized z3, adjust Γ3 so as to immobilize
z1:

Γ2 cotan
z1 − z2

2
+ Γ3 cotan

z1 − z3

2
= 0.

Then z2 too is automatically immobilized:

Γ3 cotan
z2 − z3

2
+ Γ1 cotan

z2 − z1

2
= 0.
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The upshot is that given any z1, z2 with vorticities of the same sign, we have two positions to
place z3 with the right vorticity of the opposite sign to secure an equilibrium. For example,
vortices z1, z2 both of vorticity Γ such that z2 − z1 = 2ib are immobilized by the adjunction
of a vortex (z1 + z2)/2 of vorticity

Γ

(
1

2
sech2 b

2r
− 1

)
.

This is always less than −Γ/2, and in the plane limit r → ∞ tends to the corresponding value
in the planar theory −Γ/2. On the other hand, in the “vortex sheet limit” b → ∞, this tends
to −Γ, also as it should. Similarly, vortices z1, z2 of vorticity Γ such that z2 − z1 = 2a are
immobilized by the adjunction of a vortex (z1 + z2)/2 of vorticity

Γ

(
1

2
sec2 a

2r
− 1

)
.

In the planar limit, this tends again to −Γ/2. On the other hand, it is 0 when a = πr/2;
z1, z2 are antipodal on the cylinder and are stationary already by themselves. When a → πr,
z1, z2 nearly meet at the back, and a stronger and stronger vortex is required at the front to
prevent them from moving.

Remark 3. Now suppose
∑

k Γk = 0. It was pointed out at the end of section 2 that
a vortex pair N = 2 is always a relative equilibrium. For N = 3, Aref and Stremler [2]
made a detailed study of relative equilibria; the patterns of some trajectories are surprisingly
complicated. For N > 3 and N even, we have for any a, b > 0 a family of relative equilibria
consisting of n = N/2 vortices with vorticity Γ at

ib, ib +
2πr

n
, . . . , ib + (n− 1)

2πr

n
(3.1)

and n vortices with vorticity −Γ at

a− ib, a− ib +
2πr

n
, . . . , a− ib + (n− 1)

2πr

n
.(3.2)

This is merely a crowded vortex street with spatial period 2πr/n or, equivalently, a single
vortex pair on a thinner cylinder of radius r/n (see stability calculations in [3]). No essentially
different family of relative equilibria seems to be known for N > 3.

Incidentally, even the trivial equivalence between one vortex on a cylinder of radius r and
n horizontally equidistributed vortices on a cylinder of radius nr leads to amusing identities
[1]. For example, equating the induced velocity fields and rescaling the variables in (2.2),

1

n

n∑
l=1

cotan
z + πl

n
= cotan z ∀z ∈ C.

Remark 4. On the plane, equilibria do not exist when all Γ’s are of the same sign (even
the possibility of a horizontal circle is lost), and the nonexistence of translational relative
equilibria with nonzero drift when

∑
k Γk �= 0 holds also on the plane and on a torus. The

proof carries over verbatim from the cylindrical theorem. A torus, however, accommodates
more varied families of equilibria; for example, n1n2 vortices with identical vorticity Γ placed
on a sublattice (π/n1)Z + (τπ/n2)Z form an equilibrium [15]. Many further patterns of
equilibria may be designed on a torus with identical or alternating vortices.
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4. Relative periodic orbits. Once a relative equilibrium of vortices is known, a frequently
successful recipe for creating relative periodic orbits consists in splitting the vortices. Assume
the vortices z1, . . . , zN with vorticities Γ1, . . . ,ΓN form a relative equilibrium. Let us split
each zk into a cluster, near the original position of zk, of nk vortices zk,1, . . . , zk,nk whose
vorticities are of the same sign and sum to Γk. We expect the child vortices zk,1, . . . , zk,nk to
orbit around one another and remain a cluster, while seen from far away they still look like
the original parent vortex zk with vorticity Γk. It is reasonable to conjecture that for suitable
initial configurations the child vortices form a relative periodic orbit, and for perhaps generic
splittings they form a relative quasi-periodic orbit.

A vortex pair on a cylinder, which corresponds in the planar picture to Kármán’s vortex
street, is a relative equilibrium. In this section, we shall create various relative periodic orbits
by splitting a vortex pair; as a special case, we recover the phenomenon classically known
in the planar picture as leapfrogging. In Theorem 3, we split one of the vortices, while in
Theorem 4 we split both. The split is measured by a complex variable ζ = ξ + iη (or rather
by 2ζ), and we are principally interested in small values of |ζ|. In all the formulae the radius
of the cylinder is normalized to r = 1; denormalization is a matter of dimensional analysis.
Later in the section, additional classes of relative periodic orbits are described.

Take a vortex pair at c,−c, where c = a + ib ∈ C. We split it into three or four vortices
as in Figure 3: the left diagram illustrates Theorem 3, the middle one Theorem 4, case
−b(1 + Γ/Γ′)/2 < η < b(1 + Γ′/Γ)/2, and the right one case b(1 + Γ′/Γ)/2 < η. Theorem 4,
case η < −b(1 + Γ/Γ′)/2 is like the right diagram reflected laterally with Γ,Γ′ interchanged.

′−Γ

′Γ −Γ ′

Γ ′

′−Γ

−Γ

Γ ′

Γ

−Γ

Γ

−Γ

Γ

Figure 3.

Theorem 3. Let c ∈ C�{0}. On a cylinder, consider the configuration of three vortices
with vorticities Γ,Γ′,−Γ − Γ′ (Γ and Γ′ being of the same sign) at

c +
2Γ′

Γ + Γ′ ζ, c− 2Γ

Γ + Γ′ ζ, −c.

There exists an open punctured neighborhood of ζ = 0 such that for every initial condition
ζ(0) �= 0 in this neighborhood, these vortices form a relative periodic orbit. If Γ/Γ′ ∈ Q,
then for a generic choice of ζ(0) (no restriction on its size) these vortices form a relative
periodic orbit, and for isolated choices of ζ(0) they form a relative equilibrium or a separatrix
connecting relative equilibria.
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Combined with the proposition of section 2, Theorem 3 gives relative equilibria and relative
periodic orbits of N = 3n vortices for all n � 1. The result for N = 3 when Γ/Γ′ ∈ Q is in
[2], but we give a somewhat different proof. The relative periodicity for small ζ(0) is new.

The proof invokes the following elementary lemma.

Lemma 2. Let H be a function with only nondegenerate critical points on a compact surface
with p punctures such that |H| → ∞ near each puncture. Then the generic level sets of H are
disjoint unions of loops. If p > 2, then in addition to loops there exist isolated saddles and
separatrices connecting the saddles.

Proof. By rescaling the values of H and compactifying the punctures, we reduce the
problem to the situation where H is defined on a compact surface, takes values in [−1, 1], and
attains ±1 at the points where the punctures used to be. The first part of the conclusion
is immediate from Sard’s theorem and the implicit function theorem. Moreover, from Morse
theory,

p− #saddles � #max + #min − #saddles = Euler characteristic � 2,

whence the second part of the conclusion.

The idea now for the proof of Theorem 3 is to use symmetries and Theorem 1 to rewrite
the Hamiltonian as a function on a punctured two-dimensional sphere, satisfying the condition
of divergence near the punctures. Applying Lemma 2 and recalling that a phase point in a
Hamiltonian system moves along a level set of the Hamiltonian, we shall be home.

Proof of Theorem 3. The center of vorticity of the group Γ,Γ′ is at c, and that of the
singleton group −Γ−Γ′ is at −c. By Theorem 1, the vector connecting these centers is a local
first integral. Hence, passing to the quotient by translations, these centers may be assumed
immobile. Within the group Γ,Γ′, the position of one vortex determines the position of the
other. (It is at a definite ratio of distances across their center.) Hence the trajectory of the
vortex with vorticity Γ determines the trajectories of all three vortices up to translation, and
the Hamiltonian H may be regarded as a function of ζ = ξ + iη alone as long as the trajectory
of ζ lies on a single chart. If the vortices Γ,Γ′ are very close, they orbit like a binary star
around their immobile center c within the chart so that sooner or later arg ζ increases by
2π. Since H(ζ) → +∞ as ζ → 0, for large enough E ∈ R the connected component of
{ζ ∈ C�0 | |H(ζ)| > E} surrounding the singularity ζ = 0 is topologically a punctured open
disk, free of critical points of H. (The infimum of such E is the largest of the saddle values of
H.) The level sets of H on this neighborhood are topologically circles, and so every ζ starting
from ζ(0) �= 0 in this neighborhood returns to ζ(0), guaranteeing relative periodicity.

We must deal with the scenario where the trajectory of ζ does not lie on a single chart.
Since Γ/Γ′ ∈ Q, the lowest common multiple L of 2, 1 + Γ/Γ′, 1 + Γ′/Γ makes sense. To
define ζ on the whole cylinder, we must swell the cylinder to C/LπZ. The swollen cylinder
C/LπZ covers the original cylinder C/2πZ and H as a function of ζ lifts to a function on
C/LπZ�{singularities}. The singularities represent the collisions between

Γ ∼ Γ′ (front and back), Γ ∼ −Γ − Γ′, Γ′ ∼ −Γ − Γ′,
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where |H| → ∞; off the singularities, by (2.1),

e2πH/ΓΓ′
=

∣∣∣∣sin
(
c +

ζ

1 + Γ/Γ′

)∣∣∣∣
1+Γ/Γ′ ∣∣∣∣sin

(
c− ζ

1 + Γ′/Γ

)∣∣∣∣
1+Γ′/Γ

| sin ζ| .(4.1)

Toward the “ends” η → ±∞, |H| → ∞ as well. Topologically C/LπZ�{singularities} is a
sphere with at least four punctures. Equation (4.1) shows that the critical points of H are all
nondegenerate and |H| → ∞ near each puncture. By Lemma 2, the generic level sets of H are
loops, representing (putting horizontal translation back in) relative periodic orbits, and there
exist values of ζ representing relative equilibria as well as separatrices (relative heteroclinic
orbits) connecting relative equilibria.

Remark 5. In Theorem 3, relative periodicity when Γ/Γ′ /∈ Q is spoilt only for ζ(0) too
large. For such ζ(0), the orbit is relative quasi-periodic. Of course, even when Γ/Γ′ /∈ Q

there are questions that can be settled within a chart. Thus, for three vortices with arbitrary
vorticities that sum to zero, topological reasons imply the existence of a configuration that
forms a relative equilibrium.

Theorem 4. Let b ∈ R�{0}. On a cylinder, consider the configuration of four vortices with
vorticities Γ,Γ′,−Γ′,−Γ (Γ and Γ′ being of the same sign) at

ib +
2Γ′

Γ + Γ′ ζ, ib− 2Γ

Γ + Γ′ ζ, −ib− 2Γ

Γ + Γ′ ζ, −ib +
2Γ′

Γ + Γ′ ζ.

Let Γ/Γ′ �= 1. Then for a generic choice of the initial condition ζ(0) these vortices form a
relative periodic orbit, and for isolated choices of ζ(0) they form a relative equilibrium or a
separatrix connecting relative equilibria. If Γ/Γ′ = 1, the same conclusion holds for ζ(0) such
that | Im ζ(0)| < b or πH(ζ(0))/Γ2 < log sinh b.

Combined with the proposition of section 2, Theorem 4 gives relative equilibria and relative
periodic orbits of N = 4n vortices for all n � 1.

Proof. As in the proof of Theorem 3, the positions of all four vortices are determined by
those of the ones with vorticities Γ and −Γ. Thanks to a supplementary reflexive symmetry
z → z, the position of Γ determines that of −Γ. This time, after passing to the quotient by
translations, H is a genuine function on the cylinder C/πZ of ζ = ξ + iη, −π/2 < ξ � π/2,
with the singularities removed. Off the singularities, by (2.1),

e2πH/ΓΓ′
=

∣∣∣∣∣∣∣∣∣

sin

(
ib +

Γ′ζ + Γζ

Γ + Γ′

)

sin ζ

∣∣∣∣∣∣∣∣∣

2

∣∣∣∣sin
(
ib +

ζ − ζ

1 + Γ/Γ′

)∣∣∣∣
Γ/Γ′ ∣∣∣∣sin

(
ib− ζ − ζ

1 + Γ′/Γ

)∣∣∣∣
Γ′/Γ

.

(4.2)

In particular, when Γ/Γ′ = 1,

e2πH/Γ2
=

sin2 ξ + sinh2b

sin2 ξ + sinh2η
| sinh (b + η) sinh (b− η)| .(4.3)
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The isolated singularities represent simultaneous collisions between

Γ ∼ Γ′ and −Γ′ ∼ −Γ,

where H → +∞, and, if Γ/Γ′ �= 1, between

Γ ∼ −Γ′ and Γ′ ∼ −Γ,

where H → −∞. Toward the ends, H → +∞. There are also circles of singularities η =
−b(1 + Γ/Γ′)/2, b(1 + Γ′/Γ)/2 representing collisions between

Γ ∼ −Γ, Γ′ ∼ −Γ′,

where H → −∞. Let us saw the cylinder C/πZ of ζ into three trunks:

C+ = {ζ | b(1 + Γ′/Γ)/2 < η},
C0 = {ζ | − b(1 + Γ/Γ′)/2 < η < b(1 + Γ′/Γ)/2},
C− = {ζ | η < −b(1 + Γ/Γ′)/2}.

Topologically C+, C0, C− are spheres with punctures. C0 contains ζ = 0, the simultaneous
collisions between Γ ∼ Γ′,−Γ′ ∼ −Γ, so C0 has at least three punctures and |H| → ∞ near
each puncture. Lemma 2 applies to C0 and implies the existence of relative periodic orbits
and relative equilibria.

For the moment, suppose Γ/Γ′ �= 1. ζ representing the simultaneous collisions between
Γ ∼ −Γ′, Γ′ ∼ −Γ is in C+ or C− accordingly as Γ/Γ′ > 1 or < 1. If Γ/Γ′ > 1, this puts on
C+ at least three punctures near each of which |H| → ∞, so Lemma 2 applies and implies
the existence of relative periodic orbits and relative equilibria, whereas C− acquires only two
punctures, so we can conclude the existence of relative periodic orbits only. If Γ/Γ′ < 1, the
roles of C+, C− are reversed.

Note that as H is symmetric under the lateral reflection along ξ = 0 and along ξ = π/2,
every point on either line where ∂H/∂η vanishes is critical. Let Γ/Γ′ > 1 and work on C+.
The strip 0 < ξ < π/2 is free of critical points, for here by (4.3) H is strictly monotone in ξ
along any line η = constant. Along ξ = 0, H → −∞ as η → b(1+Γ′/Γ)/2 or b(Γ+Γ′)/(Γ−Γ′),
between which ∂H/∂η must vanish, signaling a saddle at, say, ζ1. Along ξ = π/2, H → −∞
or +∞ as η → b(1 + Γ′/Γ)/2 or +∞. These bits of information, together with the fact that
all critical points of H are nondegenerate, imply that ∂H/∂η vanishes twice along ξ = π/2,
signaling a maximum at, say, ζ2 and a saddle (which shall be left nameless). As a bonus we
learn that two relative equilibria are represented in C+, whereas a count of three singularities
just predicts at least one relative equilibrium. The analysis works mutatis mutandis on C− if
Γ/Γ′ < 1.

Finally, suppose Γ/Γ′ = 1. Then the simultaneous collisions Γ ∼ −Γ′, Γ′ ∼ −Γ as
well as ζ1, ζ2 escape to the ends η → ±∞, and toward the ends 2πH/Γ2 asymptotes to
log(sin2 ξ+sinh2b), which remains bounded. Hence all the critical points in C+, C− disappear.
Relative periodic orbits are represented by compact level sets of H, i.e., those that fill the
region eπH/Γ

2
< sinh b of C+, C−; there is no relative equilibrium on these trunks.
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Figure 4.

The plots of Figure 4 depict the level sets of H as a function of ζ for Γ/Γ′ < 1, = 1, > 1,
respectively; they were drawn at b = 1. By (4.2), the levels for Γ/Γ′ < 1 and > 1 are mirror
images of each other via ζ → ζ. The blank holes and bands indicate where H diverges to −∞
too steeply, while the diamond in the middle of each plot surrounds a peak H → +∞.

Take the N = 4 case as in Theorem 4, and initially align the four vortices vertically:
ξ(0) = 0. If η(0) is sufficiently small, the vortices of the group Γ,Γ′ orbit like a binary
counterclockwise, and the vortices of the group −Γ′,−Γ orbit like a binary clockwise, while
the two groups progress together like a vortex pair. The superposition produces leapfrogging,
a relative periodic orbit whose plane limit r → ∞ is observed as the motion of a cross-section
of consecutive vortex rings as they overtake each other. By adjusting the parameters Γ/Γ′,
b, ζ(0), we can render leapfrogging on a cylinder not only relative periodic but periodic.
Alternatively, if η(0) is sufficiently close to b(1 + Γ′/Γ)/2 or to −b(1 + Γ/Γ′)/2, the vortices
Γ′,−Γ′ or Γ,−Γ form a pair and rush off without leapfrogging. In the planar theory, in the
case Γ/Γ′ = 1, [10] calculated the critical value of η(0) that separates the leapfrogging and
nonleapfrogging regimes. In our setup, this value may be obtained at once as follows.

In the situation of Theorem 4, denote by ρ(b,Γ/Γ′) the distance from the origin ζ = 0
to the nearest separatrix. Then η(0) = ρ(b,Γ/Γ) = ρ(b, 1). Denote by ζre = ξre + iηre a
value of ζ at a saddle of H(ζ), representing a relative equilibrium. Inside the separatrices
connecting the saddles, we have leapfrogging; outside, we do not. ρ = ρ(b, 1) is the ordinate
at which a separatrix cuts the η-axis. Since the value of H is the same along the separatrices
as on the saddles, H(0, ρ) = H(ξre, ηre). It is clear that a relative equilibrium occurs when
two vortex pairs are antipodal: ξre = ±π/2, ηre = 0. This fixes ρ in the cylindrical theory:√

2 tanh ρ = tanh b. Restoring r and taking the plane limit r → ∞, we get in the planar
theory ρ = b/

√
2, agreeing with [10, section 3], which arrived at (b + ρ)/(b− ρ) = 3 + 2

√
2.

When Γ/Γ′ �= 1, ζre and ρ(b,Γ/Γ′) are difficult to pin down in closed form. At any rate
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ξre = ±π/2; ηre is the unique root of

(Γ + Γ′) tanh η + (Γ − Γ′) tanh

(
b− Γ − Γ′

Γ + Γ′ η
)

− Γ coth

(
b +

2η

1 + Γ/Γ′

)
+ Γ′ coth

(
b− 2η

1 + Γ′/Γ

)
= 0,

which in view of (2.4) is the condition that the vertically aligned pairs Γ,−Γ and Γ′,−Γ′,
antipodal to each other, move with the same velocity. If Γ/Γ′ = 1+ ε, then up to second order
in ε,

ηre � tanh b sech2b

(
ε

2
−
(

1 +
sech4b

2

)
ε2

4

)
, ρ(b, 1 + ε) = ρ(b, 1) − tanh b sech2b

1 + cosh2b

ε2

4
√

2
.

Remark 6. By an argument parallel to that of Theorem 4, we see that four vortices with
vorticities Γ,Γ′,−Γ′,−Γ at

a +
2Γ′

Γ + Γ′ ζ, a− 2Γ

Γ + Γ′ ζ, −a +
2Γ

Γ + Γ′ ζ, −a− 2Γ′

Γ + Γ′ ζ

leapfrog as well (Figure 5, left diagram). Unlike the N = 4 case of Theorem 4, however, the
configuration on the right does not leapfrog.

−Γ

Γ ′ ′−Γ′−Γ Γ ′

−Γ ΓΓ

Figure 5.

Remark 7. Leapfrogging vortices and their generalizations analyzed above owe their rela-
tive periodicity to the type of symmetry compatible with the local first integral of Theorem 1.
Other types of symmetry permit other types of relative periodic orbits. Thus 2n vortices with
identical vorticity Γ at (3.1), (3.2) form a relative periodic orbit [13, section 3.2].

Remark 8. Vortex streets and leapfrogging vortices can be adapted to a torus, where they
form relative periodic orbits. A torus accommodates many further types of relative periodic
orbits. For example, on C/(πZ+iπZ), by splitting each point of a sublattice into a rectangular
quadruplet of vortices with vorticities Γ,−Γ,Γ,−Γ, we create a periodic orbit, the “dancing
vortices” of [15].
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Effective Equations Modeling the Flow of a Viscous Incompressible Fluid through
a Long Elastic Tube Arising in the Study of Blood Flow through Small Arteries∗

Sunčica Čanić† and Andro Mikelić‡

Abstract. We study the flow of an incompressible viscous fluid through a long tube with compliant walls.
The flow is governed by a given time-dependent pressure drop between the inlet and the outlet
boundary. The pressure drop is assumed to be small, thereby introducing creeping flow in the tube.
Stokes equations for incompressible viscous fluid are used to model the flow, and the equations of a
curved, linearly elastic membrane are used to model the wall. Due to the creeping flow and to small
displacements, the interface between the fluid and the lateral wall is linearized and supposed to be the
initial configuration of the membrane. We study the dynamics of this coupled fluid-structure system
in the limit when the ratio between the characteristic width and the characteristic length tends to
zero. Using the asymptotic techniques typically used for the study of shells and plates, we obtain
a set of Biot-type visco-elastic equations for the effective pressure and the effective displacements.
The approximation is rigorously justified through a weak convergence result and through the error
estimates for the solution of the effective equations modified by an outlet boundary layer.

Applications of the model problem include blood flow in small arteries. We recover the well-
known law of Laplace and obtain new improved models that hold in cases when the shear modulus
of the vessel wall is not negligible and the Poisson ratio is arbitrary.

Key words. fluid-structure interaction, Navier–Stokes equations, asymptotic analysis, blood flow, compliant
vessels
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1. Introduction. This paper is motivated by the study of blood flow through compliant
vessels. One of the open mathematical problems in this research area is rigorous derivation
and error analysis of the asymptotic equations that hold in long and narrow axisymmetric
vessels. In particular, it is important to analyze fluid-structure interaction resulting from the
nonlinear coupling between the incompressible Navier–Stokes equations and the motion of a
compliant vessel wall. Modeling of compliant vessel walls is a complex problem in its own
right [11, 23]. Even in the simplified case when the anisotropic behavior of the vessel wall
is ignored and angular deformations are neglected, in which case the linear Navier equations
for the curved membrane can be used to model the wall [13, 16, 23], the analysis of the
nonlinear coupling between the flow equations (Navier–Stokes equations) and wall behavior
(Navier membrane equations) is unresolved. See [23] for the closest results. As a first step
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in analyzing this problem we focus in this paper on understanding the coupling between the
Stokes equations (creeping flow) and the Navier equations for a curved elastic membrane.
This is a good model for the flow of blood in small arteries. Indeed, it was noted in [20] that
in small arteries, viscous effects of blood become more important than the inertia effects, and
therefore Stokes equations are appropriate. We study the time-dependent flow governed by a
given time-dependent pressure drop between the inlet and the outlet boundary. We refer the
reader to books [5, 14, 15] for a general geometric setting of boundary-value problems in thin
domains.

In this paper we derive the reduced (effective) equations that hold for this fluid-structure
interaction problem when the ratio ε between the radius and the length of the vessel is small.
The reduced equations are justified by showing that the solution of the original problem
converges to the solution of the reduced problem as ε → 0. Furthermore, we obtain the
precise error estimates which show that the error in the solution of the reduced problem is of
order O(ε2) everywhere except at the outlet boundary, where the formation of the boundary
layer deteriorates the error to O(ε3/2). Derivation of the reduced equations and the precise
error estimates are the main original contribution of this work. Numerical simulations showing
the dynamics of the fluid-structure interaction and the formation of the boundary layer are
presented at the end of the paper.

It is interesting to point out that we recover the well-known law of Laplace [11], namely,
the “independent ring model,” given by (5.23) [11, 20, 4], as a special case of the parameter
values, namely, in the case when the Poisson ratio of the wall structure is 0.5 and shear
modulus of the vessel wall is negligible. For a general Poisson ratio, we provide a general
pressure-displacement relationship. Finally, we obtain a model which holds in the situations
when the shear modulus is not negligible. Such situations arise, for example, in “stented”
arteries (arteries treated with prostheses to prevent occlusion or to prevent aneurysm rupture
[3, 10]). Our analysis provides the reduced equations, which are a more accurate model in
these scenarios. Their simple form in terms of the pressure makes the resulting equations
particularly attractive for numerical simulations where they can be coupled to the two- or
three-dimensional solvers in nonuniform geometries or used, for example, in the study of
blood flow in small (e.g., coronary) branching arteries, with the appropriate coupling at the
branching locations (see, for example, [21]).

This paper is organized as follows. We define the problem in section 2. In section 3
we obtain the energy estimates for the above-mentioned fluid-structure interaction problem
and show how forcing, given in terms of the pressure drop, controls the elastic and viscous
energy. From the energy equality we obtain (optimal) a priori estimates of the solution given
in terms of the small parameter ε. The a priori estimates and the choice of the “correct”
time-scale (to capture the oscillations induced by the outside forcing and governed by the
fluid motion) provide leading order behavior of the state variables and the correct form of
the asymptotic expansions. Asymptotic expansions, which are studied on a rescaled domain,
are presented in section 4. By inserting the “correct” asymptotic expansions into the coupled
fluid-structure system, we obtain the reduced equations in section 5. The reduced equations
are a second-order approximation to the original problem in the interior of the domain. The
approximation is rigorously justified by obtaining a weak convergence result and by calculating
the corresponding error estimates. The weak convergence result, presented in section 6, shows
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that the solution of the original problem converges weakly to the unique solution of the
asymptotic equations. The error estimates, obtained in section 7, show the order of the
approximation and reveal the formation of a boundary layer at the outlet boundary. See
Figure 7.1. The boundary layer at the outlet boundary gives rise to major technical difficulties
in the error estimates. To the authors’ knowledge, there are no mathematical results on
higher order approximations and error estimates for fluid-structure problems in thin domains.
This is primarily due to various difficulties associated with dealing with boundary conditions.
The closest results on error estimates are the ones presented in [19], where higher order
approximations and error estimates for the Stokes flow through fixed domains with small
thickness are given, with the given velocity field at the lateral boundary. This is different
from our approach. In section 7 we explicitly construct the outlet boundary layer and find
the error estimates for the approximate solution modified by the boundary layer solution. We
show that due to the presence of the boundary layer, the error in the approximation is of
order O(ε3/2). This is by

√
ε order of magnitude less than the accuracy obtained in [19]. The

deterioration of the order of approximation is concentrated at the outlet boundary. This can
be seen in the numerical simulations, presented in Figure 7.1.

z

R

s

ε

ε
εη

Ω ε

Figure 2.1. Wall displacement.

2. Statement of the problem. We consider the unsteady axisymmetric flow of a New-
tonian incompressible fluid in a thin right cylinder whose radius is small with respect to its
length. Define the ratio between the radius and the length of the cylinder to be ε. For each
fixed ε > 0 introduce Ωε to be

Ωε =
{
x ∈ R

3;x = (r cosϑ, r sinϑ, z), r < εR, 0 < z < L
}
.(2.1)

We assume that the cylinder’s lateral wall Σε = {r = εR} × (0, L) is elastic and that its
motion is described in Lagrangian coordinates by the Navier equations

Fr = −h(ε)E(ε)

1− σ2

(
σ

εR

∂sε

∂z
+

ηε

ε2R2

)
+ h(ε)G(ε)k(ε)

∂2ηε

∂z2
− ρwh(ε)

∂2ηε

∂t2
,(2.2)

Fz =
h(ε)E(ε)

1− σ2

(
∂2sε

∂z2
+

σ

εR

∂ηε

∂z

)
− ρwh(ε)

∂2sε

∂t2
.(2.3)

Here ηε is the radial and sε is the longitudinal displacement from the reference state (see
Figure 2.1), h = h(ε) is the membrane thickness, ρw is the wall volumetric mass, E = E(ε) is
the Young’s modulus, 0 < σ < 1/2 is the Poisson ratio, G = G(ε) is the shear modulus, and
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Table 2.1
Parameter values.

Parameters Values

ε 0.04

Characteristic radius: εR 0.004 m

Dynamic viscosity: µ 3.4× 10−3m2/s

Young’s modulus: E 6000 Pa, [6]

Shear modulus: G*k 5× 105 Pa, [11]

Wall thickness: h 4× 10−4 m

Wall density: ρw 1.1kg/m2, [23]

Blood density: ρ 1050kg/m3

Reference pressure: P0 13000 Pa

Normalized pressure drop: ε1/2

k = k(ε) is the Timoshenko shear correction factor (see [16, 23]). Fr and Fz are the radial and
the longitudinal component of the external forces, coming from the stresses induced by the
fluid. For the underlying blood-flow problem, the parameter values are presented in Table 2.1.
Throughout the paper we will be assuming the following relationships between the parameters
in the model.

Assumption 1. The Young’s modulus, the wall thickness, and the shear modulus satisfy

h(ε)E(ε) > ε,(2.4)

lim
ε→0

h(ε)E(ε)

ε
= E0 ∈ (0,+∞),(2.5)

lim
ε→0

εh(ε)G(ε)k(ε) = G0 ∈ [0,+∞).(2.6)

Initially, the cylinder is filled with fluid and the entire structure is in an equilibrium. The
equilibrium state has an initial reference pressure P0 and the initial velocity is zero. If we
denote by T the (membrane) stress tensor, then in the equilibrium (unperturbed) state only
the Tzz and Tϑϑ components of the stress tensor corresponding to the curved membrane Σε
are not zero (see [16, 23]). Their values are kG and εR∆P0/h, respectively, where ∆P0 is the
difference between the reference pressure in the tube and the surrounding tissue. For simplicity
we assume that ∆P0 = 0; hence Tϑϑ is zero in the unperturbed state. A pressure difference
between the inlet and the outlet boundary of Ωε creates a deviation from the unperturbed
state. We assume that the pressure drop is small compared to the reference pressure and that
the fluid acceleration is negligible compared to the effects of the fluid viscosity µ. Therefore,
we can use the axially symmetric incompressible Stokes system to model fluid velocity vε =
(vεr, v

ε
θ, v

ε
z) and the pressure perturbation, p

ε, from the reference pressure P0. Assuming
zero angular velocity, in cylindrical coordinates the Eulerian formulation of the problem reads

− µ

(
∂2vεr
∂r2

+
∂2vεr
∂z2

+
1

r

∂vεr
∂r

− vεr
r2

)
+

∂pε

∂r
= 0 in Ωε × R+,(2.7)

−µ

(
∂2vεz
∂r2

+
∂2vεz
∂z2

+
1

r

∂vεz
∂r

)
+

∂pε

∂z
= 0 in Ωε × R+,(2.8)

∂vεr
∂r

+
∂vεz
∂z

+
vεr
r
= 0 in Ωε × R+.(2.9)
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These equations are coupled with the Navier equations for the curved membrane through the
lateral boundary conditions requiring continuity of velocity and continuity of forces at the
wall Σε. More specifically, we require

vεr =
∂ηε

∂t
on Σε × R+,(2.10)

vεz =
∂sε

∂t
on Σε × R+,(2.11)

and we set the radial and longitudinal forces Fr and Fz in (2.2) and (2.3) equal to the radial
and longitudinal component of the stress exerted by the fluid to the membrane

−Fr =
(
pεI − 2µD(vε)) er ·  er on Σε × R+,(2.12)

−Fz =
(
pεI − 2µD(vε)) er ·  ez on Σε × R+,(2.13)

where D(vε) is the rate of the strain tensor, i.e., the symmetrized gradient of the velocity

D(vε) =
1

2
(∇vε + (∇vε)t).

We note that in this approximation the interface is identified with the reference elastic wall
Σε.

The initial state of the structure is unperturbed and at initial velocity zero

ηε = sε =
∂ηε

∂t
=

∂sε

∂t
= 0 on Σε × {0},(2.14)

and we consider the following boundary data, which, as we shall see in section 6.1, give rise
to a well-posed initial-boundary-value problem for the limiting configuration (ε → 0):

vεr = 0 and pε = 0 on (∂Ωε ∩ {z = 0})× R+,(2.15)

vεr = 0 and pε = A(t) on (∂Ωε ∩ {z = L})× R+,(2.16)

∂sε

∂z
= ηε = 0 for z = 0, sε = ηε = 0 for z = L and ∀t ∈ R+.(2.17)

Notice that pressure drop A(t) drives the problem. For simplicity we suppose that A ∈
C∞

0 (0,+∞). Note that physically one should expect nonzero displacements at the outlet
boundary. The fixed outlet boundary, required in (2.17), gives rise to the formation of a
boundary layer. See sections 6.1 and 7. Periodic boundary conditions, although natural in
rigid-wall geometries, do not give rise to well-posed limiting problems when compliant walls
are considered.

We summarize the initial-boundary-value problem for the coupled fluid-structure interac-
tion driven by the time-dependent pressure drop between the inlet and the outlet boundary.

Problem Pε. For each fixed ε > 0, find a solution to (2.7), (2.8), and (2.9) in domain
Ωε defined by (2.1), with an elastic lateral boundary Σε. The lateral boundary conditions are
given by the continuity of the velocity (2.10) and (2.11) and by the continuity of forces (2.2)
and (2.3), where the left-hand sides of (2.2) and (2.3) are substituted by (2.12) and (2.13),
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respectively. The boundary conditions at the inlet and outlet boundaries are (2.15) and (2.16),
and the behavior of the elastic wall there is prescribed by (2.17). The initial data is given by
(2.14).

In the next section we derive the weak formulation and the energy equality and obtain the
a priori estimates for the solution. The existence of a unique weak solution to this problem is
straightforward.

3. Weak formulation and energy estimates.

3.1. Weak formulation. We define the space of test functions V ε and the solution space
Vε to be the following.

Definition 1. The space V ε ⊂ H1(Ωε)
3 consists of all the axially symmetric functions ϕ

such that ϕr|Σε , ϕz|Σε ∈ H1(0, L), ϕr(0, r) = ϕz(L, εR) = ϕr(L, r) = 0 for r ≤ εR, and
divϕ = 0 in Ωε.

Definition 2. The space Vε consists of all the functions (wr, wz, dr, dz) ∈ H1((0, T );V ε)×
(H1((0, L)× (0, T ))2 ∩H2(0, T ;L2(0, L))2) such that

1. ∂wr
∂r +

∂wz
∂z +

wr
r = 0 in Ωε × R+,

2. r−1wr ∈ L2((0, T )× Ωε),
3. dr(t, 0) = dz(t, L) = dr(t, L) = 0 on R+,
4. wr = 0 on (∂Ωε ∩ {z = 0})× R+, and
5. wr =

∂dr
∂t , and wz =

∂dz
∂t on Σε × R+.

Recall that for an axially symmetric vector valued function ψ = ψr er + ψz ez we have

D(ψ) =




∂ψr
∂r

0
1

2

(
∂ψr
∂z

+
∂ψz
∂r

)

0
ψr
r

0

1

2

(
∂ψr
∂z

+
∂ψz
∂r

)
0

∂ψz
∂z




.

Define the matrix norm | · | through the scalar product
Ξ : Ψ = Tr(Ξ ·Ψt), Ξ,Ψ ∈ R

9.

Then for each fixed ε > 0 the variational formulation and weak solution are defined by the
following.

Definition 3. Vector function (vεr , v
ε
z, η

ε, sε) ∈ Vε is a weak solution of problem Pε if the
following variational formulation is satisfied:

2µ

∫
Ωε

D(vε) : D(ϕ) rdrdz

+ εR

∫ L

0

{
h(ε)G(ε)k(ε)

∂ηε

∂z

∂ϕr
∂z

+
h(ε)E(ε)

1− σ2

(
σ

εR

∂sε

∂z
+

ηε

ε2R2

)
ϕr

+
h(ε)E(ε)

1− σ2

(
∂sε

∂z

∂ϕz
∂z

− σ

εR

∂ηε

∂z
ϕz

)}
|r=εR dz + εRρwh

d2

dt2

∫ L

0

(
ηεϕr + sεϕz

)|r=εR dz

= −
∫ εR

0
A(t)ϕz|z=L rdr in D′(R+) ∀ϕ = ϕr er + ϕz ez ∈ V ε

(3.1)
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and

ηε = sε =
∂ηε

∂t
=

∂sε

∂t
= 0 on Σε × {0}.(3.2)

Existence of a unique solution to problem (3.1)–(3.2) is classical. It is a consequence of
the corresponding energy estimate and of Korn’s inequality [9].

Our goal is to study the behavior of the solution to (3.1)–(3.2) in the limit, as ε →
0. In order to do that we need an optimal energy estimate with respect to ε. Once the
optimal energy estimate is obtained, a priori solution estimates will follow, and the correct
asymptotic expansions will be obtained. By plugging the asymptotic expansions into the
original equations, the reduced equations, second-order accurate in ε, will be derived. We will
see in section 3.2 that obtaining the optimal energy estimate is nonstandard because we do
not have the no-slip boundary condition at the lateral boundary and because we will have
to deal with the viscous energy which is given in terms of the symmetrized gradient of the
velocity D(vε) instead of ∇vε.

3.2. Energy estimate. The energy of this problem, obtained by using the velocity field as
a test function in (3.1), consists of the elastic energy of the membrane, the viscous energy of
the fluid, and the energy due to the outside forcing. The time derivative of the elastic energy

dEel
dt

≡ εR

∫ L

0

{
h(ε)G(ε)k(ε)

∂ηε

∂z

∂2ηε

∂z∂t
+

h(ε)E(ε)

1− σ2

((
σ

εR

∂sε

∂z
+

ηε

ε2R2

)
∂ηε

∂t

+

(
∂sε

∂z

∂2sε

∂z∂t
− σ

εR

∂ηε

∂z

∂sε

∂t

))
+ εRρwh(ε)

(
∂2ηε

∂t2
∂ηε

∂t
+

∂2sε

∂t2
∂sε

∂t

)}
dz

can be expressed as follows.
Lemma 3.1. The displacements ηε and sε satisfy

dEel
dt

= εR
d

2dt

{
ρwh(ε)

∫ L

0

(∣∣∣∣∂η
ε

∂t

∣∣∣∣
2

+

∣∣∣∣∂s
ε

∂t

∣∣∣∣
2)

dz + h(ε)G(ε)k(ε)

∫ L

0

∣∣∣∣∂η
ε

∂z

∣∣∣∣
2

dz

+
h(ε)E(ε)

1− σ2

(
σ

∫ L

0

(
ηε

εR
− ∂sε

∂z

)2

+ (1− σ)

∫ L

0

(∣∣∣∣ η
ε

εR

∣∣∣∣
2

+

∣∣∣∣∂s
ε

∂z

∣∣∣∣
2))}

.

(3.3)

We are interested in the oscillations of the membrane that are due to the time-dependent
pressure drop A(t). These occur at a different time-scale than the characteristic “physical”
time. In particular, as we will see later in the text, fluid velocity is greater than the velocity of
the displacement. This, in turn, gives rise to long-wavelength elastic waves. It is these waves,
among other things, that we would like to keep in our asymptotic reduction. This is why we
introduce a new time-scale

t̃ = ωεt,(3.4)

where the characteristic frequency ωε will be specified later (see (3.11)) to include both the
waves that occur at the leading order time-scale as well as the oscillations of the membrane
caused by a response of the elastic material. The pressure drop is supposed to be a function
of t̃.
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From now on we use the rescaled time t̃ and drop the tilde. By keeping the rescaled time
in mind and by using the expression for the elastic energy (3.3), we obtain the following.

Proposition 3.2. Solution (vεr , v
ε
z, η

ε, sε) of problem (3.1)–(3.2) satisfies the variational
equality

ωεh(ε)
d

2dt

{
(ωε)2ρwεR

(∥∥∥∥∂η
ε(t)

∂t

∥∥∥∥
2

L2(0,L)

+

∥∥∥∥∂s
ε(t)

∂t

∥∥∥∥
2

L2(0,L)

)
+G(ε)k(ε)εR

∥∥∥∥∂η
ε(t)

∂z

∥∥∥∥
2

L2(0,L)

+
E(ε)εR

1− σ2

(
σ

∥∥∥∥η
ε(t)

εR
− ∂sε(t)

∂z

∥∥∥∥
2

L2(0,L)

+ (1− σ)

(∥∥∥∥η
ε(t)

εR

∥∥∥∥
2

L2(0,L)

+

∥∥∥∥∂s
ε(t)

∂z

∥∥∥∥
2

L2(0,L)

))}

+ 2µ‖D(vε(t))‖2
L2(Ωε)

= −
∫ εR

0
A(t)vεz(t, r, L) rdr,

(3.5)

with vεr = ωε ∂η
ε

∂t and vεz = ωε ∂s
ε

∂t on Σε × (0, T ).
We now investigate how the energy of the forcing term controls the elastic and the viscous

energy of the coupled fluid-structure interaction. We start by transforming and estimating
the right-hand side. Since we do not have the no-slip condition for the velocity at the lateral
boundary, the situation is more complicated than in the derivation of Reynolds’ equation.
See [7] and the subsequent papers on the same subject. Furthermore, since on the left-hand
side we have only the L2-norm of D(vε) and not the L2-norm of ∇vε, a standard approach
based on using the Gronwall estimate and the L2-norm of the velocity, ρ

∫
Ωε

|vε(t)|2 rdrdz, is
insufficient to guarantee the correct order of magnitude of the velocity. To get around this
difficulty we transform the right-hand side term in (3.5) to a combination of a volume term
and a lateral boundary term

−
∫ εR

0
A(t)vεz(t, r, L) rdr = −

∫
Ωε

A(t)

L
vεz rdrdz + εR

∫ L

0
A(t)

z

L
vεr(t, εR, z) dz(3.6)

and use the following variant of Biot law which will relate the forcing term with the volume
shear stress term in the viscous energy and the elastic energy of the membrane.

Lemma 3.3. The following estimate holds:
∣∣∣∣
∫

Ωε

vεz rdrdz − ωε
ε2R2

2

∂

∂t

∫ L

0
sε(t, z) dz

∣∣∣∣ ≤ R2
√
L

2
ε2

∥∥∥∥12
(
∂vεz
∂r

+
∂vεr
∂z

)∥∥∥∥
L2(Ωε)

.(3.7)

Proof. The estimate follows by noticing that

∫
Ωε

vεzr drdz =

∫ L

0

[
r2

2
vεz

]εR
0

dz −
∫ L

0

∫ εR

0

r2

2

∂vεz
∂r

drdz

= ωε
∂

∂t

ε2R2

2

∫ L

0
sε(t, z) dz −

∫ L

0

∫ εR

0

r

2

(
∂vεz
∂r

+
∂vεr
∂z

)
r drdz.

Throughout the text we will be using the following notation:

‖A(t)‖2
H = max

0≤τ≤t
|A(τ)|2 +

∫ t

0
|∂τA(τ)|2 dτ.
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An estimate for the axial component of the displacement in the energy equality (3.5) is given
by the following lemma.

Lemma 3.4. Axial displacement sε satisfies the estimate

h(ε)E(ε)εR

2(1 + σ)

∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

+
ε2R2

2L

(
A(t)

∫ L

0
sε(t, z) dz −

∫ t

0

∂A(τ)

∂τ

∫ L

0
sε(τ, z) dzdτ

)

≥ h(ε)E(ε)εR

4(1 + σ)

{∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

+

(∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
L2(0,L)

− R(1 + σ)
√
L

3

A(t)ε

h(ε)E(ε)

)2

−
∫ t

0

∥∥∥∥∂s
ε

∂z
(τ)

∥∥∥∥
2

L2(0,L)

dτ

}
− ε3

h(ε)E(ε)

(1 + σ)LR3

6
‖A(t)‖2

H.

(3.8)

Next, an estimate for the radial displacement is given by the following lemma.

Lemma 3.5. Radial displacement ηε satisfies the estimate

h(ε)E(ε)

2εR(1 + σ)
‖ηε(t)‖2

L2(0,L) −
εR

L

(
A(t)

∫ L

0
zηε(t, z) dz −

∫ t

0

∂A(τ)

∂τ

∫ L

0
zηε(τ, z) dzdτ

)

≥ h(ε)E(ε)

4εR(1 + σ)

{
‖ηε(t)‖2

L2(0,L) −
∫ t

0
‖ηε(τ)‖2

L2(0,L)dτ

}
− ε3

h(ε)E(ε)

(1 + σ)LR3

3
‖A(t)‖2

H.

Combining these two estimates, Lemma 3.3 and the following estimate, which relates the
viscous energy with the forcing term,

ε2

√
R4

4L
|A(t)|

∥∥∥∥12
(
∂vεz
∂r

+
∂vεr
∂z

)∥∥∥∥
L2(Ωε)

≤ µ

∥∥∥∥12
(
∂vεz
∂r

+
∂vεr
∂z

)∥∥∥∥
2

L2(Ωε)

+
R4ε4

16µL
|A(t)|2,

from (3.5) we obtain the following lemma.

Lemma 3.6. The radial displacement ηε, the axial displacement sε, the viscous energy
µ‖D(vε)‖2

L2(Ωε)
, and the energy induced by the pressure drop A(t) satisfy the energy estimate

ωε
h(ε)E(ε)

4εR(1 + σ)

{
‖ηε(t)‖2

L2(0,L) + ε2R2

∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

}
+ µ

∫ t

0
‖D(vε)(τ)‖2

L2(Ωε)
dτ

≤ ωε
h(ε)E(ε)

4εR(1 + σ)

∫ t

0

{
‖ηε(τ)‖2

L2(0,L) + ε2R2

∥∥∥∥∂s
ε

∂z
(τ)

∥∥∥∥
2

L2(0,L)

}
dτ

+
R4ε4

16µL

∫ t

0
|A(τ)|2 dτ + ωε

ε3

h(ε)E(ε)

(1 + σ)LR3

2
‖A(t)‖2

H.

(3.9)

By applying the Gronwall inequality to (3.9), we get an estimate which is crucial in
determining the leading order behavior in asymptotic expansions. The estimate is a basis
for the a priori solution estimates in terms of the small parameter ε and the characteristic
frequency ωε.
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Proposition 3.7. Solution (vεr , v
ε
z, η

ε, sε) of problem (3.1)–(3.2) satisfies the estimate

ωε
h(ε)E(ε)

4εR(1 + σ)

{
‖ηε(t)‖2

L2(0,L) + ε2R2

∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2

}
+ µ

∫ t

0
‖D(vε)(τ)‖2

L2(Ωε)
dτ

≤
{
R4ε4

16µL

∫ t

0
|A(τ)|2 dτ + ωε

ε3

h(ε)E(ε)

(1 + σ)LR3

2
‖A(t)‖2

H

}
et.(3.10)

To capture the elastic response of the membrane to the oscillations in the pressure drop
between the inlet and the outlet boundary, ωε is chosen so that both terms on the right-hand
side are of the same order in ε. Using assumption (2.4), we get

ωε =
ε2

µ
.(3.11)

We are now ready to obtain the a priori solution estimates in terms of ε. In the text that
follows we denote all the constants independent of ε by C. Define

‖A‖2
V = eT

{
‖A‖2

L∞(0,T ) +

∫ T

0

(|∂τA(τ)|2 + |A(τ)|2) dτ
}
.

Proposition 3.8. Solution (vεr , v
ε
z, η

ε, sε) of problem (3.1)–(3.2) satisfies the a priori esti-
mates

∫ t

0

{∥∥∥∥∂v
ε
r

∂r

∥∥∥∥
2

L2(Ωε)

+

∥∥∥∥v
ε
r

r

∥∥∥∥
2

L2(Ωε)

+

∥∥∥∥∂v
ε
z

∂z

∥∥∥∥
2

L2(Ωε)

}
dτ ≤ C

(
ε2

µ

)2

‖A‖2
V ,(3.12)

∫ t

0

{∥∥∥∥∂v
ε
z

∂r

∥∥∥∥
2

L2(Ωε)

+

∥∥∥∥∂v
ε
r

∂z

∥∥∥∥
2

L2(Ωε)

}
dτ ≤ C

{(
ε2

µ

)2

‖A‖2
V + ε2(ωε)2

∫ t

0
‖∂τsε(τ)‖2

L2(0,L)dτ

}
,

(3.13)

∫ t

0
‖vεz‖2

L2(Ωε)
dτ ≤ Cε2

∫ t

0

{
(ωε)2‖∂τsε(τ)‖2

L2(0,L) +

∥∥∥∥∂v
ε
z

∂r

∥∥∥∥
2

L2(Ωε)

}
dτ,(3.14)

1

ε2
‖ηε(t)‖2

L2(0,L) +

∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

≤ C
ε

h(ε)E(ε)
‖A‖2

V .(3.15)

Proof. First notice that (3.12) and (3.15) are obvious consequences of Proposition 3.7.
Equation (3.14) is a variant of the Poincaré inequality, and so we need only to prove (3.13).

To prove (3.13) we start from estimate (3.10) for the shear stress term in D(vε). It reads

∫ t

0

∫ L

0

∫ εR

0

{(
∂vεr
∂z

)2

+ 2
∂vεr
∂z

∂vεz
∂r

+

(
∂vεz
∂r

)2}
rdrdzdτ ≤ C

(
ε2

µ

)2

‖A‖2
V .

The difficulty comes from the term which is the product of two off-diagonal gradient terms
∂vεr
∂z

∂vεz
∂r . Estimate this term by using the boundary behavior of vε, ∂zv

ε
z = 0 at z = 0, L, and



FLUID-STRUCTURE INTERACTION IN HEMODYNAMICS 441

the incompressibility condition (2.9) to obtain

∫
Ωε

∂vεr
∂z

∂vεz
∂r

rdrdz = −
∫

Ωε

(vεz − ωε∂ts
ε)

∂

∂r

(
r
∂vεr
∂z

)
drdz

=

∫
Ωε

(vεz − ωε∂ts
ε)
∂2vεz
∂z2

rdrdz

= −
∫

Ωε

∂

∂z
(vεz − ωε∂ts

ε)
∂vεz
∂z

rdrdz

= −
∫

Ωε

(
∂vεz
∂z

)2

rdrdz + ωε
∫

Ωε

∂

∂z
(∂ts

ε)
∂vεz
∂z

rdrdz.

The rest of the proof is now immediate.

Corollary 3.9. The time derivatives ∂t(v
ε
r , v

ε
z, η

ε, sε) satisfy all the above estimates but with
A replaced by ∂tA.

The important estimates are summarized in the following theorem. Here we recall As-
sumption 1 and use, with a slight abuse of notation, E0 and G0 to denote the expressions
E(ε)h(ε)/ε and G(ε)k(ε)h(ε)ε, respectively.

Theorem 3.10. Solution (vεr , v
ε
z, η

ε, sε) of problem (3.1)–(3.2) satisfies

G0

ε2

∥∥∥∥∂η
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

+
1

ε2
‖ηε(t)‖2

L2(0,L) +

∥∥∥∥∂s
ε

∂z
(t)

∥∥∥∥
2

L2(0,L)

≤ C
1

E0
‖A‖2

V ,(3.16)

∥∥∥∥∂v
ε
z

∂r

∥∥∥∥
2

L2(Ωε×(0,T ))

+

∥∥∥∥∂v
ε
r

∂z

∥∥∥∥
2

L2(Ωε×(0,T ))

≤ C

(
ε2

µ

)2

‖A‖2
V ,(3.17)

‖vεr‖L2(Ωε×(0,T )) ≤ C
ε3

µ
‖A‖V ,(3.18)

‖vεz‖L2(Ωε×(0,T )) ≤ C
ε3

µ
‖A‖V .(3.19)

The same estimates hold for ∂t(v
ε
r , v

ε
z, η

ε, sε) but in terms of ∂tA.

4. The rescaled problem and asymptotic expansions. In order to study problem Pε in
the limit as ε → 0, it is convenient to use a rescaling which maps domain Ωε to a fixed domain
Ω = Ω1 corresponding to ε = 1. This, in turn, rescales the variables and their derivatives in
the following manner.

Let uε be a sequence of axially symmetric functions defined on Ωε with values in R
3,

uε = uεr er + uεz ez. Introduce the following scaling [14]:

u(ε)(r, z) = uε(εr, z).

The sequence {u(ε)} is now a sequence of functions defined on a fixed domain Ω ≡ Ω1. The
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rescaled differential operators Dε and divε applied on u(ε) are given by

Dε(u)rr =
1

ε

∂ur
∂r

, Dε(u)ϑϑ =
ur
εr

, Dε(u)rϑ = 0, Dε(u)zz =
∂uz
∂z

,

Dε(u)rz =
1

2

(
∂ur
∂z

+
1

ε

∂uz
∂r

)
, Dε(u)zϑ = 0, and

divε u =
1

ε

∂ur
∂r

+
∂uz
∂z

+
1

ε

ur
r
.

The rescaled incompressible Stokes’ equations (2.7), (2.8), and (2.9), defined on Ω×R+, read

− µ

ε2

(
∂2v(ε)r
∂r2

+ ε2∂
2v(ε)r
∂z2

+
1

r

∂v(ε)r
∂r

− v(ε)r
r2

)
+
1

ε

∂p(ε)

∂r
= 0,(4.1)

− µ

ε2

(
∂2v(ε)z
∂r2

+ ε2∂
2v(ε)z
∂z2

+
1

r

∂v(ε)z
∂r

)
+

∂p(ε)

∂z
= 0,(4.2)

ε divε v(ε) =
∂v(ε)r
∂r

+ ε
∂v(ε)z
∂z

+
v(ε)r
r

= 0.(4.3)

Since the quantities defined on the lateral boundary are invariant under this scaling, we use the
same notation for the wall displacements of the rescaled problem as for the original problem,
namely, ηε and sε. The lateral boundary conditions then read

µ

ε2
v(ε)r =

∂ηε

∂t
,

µ

ε2
v(ε)z =

∂sε

∂t
,(4.4) (

p(ε)I − 2µDε(v(ε))
)
 er ·  er = −Fr,(4.5) (

p(ε)I − 2µDε(v(ε))
)
 er ·  ez = −Fz,(4.6)

where Fr and Fz are given by (2.2) and (2.3), respectively. The initial conditions and the inlet
and outlet boundary data are (2.14), (2.15)–(2.17) written in terms of the rescaled quantities.

To write this problem in variational form, introduce the space of all test functions ϕ =
ϕr er + ϕz ez to be the space V given by Definition 1 using ε = 1. Furthermore, let V be the
space of rescaled functions on a fixed domain Ω defined by Definition 2 with ε = 1, with the
incompressibility condition for the velocity replaced by divε v(ε) = 0 and with ∂

∂t replaced

by µ
ε2

∂
∂t . Let ψ ∈ C∞

0 (0, T ) be a temporal test function. Then, after rewriting variational
equality (3.1) in rescaled variables, multiplying (3.1) by ψ(t), integrating with respect to time,
and dividing by ε2, we obtain the variational formulation of the rescaled problem specified in
(4.7) where

Eµ(v, ϕ, ψ; ε) ≡
∫ T

0

∫
Ω

µ

ε2

∂v(ε)z
∂r

∂ϕz
∂r

ψ(t) rdrdzdt

+ 2ε

∫ T

0

∫
Ω

µ

ε2

(
1

2

∂v(ε)r
∂z

∂ϕz
∂r

+
∂v(ε)r
∂r

∂ϕr
∂r

+
v(ε)rϕr

r2

)
ψ(t) rdrdzdt

+ 2ε2

∫ T

0

∫
Ω

µ

ε2

(
1

2

∂v(ε)z
∂r

∂ϕr
∂z

+
∂v(ε)z
∂z

∂ϕz
∂z

)
ψ(t) rdrdzdt

+ ε3

∫ T

0

∫
Ω

µ

ε2

∂v(ε)r
∂z

∂ϕr
∂z

ψ(t) rdrdzdt,
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Eel(η
ε, sε, ϕ, ψ; ε) ≡ R

∫ T

0

∫ L

0

{
h(ε)G(ε)k(ε)

∂ηε

∂z

∂ϕr
∂z

+
h(ε)E(ε)

1− σ2

(
σ

εR

∂sε

∂z

+
ηε

ε2R2

)
ϕr +

h(ε)E(ε)

ε(1− σ2)

(
∂sε

∂z

∂ϕz
∂z

− σ

εR

∂ηε

∂z
ϕz

)}
ψ(t) dzdt

+
Rρwh(ε)(ω

ε)2

ε

∫ T

0

d2ψ(t)

dt2

∫ L

0

(
εηεϕr + sεϕz

)
dzdt,

and

Esrc(A,ϕ, ψ) ≡
∫ T

0

∫ R

0
A(t)ϕzψ(t) rdrdt.

Definition 4 (weak formulation of the rescaled problem P(ε)). Function (v(ε)r, v(ε)z, η
ε, sε)

∈ V is a weak solution of problem P(ε) if the following variational formulation is satisfied:

Eµ(v, ϕ, ψ; ε) + Eel(η
ε, sε, ϕ, ψ; ε) = −Esrc(A,ϕ, ψ) ∀ψ ∈ D(R+) and ∀ϕ ∈ V.(4.7)

The initial conditions at the lateral boundary are

ηε = sε =
∂ηε

∂t
=

∂sε

∂t
= 0 on Σ× {0}.(4.8)

Later in the text we will also need the weak formulation which includes the pressure. For
this purpose we consider the test functions ϕ which are not divergence-free. Namely, denote
by

Vdiv =0 = {ϕ ∈ H1(Ω)3|ϕ is axially symmetric, ϕr|Σ, ϕz|Σ ∈ H1(0, L),

ϕz(L,R) = ϕr(L, r) = ϕr(0, r) = 0}.(4.9)

Then the weak formulation of the problem, cast in terms of the velocity and pressure, reads
as follows.

Definition 5 (weak formulation of P(ε) in the pressure-velocity form). Vector function (v(ε)r,
v(ε)z, η

ε, sε) ∈ V and p(ε) ∈ L2((0, T )× Ω)) form a weak solution of problem P(ε) if

Eµ(v(ε), ϕ, ψ; ε)−
∫ T

0

∫
Ω
p(ε)

(
∂ϕz
∂z

+
∂ϕr
∂r

+
ϕr
r

)
ψ(t) rdrdzdt

+ Eel(η
ε, sε, ϕ, ψ; ε) = −Esrc(A,ϕ, ψ) in D′(R+) ∀ϕ ∈ Vdiv =0.(4.10)

Proposition 4.1. Variational problem (3.1), (3.2) is equivalent to the rescaled problem (4.3),
(4.7), and (4.8).

The a priori estimates for the rescaled functions follow from Proposition 3.8, Theorem 3.10,
and the following result.

Lemma 4.2. For v ∈ L2(Ωε) the rescaled function v(ε) satisfies

‖v(ε)‖L2(Ω) = ε−1‖v‖L2(Ωε),(4.11) ∥∥∥∥∂v(ε)∂r

∥∥∥∥
L2(Ω)

=

∥∥∥∥∂v∂r
∥∥∥∥
L2(Ωε)

,(4.12)

∥∥∥∥∂v(ε)∂z

∥∥∥∥
L2(Ω)

= ε−1

∥∥∥∥∂v∂z
∥∥∥∥
L2(Ωε)

.(4.13)
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Corollary 4.3. Solution (v(ε)r, v(ε)z, η
ε, sε) of the rescaled problem satisfies the a priori

estimates
∥∥∥∥v(ε)rr

∥∥∥∥
L2

+ ‖v(ε)z‖L2 +

∥∥∥∥∂v(ε)r∂r

∥∥∥∥
L2

+

∥∥∥∥∂v(ε)z∂r

∥∥∥∥
L2

≤ C
ε2

µ
‖A‖V ,(4.14)

∥∥∥∥∂v(ε)r∂z

∥∥∥∥
L2

+

∥∥∥∥∂v(ε)z∂z

∥∥∥∥
L2

≤ C
ε

µ
‖A‖V ,(4.15)

‖sε‖H1 ≤ C‖A‖V ,(4.16)

where all the norms are defined on Ω× (0, T ).
From the rescaled momentum equation relating the gradient of the pressure with the

viscous effects of the fluid, we get an a priori estimate for the pressure p(ε) corresponding to
v(ε). More precisely, we have the following proposition.

Proposition 4.4. The scaled pressure p(ε) satisfies the estimates

‖p(ε)‖L2(Ω×(0,T )) ≤ C‖A‖V ,(4.17) ∫ T

0

∥∥∥∥ ∂

∂z
p(ε)

∥∥∥∥
2

H−1(Ω)

dt+
1

ε2

∫ T

0

∥∥∥∥ ∂

∂r
p(ε)

∥∥∥∥
2

H−1(Ω)

dt ≤ C‖A‖2
V .(4.18)

Proof. Let ϕ be an axially symmetric function in H1(Ω)3 such that ϕ = 0 on ∂Ω\{z = 0}.
Then, for all such ϕ the scaled momentum equation gives

〈�εp(ε), ϕ〉Ω =
〈
1

ε

∂

∂r
p(ε), ϕr

〉
Ω

+

〈
∂

∂z
p(ε), ϕz

〉
Ω

= −µ

∫
Ω
Dε(v(ε)) : Dε(ϕ).

Now let g ∈ L2(Ω). Due to the surjectivity of the divergence operator between any subspace
of H1(Ω)3 bigger than H1

0 (Ω)
3 and L2(Ω), there exists a ϕ̃ ∈ H1(Ω)3, axially symmetric with

ϕ̃ = 0 on ∂Ω \ {z = 0}, such that div ϕ̃ = g. Let ϕr = εϕ̃r and ϕz = ϕ̃z. Then g = divε ϕ and
|∫Ω p(ε)g| = |∫Ω p(ε) divε φ| = |〈�εp(ε), ϕ〉Ω| ≤ C‖g‖L2(Ω) ∀g ∈ L2(Ω), implying (4.18).

After obtaining the uniform estimates for {v(ε), p(ε)}, which are valid for their time deriva-
tives as well, we are in a situation where we can define the “correct” asymptotic expansions
for v(ε), p(ε), ηε, and sε. The usual difficulty with asymptotic expansions is to determine the
“optimal” choice of the leading order powers of ε. In general, they follow from the a priori
estimates. More precisely, for problem (3.1)–(3.2), results from Corollary 4.3 and Proposi-
tion 4.4 imply that the L2-norms of µ

ε2
v(ε) and p(ε) are bounded independently of ε and µ.

Thus it is natural to use the following asymptotic expansions:

v(ε)(z, r, t) =
ε2

µ

∑
i≥0

εivi(z, r, t),(4.19)

p(ε)(z, r, t) =
∑
i≥0

εipi(z, r, t),(4.20)
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ηε(z, t) = ε
∑
i≥0

εiηi(z, t),(4.21)

sε(z, t) =
∑
i≥0

εisi(z, t).(4.22)

In the next section we will use these expansions to derive the reduced problem, which, as
we shall see, will be second-order accurate in ε. In section 6.1 we prove the existence of a
unique solution of the limiting problem, as ε → 0. This shows, in particular, that the a priori
estimates and the asymptotic expansions given above are optimal.

5. The reduced problem. We derive the effective (reduced) equations, second-order ac-
curate in ε, that hold for small ε. The reduced equations are obtained by inserting the
asymptotic expansions above into (4.1), (4.2), and (4.3) and by collecting the powers of ε.
The incompressibility condition (4.3) implies

ε−1 ∂

r∂r
(rv0

r ) +
∂v0

z

∂z
+

∂

r∂r
(rv1

r ) + ε
∑
i≥0

εi
{
∂vi+1

z

∂z
+

∂

r∂r
(rvi+2

r )

}
= 0.(5.1)

Relation (5.1) gives

v0
r = 0 and(5.2)

∂(v0
z + εv1

z)

∂z
+

∂

r∂r
(r(v1

r + εv2
r )) = 0 in Ω× (0, T ).(5.3)

Notice that (5.2) indicates that in this coupled fluid-structure problem for creeping flow,
the radial component of the velocity is by one order of magnitude smaller than the axial
component.

Insert expansions (4.19)–(4.22) into the momentum equations (4.1) and (4.2), and collect
the powers of ε to obtain

−1
ε

∂(p0 + εp1)

∂r
+ ε

{
∂

r∂r

(
r
∂v1

r

∂r

)
− v1

r

r2
− ∂p2

∂r

}
= O(ε2),(5.4)

∂

r∂r

(
r
∂(v0

z + εv1
z)

∂r

)
− ∂(p0 + εp1)

∂z
= O(ε2).(5.5)

To simplify notation, define

p = p0 + εp1, s = s0 + εs1, η = η0 + εη1, vr = v1
r + εv2

r , and vz = v0
z + εv1

z .

The incompressibility condition (5.3) then reads

∂

∂r
(rvr) +

∂

∂z
(rvz) = 0,(5.6)

and the coefficient in front of ε−1 in (5.4) implies

p = p(z, t),(5.7)
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which says that pressure is constant along each fixed cross-section of a vessel. The second
momentum equation (5.5) implies

r
∂p

∂z
=

∂

∂r

(
r
∂vz
∂r

)
.(5.8)

Equations (5.6), (5.7), and (5.8) are the standard asymptotic equations obtained from the
flow equations before any boundary conditions are taken into account. These are obtained,
for example, in [4, 20], using direct methods, in the case when the acceleration terms are
not negligible. In that case, additional acceleration terms appear in (5.8). We mention that,
typically, the viscous term on the right-hand side of (5.8) contains a factor with viscosity
µ. In our reduction, this term is hidden by its inclusion in the asymptotic expansion of the
velocity (4.19). What is typically done next in the reduction to a one-dimensional model is
the averaging of the flow equations over a fixed cross-sectional area. This is where boundary
conditions and modeling of vessel walls are included. In the case frequently studied in litera-
ture, the wall (structure) is modeled using the “independent ring model” [3, 4, 20, 10, 11, 22].
In that case the longitudinal displacement s is assumed to be zero, and the shear term ∂η/∂z
is assumed negligible. The no-slip boundary condition is used at the lateral boundary.

In this paper, we do not use the no-slip condition, but we use the continuity of forces
and velocity at the lateral boundary, which is more realistic when compliant vessel walls are
considered. The structure (wall) is modeled by (2.2) and (2.3), whose asymptotic form is
given by

p(z, t) =
E0

R(1− σ2)

(
σ
∂s

∂z
+

η

R

)
−G0

∂2η

∂z2
+O(ε2),(5.9)

∂vz
∂r

|r=R = E0

1− σ2

∂

∂z

(
∂s

∂z
+

ση

R

)
+O(ε2).(5.10)

Here again, with a slight abuse of notation, we used E0 and G0 to denote the expressions
E(ε)h(ε)/ε and G(ε)k(ε)h(ε)ε, respectively. It turns out that the reduced equations in this
case are much easier to write in terms of the effective pressure, p, rather than in terms
of the cross-sectional area and the volumetric flow rate which are typically used when the
independent ring model is employed. With this in mind, we proceed as follows. We focus on
(5.9) and (5.10) to obtain the PDE for the pressure. We eliminate η, vz, and

∂s
∂z from (5.9)

and (5.10) by using the incompressibility condition (5.6) and the momentum equations (5.7)
and (5.8) in the following way. Integrate the leading order term in the second momentum
equation (5.8) twice, from r to R, and use

vz(z,R, t) =
∂s

∂t
(z, t)(5.11)

to obtain the axial velocity

vz(z, r, t) =
r2 −R2

4

∂p

∂z
(z, t) +

∂s

∂t
(z, t).(5.12)
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This is a variant of the Biot law for velocity; see [1, 24]. Combined with the incompressibility
condition it provides the following relation used in the proof of the convergence theorem (see
section 6):

vr =
R

r

∂η

∂t
− (R2 − r2)2

16r

∂2p

∂z2
+

R2 − r2

2r

∂2s

∂z∂t
=

r

2

∂

∂z

{
2R2 − r2

8

∂p

∂z
− ∂s

∂t

}
.

Next use (5.12) in (5.10) to eliminate vz by observing that

∂vz
∂r

|r=R = R

2

∂p

∂z
(z, t).(5.13)

To eliminate ∂s∂z , plug expression (5.12) for vz into the reduced incompressibility condition (5.6)
integrated from r = 0 to r = R,

∂η

∂t
+

∂

∂z

(
1

R

∫ R

vz(r, z, t) rdr

)
= 0,(5.14)

to obtain the reduced, averaged, incompressibility condition

∂η

∂t
− R3

16

∂2p

∂z2
+

R

2

∂2s

∂z∂t
= 0.(5.15)

Integrate with respect to t, and obtain

∂s

∂z
=

R2

8

∂2

∂z2

∫ t

0
p− 2

R
η.(5.16)

Insert (5.13) into (5.10) to obtain

R

2
p(z, t)− E0

1− σ2

(
∂s

∂z
+

ση

R

)
= C0(t).

We claim that C0(t) = C0 = 0. To see this, consider even extensions of the axial velocity
vεz and the axial displacement s

ε for negative values of z. Analogously, make odd extensions
of the radial velocity vεr , radial displacement η

ε, and the pressure pε. It is easy to check that
all the equations are valid for z ∈ (−L,L). Consequently, the partial derivatives with respect
to z of all the quantities have the same regularity as the unknown functions. Hence

η(0, t) = 0 = p(0, t) =
∂s

∂z
(0, t).(5.17)

Therefore, C0(t) = 0.
From this calculation we obtain the following relation between η and p:

E0

R(1− σ2)
η =

R

2− σ

(
−1
2
p+

E0R

8(1− σ2)

∂2

∂z2

∫ t

0
p

)
.(5.18)

We use this to eliminate η from (5.9) and (5.10).
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Note that at this point we can write (5.9) and (5.10) entirely in terms of the pressure:
(5.18) relates η with p, (5.16) relates ∂s

∂z with η, and therefore with p, and (5.12) implies that
the second equation (5.10) reads

∂p

∂z
(z, t) =

2

R

(
E0

1− σ2

∂

∂z

(
∂s

∂z
+

ση

R

))
+O(ε2).(5.19)

By differentiating the pressure equation (5.9) with respect to z and by setting it equal to
(5.19), we obtain the reduced equation for the pressure

∂

∂t

{(
5

2
− 2σ

)
p− (1− σ2)

G0R
2

2E0

∂2p

∂z2

}
=

∂2

∂z2

{
E0R

8
p− G0R

3

8

∂2p

∂z2

}
.(5.20)

Remark 1. Note that the “correct” time-scale for the pressure is

tp =
E0R

8
t̃ =

(
lim
ε→0

h(ε)E(ε)εR

8µ

)
t.

It is interesting to notice that for the values given in Table 2.1 this is 0.75 of the time-scale t̃
and 0.35 of the original physical time-scale t. The physical time-scale t and the time-scale t̃
are related via t̃ = (ε2/µ)t = 0.47t.

Depending on the problem, the coefficients containing shear modulus G0 may or may not
be negligible. In the two subsections that follow, we summarize the initial-boundary-value
problems corresponding to the two cases.

5.1. The reduced problem with small shear modulus. In this subsection we study the
case when the coefficients containing shear modulus G0 are zero or negligible. After taking
into account the obvious regularity of pε with respect to z (but not necessarily the regularity
of sε), we see that p = A(t) for z = L. The reduced initial-boundary-value problem for the
effective pressure reads




(
5

2
− 2σ

)
∂p

∂t
=

E0R

8

∂2p

∂z2
in (0, L)× (0, T ),

p(0, t) = 0, p(L, t) = A(t) in (0, T ),

p(z, 0) = 0 in (0, L),

(5.21)

and the relationship between ∂s
∂z and η becomes

∂s

∂z
=
1− 2σ
2− σ

η

R
.(5.22)

There is a unique smooth solution of problem (5.21). For incompressible materials, σ = 1/2
[23], in which case (5.22) implies s = 0 and

p =
4E0

3R2
η =

4E0

3R

(
1−

√
A(0)
A +O

(
η

R

))
,(5.23)
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where A = A(x, t) denotes the cross-sectional area at (t, x), and A(0) is the unstressed cross-
sectional area at x (corresponding to the zero pressure). This is the law of Laplace, or the
independent ring model, found in [11, 20] using different approaches. In general, for negligible
shear modulus, we find that pressure is directly related to the radial displacement via

p =
E0η

(1− σ/2)R2
=

E0

(1− σ/2)R

(
1−

√
A(0)
A +O

(
η

R

))
,(5.24)

where (5.23) is the first term in the expansion for the pressure in terms of the radial dis-
placement. We see that, for general σ, the diffusion equation for the effective pressure can be
easily written in terms of the radial displacement. The resulting equation is again parabolic,
reflecting the fact that acceleration terms in the fluid equation have been ignored. More pre-
cisely, if the acceleration terms were present (Navier–Stokes equations), the resulting equation
would include the second derivative of η with respect to time and give a hyperbolic problem.
Hyperbolic problems are typically obtained when the reduced Navier–Stokes equations are
coupled with the independent ring model [12, 20, 4].

Remark 2. If A ∈ C∞
0 (0,+∞), then p ∈ C∞([0, L]× [0, T ]).

5.2. The reduced problem for nonnegligible shear modulus. In the case when the shear
modulus coefficients are not small, we need more boundary conditions for (5.20). Furthermore,
for G0 > 0 the boundary conditions for the radial displacement are preserved in the limit.
By using (5.18) we get the boundary conditions for ∂zzp at z = 0, L. The reduced initial-
boundary-value problem reads



∂

∂t

{(
5

2
− 2σ

)
p− (1− σ2)

G0R
2

2E0

∂2p

∂z2

}
=

∂2

∂z2

{
E0R

8
p− G0R

3

8

∂2p

∂z2

}
,

p(0, t) = 0, p(L, t) = A(t) in (0, T ),

∂2p

∂z2
(0, t) = 0,

E0R

8(1− σ2)

∂2p

∂z2
(L, t) =

1

2

dA

dt
in (0, T ),

p(z, 0) = 0 in (0, L).

(5.25)

Remark 3. If A ∈ C∞
0 (0,+∞), then p ∈ C∞([0, L]× [0, T ]).

5.3. The reduced problem in the pressure-velocity form. It is useful to cast the above
reduced problem in terms of the leading order velocity and pressure. In fact, in section 6 we will
show that the solution of the original problem converges to the solution of the reduced problem
written in terms of (vz, p, η, s). For this purpose we define the reduced problem for (vz, p, η, s)
by using (5.14) and (5.8) to describe conservation of mass and momentum, (5.11), (5.9), and
(5.10) to describe the lateral boundary conditions, and conditions corresponding to (2.15),
(2.16), and (2.17) as the inlet and outlet boundary data. Summarized, the problem can be
written as follows. Find (vz, p, η, s) such that the following equations describing conservation
of mass and momentum hold:

∂η

∂t
+

∂

∂z

(
1

R

∫ R

vz(r, z, t) rdr

)
= 0,

r
∂p

∂z
=

∂

∂r

(
r
∂vz
∂r

)
,
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the lateral boundary conditions are

vz(z,R, t) =
∂s

∂t
(z, t),

p(z, t) =
E0

R(1− σ2)

(
σ
∂s

∂z
+

η

R

)
−G0

∂2η

∂z2
,

∂vz
∂r

|r=R = E0

1− σ2

∂

∂z

(
∂s

∂z
+

ση

R

)
,

and the inlet and outlet boundary data are given by

η(0, t) = 0 = p(0, t) =
∂s

∂z
(0, t),

η(L, t) = 0 = s(L, t) = 0, p(L, t) = A(t),

η(z, 0) = 0 = s(z, 0).

In the next section we show that the solution of the original problem converges to the solution
of the above reduced problem. Furthermore, in section 7 we show that the error between the
solution of this reduced problem and the solution of the full Stokes problem coupled with the
Navier equations for the membrane is of order ε2 except at the outlet boundary, where, due
to the existence of a boundary layer, the error increases to O(ε3/2).

6. Convergence theorem. In this section we study the rescaled problem P(ε) in the limit
as ε → 0. We show that there exists a subsequence of a sequence of solutions of the rescaled
problem which converges weakly and that the weak limit (each cluster point) satisfies the weak
form of the reduced problem presented in section 5.3. Due to the uniqueness of the solution
of the reduced problem, we conclude that every convergent subsequence of the sequence of
rescaled solutions converges weakly to the unique solution of the reduced problem.

We start by proving the following weak compactness result for the sequence of solutions
of problem P(ε).

Let

W =

{
ϕ ∈ L2(Ω) | ∂ϕ

∂r
∈ L2(Ω)

}
and(6.1)

Wr =

{
r−1ϕ ∈ L2(Ω) | ∂ϕ

∂r
∈ L2(Ω)

}
.(6.2)

Theorem 6.1. There exists a subsequence (v(ε), p(ε), ηε, sε) chosen from a sequence of solu-
tions of the rescaled problem P(ε) such that (µ/ε2 v(ε), p(ε), ηε, sε) converges weakly as ε → 0.
Denote its limit (cluster point) by (u, p, η, s), where u = ur er + uz ez. Then

u(ε)z =
µ

ε2
v(ε)z → uz weakly in L2(0, T ;W ),(6.3)

u(ε)r =
µ

ε2
v(ε)r → ur weakly in L2(0, T ;Wr),(6.4)

sε → s weakly in H1((0, T )× (0, L)),(6.5)
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√
G0ε

−1∂zη
ε →

√
G0∂zη,

ε−1ηε → η

}
weak∗ in L∞(0, T ;L2(0, L)),(6.6)

p(ε)→ p weakly in L2((0, T )× Ω).(6.7)

Moreover, ur = 0,
∂p
∂r = 0, and

∂η

∂t
+

∂

∂z

(
1

R

∫ R

0
uz(r, z, t) rdr

)
= 0 in the sense of distributions.(6.8)

Finally,

ε−1∂tη
ε → ∂tη weakly in L2(0, T ;H−1(0, L)).(6.9)

Proof. We need only to prove ur = 0 and
∂p
∂r = 0 and the conservation of mass equation

(6.8).
To show ur = 0, multiply the incompressibility condition (4.3) by a test function ϕ ∈

C∞
0 (Ω) to obtain∫

Ω
ϕ

∂

∂r

(
ru(ε)r

)
drdz = −ε

∫
Ω

∂ϕ

∂z
u(ε)z rdrdz → 0 as ε → 0.

Therefore, ∂
∂r (rur) = 0, and, since ur ∈ Wr, it follows that ur = 0.

To show that ∂p
∂r = 0, observe that (4.18) implies that for every ξ ∈ L2(0, T ;H1

0 (Ω)) we
have ∣∣∣∣

∫ T

0

〈
∂

∂r
p, ξ

〉
Ω

dt

∣∣∣∣ =
∣∣∣∣−
∫ T

0

∫
Ω
p
∂ξ

∂r
rdrdzdt

∣∣∣∣
=

∣∣∣∣−limε→0

∫ T

0

∫
Ω
p(ε)

∂ξ

∂r
rdrdzdt

∣∣∣∣ =
∣∣∣∣limε→0

∫ T

0

〈
∂

∂r
p(ε), ξ

〉
Ω

dt

∣∣∣∣
≤
{
lim
ε→0

∥∥∥∥ ∂

∂r
p(ε)

∥∥∥∥
L2(0,T ;H−1(Ω))

}
‖ξ‖L2(0,T :H1

0 (Ω)) = 0,

and we conclude that p is independent of r, namely p = p(z, t).
To show that conservation of mass (6.8) holds, start with the incompressibility condition

(4.3) and multiply (4.3) by the test functions ϕ ∈ C∞
0 (0, L) and ψ ∈ C∞

0 (0, T ). Integrating
over Ω implies

−R

∫ T

0

∫ L

0

ηε

ε
ϕ
dψ

dt
dzdt−

∫ T

0

∫
Ω
u(ε)zψ(t)

dϕ

dz
rdrdzdt = 0.

After passing to the limit as ε → 0, we obtain (6.8) and (6.9).
Corollary 6.2. Let G0 > 0. Then for any cluster point {uz, p, η, s} ∈ L2(0, T ;W ) ×

L2(Ω× (0, T ))× (L∞(0, T ;H1(0, L))2 ∩ C([0, T ];L2(0, L))2
)
we have

uz(R, z, t) =
∂s

∂t
(z, t) for (z, t) ∈ (0, L)× (0, T ),(6.10)

η(0, t) = 0 = p(0, t) =
∂s

∂z
(0, t) for t ∈ (0, T ),(6.11)

η(L, t) = 0 = s(L, t) = 0, p(L, t) = A(t) for t ∈ (0, T ),(6.12)

s(z, 0) = η(z, 0) = 0 for z ∈ (0, L).(6.13)
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For G0 = 0, η ∈ L∞(0, T ;L2(0, L)), and we drop the boundary condition for η at z = L.
Proof. Relation (6.10) is a consequence of the preceding theorem. To show the rest, make

an even extension of the axial velocity vεz and the axial displacement s
ε for negative values

of z and odd extension of the radial velocity vεr , radial displacement η
ε, and pressure pε. It

is easy to check that all the equations are valid for z ∈ (−L,L). Consequently, the partial
derivatives with respect to z of all the quantities have the same regularity as the unknown
functions, and we conclude that (6.11) holds. The boundary condition for the limit pressure
in (6.12) is obtained in the same way. The boundary conditions for the displacements follow
from the corresponding convergence results proved in Theorem 6.1. The initial conditions
(6.13) for s and η follow from (6.5), (6.6), and (6.9).

Motivated by the weak formulation of the rescaled problem P(ε), assumptions (2.5) and
(2.6), and the weak compactness result above, we define the following weak formulation of the
limiting problem; call it P(ε → 0). Denote

Eµ(u, ϕ, ψ; 0) = 1

2

∫ T

0

∫
Ω

∂uz
∂r

∂ϕz
∂r

ψ(t) rdrdzdt,

Eel(η, s, ϕ, ψ; 0) = R

∫ T

0

∫ L

0

{
G0

∂η

∂z

∂ϕr
∂z

+
E0

1− σ2

(
σ

R

∂s

∂z
+

η

R2

)
ϕr

+
E0

1− σ2

(
∂s

∂z

∂ϕz
∂z

− σ

R

∂η

∂z
ϕz

)}
ψ(t) dzdt,

and

Esrc(A,ϕ, ψ) =

∫ T

0

∫ R

0
A(t)ϕzψ(t) rdrdt.

Definition 6 (weak formulation of the limiting problem P(ε → 0)). Let G0 > 0. Vector func-
tion (uz, η, s) ∈ L2(0, T ;W )×L∞(0, T ;H1(0, L))2 such that {∂tη, ∂ts} ∈ L2(0, T ;H−1(0, L))×
L2((0, T )× (0, L)) is called a weak solution of the limiting problem P(ε → 0) if

Eµ(u, ϕ, ψ; 0) + Eel(η, s, ϕ, ψ; 0) = −Esrc(A,ϕ, ψ), in D′(R+) ∀ϕ ∈ V(6.14)

and conditions (6.10)–(6.13) are satisfied.
If G0 = 0, then we need η ∈ L∞(0, T ;L2(0, L)) and ∂tη ∈ L2(0, T ;H−1(0, L)).
It will be convenient to work with the weak formulation written in terms of the pressure

and velocity. For this purpose we define the following.
Definition 7 (weak formulation of P(ε → 0) in the pressure-velocity form). Let G0 > 0. Vec-

tor function {uz, η, s} ∈ L2(0, T ;W )×L∞(0, T ;H1(0, L))2, {∂tη, ∂ts} ∈ L2(0, T ;H−1(0, L))×
L2((0, T ) × (0, L)), and p ∈ L2((0, T ) × Ω) form a weak solution of the limiting problem
P(ε → 0) if

Eµ(u, ϕ, ψ; 0)−
∫ T

0

∫
Ω
p(divϕ)ψ rdrdzdt

+ Eel(η, s, ϕ, ψ; 0) = −Esrc(A,ϕ, ψ) ∀ϕ ∈ D(R+) and ∀ϕ ∈ Vdiv =0,

(6.15)
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and the conditions (6.10)–(6.13) are satisfied. Vdiv =0 is defined by (4.9).
If G0 = 0, then we require η ∈ L∞(0, T ;L2(0, L)) and ∂tη ∈ L2(0, T ;H−1(0, L)).
The following theorem shows that solutions of problems P(ε) converge, as ε → 0, to the

solution of the limiting problem.
Theorem 6.3. Any cluster point {uz, p, η, s} ∈ L2(0, T ;W )×L2((0, T )×Ω)×L∞(0, T ;L2(0, L))

× L∞(0, T ;H1(0, L)) satisfies the weak formulation of the limiting problem P(ε → 0).
Proof. Consider the test functions ϕ ∈ Vdiv =0 which are not divergence-free. First observe

that since

µ

ε2

∂v(ε)z
∂r

⇀
∂uz
∂r

weakly in L2((0, T )× Ω),

we have

lim
ε→0

Eµ(v(ε), ϕ, ψ; ε) =
∫ T

0

∫
Ω

∂uz
∂r

∂ϕz
∂r

ψ(t) rdrdzdt.

Next, weak convergence of p(ε) gives

lim
ε→0

∫ T

0

∫
Ω
p(ε)

(
∂ϕz
∂z

+
∂ϕr
∂r

+
ϕr
r

)
ψ(t) rdrdzdt =

∫ T

0

∫
Ω
p (divϕ) ψ rdrdzdt.

Similarly, using ρwRh(ε)ε3/µ2 ≤ Cε3/2, we get

lim
ε→0

Eel(η
ε, sε, ϕ, ψ; ε) = R

∫ T

0

∫ L

0

{
G0

∂η

∂z

∂ϕr
∂z

+
E0

1− σ2

(
σ

R

∂s

∂z
+

η

R2

)
ϕr

+
E0

1− σ2

(
∂s

∂z

∂ϕz
∂z

− σ

R

∂η

∂z
ϕz

)}
ψ(t) dzdt.(6.16)

Therefore, {uz, p, η, s} satisfies the weak form (6.15).
The proof of Theorem 6.3 implies that any cluster point {uz, p, η, s} satisfies the momen-

tum equation

∂

r∂r

(
r
∂uz
∂r

)
− ∂p

∂z
= 0 in Ω× (0, T ),(6.17)

the incompressibility condition (6.8), the initial and boundary conditions (6.10)–(6.13), and
the following lateral boundary conditions:

p(z, t) =
E0

R(1− σ2)

(
σ
∂s

∂z
+

η

R

)
−G0

∂2η

∂z2
on (0, L)× (0, T ),(6.18)

∂uz
∂r

|r=R = E0

1− σ2

∂

∂z

(
∂s

∂z
+

ση

R

)
on (0, L)× (0, T ).(6.19)

We note that system (6.8), (6.17), with the lateral boundary conditions (6.10), (6.18), and
(6.19) and the inlet and outlet boundary conditions (6.11) and (6.12) has a unique solution.
This solution coincides with the solution of the reduced problem obtained using asymptotic
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reduction, presented in section 5.3. Its weak form is the problem (6.15). Therefore, we have
shown the following.

Corollary 6.4. Every convergent subsequence of solutions of the rescaled problem P(ε) con-
verges weakly, as ε → 0, to the unique solution of the reduced problem obtained using asymp-
totic reduction, presented in section 5.3. The weak formulation of the reduced problem is given
by (6.10)–(6.13) and (6.15).

The methods used in this section are standard and can be found in [5, 7, 14, 15]. We
mention that the same convergence techniques can be used in the nonlinear case when mono-
tone operators are considered (see, e.g., [18, 2, 17]). Establishing the precise error estimates
is nonstandard, and we present the analysis in the next section.

7. Error estimates. In this section we establish the accuracy of the approximation and
the relationship between the function vr and the radial velocity. The literature on higher order
approximations for fluid-structure problems in thin domains is sparse because of the various
difficulties associated with the boundary conditions that can be prescribed on a finite domain.
The closest result on higher order approximations for the Stokes flow can be found in [19],
where Stokes flow through fixed domains with small thickness was studied with the prescribed
velocity field as the lateral boundary condition. This is different from our approach.

There are various difficulties associated with error estimates for the fluid-structure inter-
action problem considered in the current paper. The main source of difficulties lies in the
choice of the appropriate outlet boundary conditions. The minimum requirement for the out-
let boundary conditions is that they should lead to a well-posed reduced problem. We found,
for example, that periodic boundary conditions do not lead to a well-posed reduced problem.
A further requirement is that the outlet boundary conditions for the reduced problem should
be compatible with the fluid-structure interaction in the rest of the domain. Many “standard”
boundary conditions typically used in fixed domains (rigid wall tubes) do not seem to satisfy
this requirement. For example, zero tangential velocity at the outlet boundary, considered in
our paper, although it gives rise to a well-posed initial-boundary-value problem, is incompat-
ible with the flow generated in the rest of the domain. This generates a boundary layer at the
outlet boundary and provides technical difficulties in obtaining the error estimates.

To get around this difficulty we construct a boundary layer in a manner similar to the
one used in [8]. The construction is based on the following approach. We consider the same
differential operator which holds for the original problem, but defined on a fixed domain, with
the appropriate lateral boundary condition which will serve as a correction for the boundary
layer effects. The rest of the boundary data is designed so that the boundary layer solution
decreases exponentially away from the outlet boundary and therefore does not contaminate
the original solution to the leading order accuracy. Nevertheless, due to the fact that the
boundary layer solution ignores the interaction between the wall and the fluid, important
shear stress effects will be created at the lateral boundary. This will give rise to a lower
accuracy in the error estimate. More precisely, we will get an estimate of order O(ε3/2). This
is by O(√ε) weaker then the analogous estimates in [19]. Getting a better estimate would, in
turn, lead to a complicated modification of the effective equations.

We construct the boundary layer explicitly by considering the following abstract problem
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on a semi-infinite rigid-wall cylinder Z− = S × R−, where S = {r < R} × {y3 = 0}:

−∆βbl +∇πbl = 0 in Z−,(7.1)

div βbl = 0 in Z−,(7.2)

βblr = vr(t, r, L) on y3 = 0,(7.3)

−2∂β
bl
z

∂y3
+ πbl = −2∂vz

∂z
(t, r, L) on y3 = 0,(7.4)

βbl = 0 on ∂S × R−.(7.5)

Proposition 7.11 from [8] provides the existence of a unique variational solution {βbl, πbl} ∈
C∞
loc(Z

+∪Z−)3×C∞
loc(Z

+∪Z−) for problem (7.1)–(7.5) such that there exist constants γ0 > 0
and Cπ satisfying



eγ0|y3|Dαβbl ∈ L2(Z−)9 for each multi-index α ∈ N

3 and α = 0,

eγ0|y3|(πbl − Cπ) ∈ L2(Z−), and

eγ0|y3|Dαπbl ∈ L2(Z−)9 for each multi-index α ∈ N
3.

(7.6)

In addition,
∫
S β

bl
z = 0 and we have W 2,q-regularity of βbl and W 1,q-regularity of πbl at

∂S × {0}.
Define the boundary layer velocity and the boundary layer pressure to be

βε(t, r, z) = εβbl
(
t, r,

z − L

ε

)
, πε(t, r, z) = ε2

(
πbl
(
t, r,

z − L

ε

)
− Cπ

)
.(7.7)

The boundary layer velocity and pressure satisfy

Divε
(
πεI − 2ε2Dε(β

ε)
)
= 0 in Ω× R+,(7.8)

divε β
ε = 0 in Ω× R+,(7.9)

βεr = εvr and πε − 2ε2∂β
ε
z

∂z
= ε2

(
−2∂vz

∂z
− Cπ

)
for z = L,(7.10)

and the following estimates for the behavior at the lateral and at the inlet boundary:
∥∥∥∥πε|r=R − 2ε∂β

ε
r

∂r
|r=R

∥∥∥∥
L2(0,L)

≤ Cε5/2 ∀t > 0,(7.11)

∥∥∥∥ε2

(
∂βεr
∂z

+
1

ε

∂βεz
∂r

)
|r=R

∥∥∥∥
L2(0,L)

≤ Cε5/2 ∀t > 0,(7.12)

βεr and πε − 2ε∂β
ε
z

∂z
are exponentially small for z = 0.(7.13)

Furthermore, the following estimate holds on domain Ω:

ε‖βε‖L2(Ω)3 + ‖πε‖L2(Ω) + ε

∥∥∥∥∂β
ε

∂r

∥∥∥∥
L2(Ω)3

+

∥∥∥∥∂π
ε

∂r

∥∥∥∥
L2(Ω)

≤ Cε5/2.(7.14)
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We are now in a position to estimate the difference between the solution of the rescaled problem
and the solution of the limiting problem, modified by the boundary layer. We introduce the
following notation:

p(ε) = p(ε)− p+ πε, v(ε) =
µ

ε2
v(ε)− vz ez − εvr er + βε,

s(ε) = sε − s, η(ε) = ηε − εη.

The following theorem provides the error estimates.
Theorem 7.1. Suppose that A ∈ C∞

0 (0,+∞), and let the parameters satisfy∣∣∣∣E0 − h(ε)E(ε)

ε

∣∣∣∣ ≤ Cε3/2, |G0 − h(ε)G(ε)k(ε)ε| ≤ Cε3/2,
ρwh(ε)ε

3

µ2
≤ Cε3/2.(7.15)

Then for each fixed ε > 0 the following estimates hold for (1) the error in the velocity and
pressure: ∥∥∥∥v(ε)rr

∥∥∥∥
L2

+ ‖v(ε)z‖L2 +

∥∥∥∥∂v(ε)r∂r

∥∥∥∥
L2

+

∥∥∥∥∂v(ε)z∂r

∥∥∥∥
L2

≤ Cε3/2‖A‖H5(0,T ),(7.16)

∥∥∥∥∂v(ε)r∂z

∥∥∥∥
L2

+

∥∥∥∥∂v(ε)z∂z

∥∥∥∥
L2

≤ Cε1/2‖A‖H5(0,T ),(7.17)

‖p(ε)‖L2 ≤ Cε3/2‖A‖H5(0,T ),(7.18)

where the L2-norms are defined on Ω × (0, T ), and for (2) the error in the radial and longi-
tudinal displacement:

sup
0≤t≤T

{√
G0

∥∥∥∥∂η(ε)ε∂z
(t)

∥∥∥∥
L2

+
√

E0

∥∥∥∥η(ε)ε (t)

∥∥∥∥
L2

+

∥∥∥∥∂s(ε)∂z
(t)

∥∥∥∥
L2

}
(7.19)

≤ Cε3/2‖A‖H5(0,T ),

where the L2-norms are defined on (0, L).
The proof of this theorem is rather technical, and we present it in the appendix. Here we

summarize the main steps.
We first calculate the PDE and the boundary conditions that are satisfied by the er-

ror (v, p, η, s). Without loss of generality suppose G0 > 0. Using the equations for the
rescaled problem (4.1)–(4.6), the reduced equations obtained via asymptotic reduction (5.3),
(5.4)–(5.5), (5.9), and (5.10), and the boundary layer problem (7.8)–(7.14), we obtain the
PDEs that hold in Ω× R+:

Divε
(
p(ε)I − 2ε2Dε(v(ε))

)
= ε2

(
2
∂2vz
∂z2

 ez + ε
∂2vr
∂z2

 er

)
,(7.20)

divε v(ε) = 0.(7.21)

At the lateral boundary {R} × (0, L)× R+ the error satisfies

p(ε)− 2ε∂v(ε)r
∂r

= Fr(ε) + Φ
ε
r,(7.22)

−ε2

(
∂v(ε)r
∂z

+
1

ε

∂v(ε)z
∂r

)
= Fz(ε) + Φ

ε
z,(7.23)
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where Fr(ε) and Fz(ε) are the elastic forces generated by the error on the membrane, given
by

Fr(ε) =
h(ε)E(ε)

ε

1

R(1− σ2)

(
σ
∂s(ε)

∂z
+

η(ε)

Rε

)
+ (ωε)2ρwh(ε)

∂2η(ε)

∂t2

− h(ε)G(ε)k(ε)ε
∂2

∂z2

η(ε)

ε
,

Fz(ε) = −h(ε)E(ε)
1

1− σ2

∂

∂z

(
∂s(ε)

∂z
+

ση(ε)

Rε

)
+ (ωε)2ρwh(ε)

∂2

∂t2
s(ε),

and Φεr and Φ
ε
z are the contributions of the remaining terms, given by

Φεr = − ∂

∂z
Φ1,ε
r +Φ2,ε

r ,

Φεz = − ∂

∂z
Φ1,ε
z +Φ2,ε

z ,

where

Φ1,ε
r = ε2

(
R2

8

∂p

∂z
+

∂s

∂t

)(
∂vz
∂z

+ 2
∂vr
∂r

)
− (G0 − h(ε)G(ε)k(ε)ε

)∂η
∂z

,

Φ2,ε
r = (ωε)2ερwh(ε)

∂2η

∂t2
+ πε − 2ε∂β

ε
r

∂r
−
(
E0 − h(ε)E(ε)

ε

)
σ ∂s∂z +

η
R

R(1− σ2)

and

Φ1,ε
z = −

(
E0 − h(ε)E(ε)

ε

)
ε

1− σ2

∂s

∂z
− ε3R

2

(
R2

8

∂2p

∂z2
− ∂2s

∂t∂z

)
,

Φ2,ε
z = (ωε)2ρwh(ε)

∂2s

∂t2
+ ε

∂βεz
∂r

+

(
E0 − h(ε)E(ε)

ε

)
ε

1− σ2

∂

∂z

ση

R
.

Finally, at the inlet and the outlet boundaries we have

v(ε)r = 0 and p(ε)− 2ε2∂v(ε)z
∂z

= −ε2Cπ for z = L,(7.24)

v(ε)r and p(ε)− 2ε2∂v(ε)z
∂z

are exponentially small for z = 0.(7.25)

Next we write the variational formulation of system (7.20)–(7.25) (see (8.1)) and obtain an
energy equality. This is (8.2) in the appendix. From the energy equality, L2-estimates for
(7.20)–(7.25) are calculated. Estimate (7.12) is crucial in obtaining the leading order behavior
of the error as O(ε3/2). We recall that estimate (7.12) is a consequence of the geometry of
the domain and the choice of the appropriate scaling of the boundary layer. The appropriate
scaling of the boundary layer is determined from the underlying operator and the time-scale
of the problem. Details of the proof are presented in the appendix.

In Figure 7.1 we show numerical simulations obtained for the pressure drop A(t) pre-
scribed on the right boundary z = L, given by A(t) = 950 sin(2π t)Pa. The reference pressure
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Figure 7.1. Numerical simulation: Effective displacements with the given pressure drop A(t). The reference
pressure is 1.3× 104Pa.

P0 = 1.3 × 104Pa. The initial configuration is unperturbed, corresponding to the initial ra-
dius R = 0, 0004m with the initial radial and longitudinal displacement equal to zero. The
values of Young’s modulus and the shear modulus are E0 = 60Pa, G0 = 8Pa, and the Pois-
son ratio is σ = 0.4. Movies showing the dynamics of the vessel wall can be viewed at
http://www.math.uh.edu/˜canic/smallarteries/menu.html. The figure below is taken at time
t = 0.40. The dot on the graph of the pressure data A(t) indicates the time in the sinu-
soidal cycle when the “snap-shot” is taken. We see clearly the formation of the boundary
layer in the radial displacement at the boundary z = L. The pressure wave coming from the
right “pushes” the particles on the membrane to the left, introducing negative longitudinal
displacement in the first half of the sinusoidal pulse. This is consistent with the continuity
of velocity and forces at the lateral boundary. The radial displacement is positive, and it
is decreasing as the points move to the left, away from the right boundary z = L. Notice
how the radial displacement is by ε order of magnitude smaller than the longitudinal dis-
placement. The movie mentioned above shows how the wall particles move up and to the left
in the first half of the sinusoidal cycle and down and to the right in the second half of the
pressure cycle.

7.1. The reduced problem and error in physical domain. We conclude this section by
writing the reduced equation in the physical (spatial) coordinates, namely, in the domain Ωε.
Since p is independent of r, the equation for the pressure can be obtained directly from (5.25)
by taking into account that the physical inner vessel radius equals εR and that ε is equal to

http://www.math.uh.edu/~canic/ elisejerome/smallarteries.html
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the inner vessel radius divided by the length of the vessel L. We obtain


∂

∂t

{(
5

2
− 2σ

)
p− (1− σ2)

G0L
2

2E0

∂2p

∂z2

}
=

∂2

∂z2

{
E0L

8
p− G0L

3

8

∂2p

∂z2

}
,

p(0, t) = 0, p(L, t) = A(t) in (0, T ),

∂2p

∂z2
(0, t) = 0,

E0L

8(1− σ2)

∂2p

∂z2
(L, t) =

1

2

dA

dt
in (0, T ),

p(z, 0) = 0 in (0, L).

(7.26)

We emphasize that this problem is written in the t̃ time-scale.
The error between the solution of the reduced problem defined on Ωε and the solution of

the original problem P ε is obtained as follows. First, recall the notation used in section 5,
where the asymptotic equations were written in terms of

p = p0 + εp1, s = s0 + εs1, η = η0 + εη1, vr = v1
r + εv2

r , and vz = v0
z + εv1

z .

Then asymptotic expansions of the rescaled quantities (4.19)–(4.22) imply the following asymp-
totic expansions on Ωε:

vε(z, r, t) =
∑
i≥0

εivi(z, r, t), pε(z, r, t) =
∑
i≥0

εipi(z, r, t),

ηε(z, t) = ε
∑
i≥0

εiηi(z, t), sε(z, t) =
∑
i≥0

εisi(z, t).

Denote the error in the velocity and pressure, modified by the boundary layer, by

v̄ε = vε − vz(z, r/ε, t) ez − εvr(z, r/ε, t) er + βε(z, r/ε, t),

p̄ε = pε − p(z, t) + πbl(z, r/ε, t).

Notice that

vεr − εvr = ε3
∑
i≥3

εi−3vi, vεz − vz = ε2
∑
i≥2

εi−2vi, pε − p = ε2
∑
i≥2

εi−2pi,

ηε − εη = ε3
∑
i≥3

εi−3ηi, sε − s = ε2
∑
i≥2

εi−2si.

Theorem 7.1 implies the following error estimates on Ωε × (0, T ):∥∥∥∥ v̄
ε
r

r

∥∥∥∥
L2(Ωε×(0,T ))

+
1√|Ωε|

‖v̄εz‖L2(Ωε×(0,T ))

+

∥∥∥∥∂v̄
ε
r

∂r

∥∥∥∥
L2(Ωε×(0,T ))

+

∥∥∥∥∂v̄
ε
z

∂r

∥∥∥∥
L2(Ωε×(0,T ))

≤ Cε3/2‖A‖H5(0,T ),

1√|Ωε|

∥∥∥∥∂v̄
ε
r

∂z

∥∥∥∥
L2(Ωε×(0,T ))

+
1√|Ωε|

∥∥∥∥∂v̄
ε
z

∂z

∥∥∥∥
L2(Ωε×(0,T ))

≤ Cε1/2‖A‖H5(0,T ),

1√|Ωε|
‖p̄ε‖L2(Ωε×(0,T )) ≤ Cε3/2‖A‖H5(0,T ).



460 SUNČICA ČANIĆ AND ANDRO MIKELIĆ

The estimates for the displacement (7.19) remain unchanged.

Finally we mention that if we assume that the approximation of the data in (7.15) is of
order ε2, the resulting error estimates are of order ε2 in the norms defined on the domain Ωε
excluding the outlet boundary. Furthermore, we can obtain local estimates of order ε2 for the
derivatives with respect to z of all orders.

8. Appendix. Here we present the proof of Theorem 7.1.

Proof. We start by writing the variational form of system (7.20)–(7.25) satisfied by the
error (v, p, η, s):

Eµ(v, (ϕr/ε, ϕz), ψ; ε) + Eel(η, s, (ϕr/ε, ϕz), ψ; ε)

= ε2

∫ t

0

∫
Ω

(
2
∂2vz
∂z2

ϕz + ε
∂2vr
∂z2

ϕr

)
ψ(τ) rdrdzdτ

− R

ε

∫ t

0

∫ L

0

{
Φ2,ε
r ϕr(t, R, z) + Φ2,ε

z ϕz(t, R, z) + Φ1,ε
r

∂ϕr
∂z

+Φ1,ε
z

∂ϕz
∂z

}
ψ(τ) dzdτψ(τ) rdrdτ,

−ε2

∫ t

0

∫ R

0
Cπϕz(r, L)ψ(τ) rdrdτ in D′(R+) ∀ϕ ∈ Vdiv =0, divε ϕ = 0.(8.1)

Consider exponentially small quantities to be equal to zero. Then v(ε) ∈ V for every t and
v(ε) can be used as a test function to obtain the following energy equality:

2

∫ t

0

∫
Ω

((
∂v(ε)r
∂r

)2

+

(
v(ε)r
∂r

)2

+ ε2

(
∂v(ε)z
∂z

)2)
+

∫ t

0

∫
Ω

(
ε
∂v(ε)r
∂z

+
∂v(ε)z
∂r

)2

+
R

2

{
(ωε)2ρwh(ε)

ε

∫ L

0

(∣∣∣∣∂η(ε)∂t
(t)

∣∣∣∣
2

+

∣∣∣∣∂s(ε)∂t
(t)

∣∣∣∣
2)

dz + εh(ε)G(ε)k(ε)

∫ L

0

∣∣∣∣∂η(ε)ε∂z
(t)

∣∣∣∣
2

+
h(ε)E(ε)

ε(1− σ2)

(
σ

∫ L

0

(
η(ε)

εR
(t)− ∂s(ε)

∂z
(t)

)2

+ (1− σ)

∫ L

0

(∣∣∣∣η(ε)εR
(t)

∣∣∣∣
2

+

∣∣∣∣∂s(ε)∂z
(t)

∣∣∣∣
2))}

= −R

∫ L

0

(
Φ2,ε
r (t)

η(ε)

ε
(t) + Φ2,ε

z (t)
s(ε)

ε
(t) + Φ1,ε

r (t)
∂η(ε)

ε∂z
(t) + Φ1,ε

z (t)
∂s(ε)

ε∂z
(t)

)

+R

∫ t

0

∫ L

0

{
∂

∂τ
Φ2,ε
r

η(ε)

ε
+

∂

ε∂τ
Φ2,ε
z s(ε) +

∂

∂τ
Φ1,ε
r

∂η(ε)

ε∂z
+

∂

∂τ
Φ1,ε
z

∂s(ε)

ε∂z

}

− ε2

∫ t

0

∫ R

0
Cπv(ε)z(τ, r, L) rdrdτ + ε2

∫ t

0

∫
Ω

(
2
∂2vz
∂z2

v(ε)z + ε
∂2vr
∂z2

v(ε)r

)
rdrdzdτ.

(8.2)

Now hypothesis (7.15), the regularity of p, and estimates (7.11)–(7.12) allow us to use the
Gronwall inequality to estimate all the terms involving Φj,ε by Cε3/2 times the norm of v(ε)
at r = R. We note that because of (7.12) we cannot get an estimate better than O(ε3/2).

Next, the outlet term ε2
∫ t
0

∫ R
0 Cπv(ε)z(τ, r, L) rdrdτ is estimated as in the derivation of
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the a priori estimates. Observe that

−ε2

∫ t

0

∫ R

0
Cπv(ε)z(τ, r, L) rdrdτ = ε2

∫ t

0

∫ R

0

Cπ
L

v(ε)z(τ, r, z) rdrdzdτ

+
Rε2Cπ

L

∫ t

0

∫ L

0
zη(ε)z(τ, z) dzdτ,

∣∣∣∣Rε2Cπ
L

∫ t

0

∫
Ω
v(ε)z(τ, r, z) rdrdzdτ − R2ε2Cπ

2L

∫ L

0
s(ε)(t) dz

∣∣∣∣
≤ R2ε2|Cπ|

2
√
L

‖εDε(v(ε))‖L2((0,t)×Ω).

Therefore, the outlet term is controlled by the sum of two terms—a lateral boundary term,
which could be included in Φ2,ε

r , and a term estimated by Cε2‖εDε(v(ε))‖L2((0,t)×Ω).

The volume term is more difficult to deal with since we have to use the L2-norm of the
symmetrized gradient. Rewrite the volume term in two parts:

I1 = ε2

∫ t

0

∫
Ω
2
∂2vz
∂z2

(τ, r, z)v(ε)z(τ, r, z) rdrdzdτ

and

I2 = ε3

∫ t

0

∫
Ω

∂2vr
∂z2

(τ, r, z)v(ε)r(τ, r, z) rdrdzdτ.

Furthermore, note that
∫ R
0 2ξ

∂2vz
∂z2

(τ, ξ, z) dξ = −2R ∂2η
∂t∂z , and get

I1 = −2ε2

∫ t

0

∫ L

0
R

∂2η

∂t∂z

∂s(ε)

∂τ
− 2ε2

∫ t

0

∫
Ω

(
1

r

∫ r

0
ξ
∂2vz
∂z2

dξ

)
∂v(ε)z
∂r

rdrdzdτ

= −2ε2

∫ t

0

∫ L

0
R

∂2η

∂t∂z

∂s(ε)

∂τ
− 2ε2

∫ t

0

∫
Ω

(
1

r

∫ r

0
ξ
∂2vz
∂z2

dξ

)(
∂v(ε)z
∂r

+ ε
∂v(ε)r
∂z

)

+ 2ε3

∫ t

0

∫
Ω

∂

∂z

(
1

r

∫ r

0
ξ
∂2vz
∂z2

dξ

)
v(ε)r rdrdzdτ.(8.3)

Therefore, I1 is a sum of three terms. The first is controlled in the same way as the terms
involving Φj,ε, the second is easily estimated using the L2-norm of the symmetrized gradient,
and the third is to be estimated as a part of

I3 = I2 + 2ε
3

∫ t

0

∫
Ω

∂

∂z

(
1

r

∫ r

0
ξ
∂2vz
∂z2

dξ

)
v(ε)r rdrdzdτ.

Since vr +
2
r

∫ r
0 ξ ∂vz∂z dξ = −vr, we have

I3 = −ε3

∫ t

0

∫
Ω

∂2vr
∂z2

v(ε)r rdrdzdτ = ε3

∫ t

0

∫
Ω
r
∂2vr
∂z2

(
∂v(ε)r
∂r

+ ε
∂v(ε)z
∂z

)
rdrdzdτ
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and

|I3| ≤ Cε3

(∥∥∥∥∂v(ε)r∂r

∥∥∥∥
L2((0,t)×Ω)

+ ε

∥∥∥∥∂v(ε)z∂z

∥∥∥∥
L2((0,t)×Ω)

)
.(8.4)

Consequently, (7.19) follows and

ε2

∫ T

0
‖Dε(v(ε))(t)‖2

L2(Ω) dt ≤ Cε3‖A‖2.

It remains to estimate the term (Dε(v(ε))rz. Arguing as in the proof of Proposition 3.8, we
obtain∥∥∥∥∂v(ε)z∂r

∥∥∥∥
L2((0,T )×Ω)

+ ε

∥∥∥∥∂v(ε)r∂z

∥∥∥∥
L2((0,T )×Ω)

≤ Cε3/2‖A‖+ C1‖∂ts(ε)‖L2((0,T )×(0,L)).

The pressure estimate (7.18) is proved in the same way as in Proposition 4.4.
Remark 4. As in Corollary 3.9, we see that estimates (7.16) and (7.17) are also valid for

the time derivative of v(ε).
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perturbed by additive noise, we describe the essential dynamics for small solutions. If the system
is near a change of stability, then a natural separation of time-scales occurs and the amplitudes of
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1. Introduction. Amplitude equations are well known in the physics literature (see, e.g.,
[H83] or [W97]). They usually describe some order parameter for the system, which evolves on
a much slower time-scale. This separation of time-scales occurs, for example, very naturally
in a small neighborhood of bifurcations, where a change of stability occurs.

Amplitude equations can be used either for spatially extended systems, where they are
stochastic partial differential equations (SPDEs), or for systems on bounded domains, where
they are given as stochastic ordinary differential equations (SODEs). This paper will focus
on the second case, where an SODE describes the dynamics of the amplitudes of dominant
modes evolving on some slow time-scale. On the other hand, all nondominant modes evolve
rapidly on a fast time-scale, but they stay much smaller than the dominant ones. The modes
in our context are given by the Fourier series expansion with respect to the eigenfunctions of
the corresponding linearized operator.

For deterministic systems the theory is rigorously understood even for spatially extended
systems (see, e.g., [KSM92, vH91] for the first results). However, there is a lack of results for
stochastic systems. The only rigorous example is [BMS01] for a stochastic Swift–Hohenberg
equation with periodic boundary conditions on a bounded interval. In this example, a complex-
valued SODE was derived describing the amplitude of the dominant mode in a standard
complex Fourier series on a very long time-scale.

Our main theorems will extend the results of [BMS01] to a large class of SPDEs and
systems of SPDEs. Moreover, our applications will demonstrate the power of this approach,
when describing transient dynamics of stochastic equations.
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We consider the differential equation

∂tu(t) = Lεu(t) + f(ε, u(t), t) + ε2ξ(t), u(0) = u0,(1.1)

in a real Banach space X with norm ‖ · ‖X . Equations like this arise, for example, when
considering some SPDE (or systems of SPDEs) on bounded domains.

The stochastic perturbation is given by the (generalized) stochastic process ξ, which is
the derivative of some cylindrical Q-Wiener process W in X. Therefore, we can treat additive
noise that is white in time, but we allow correlations in space.

The main assumptions on the operator Lε will be that it generates a C0-semigroup
{etLε}t≥0 on X and that the nullspace N := N(Lε) of Lε is independent of ε and finite-
dimensional. In applications this operator is usually some differential operator equipped with
suitable boundary conditions.

The nonlinearity f depends not only on u(t), but it could also involve derivatives of u.
The important property is that f contains a small part that is linear in u but no quadratic
term in u. For example, f(ε, u) = ε2u− u3 or f(ε, u) = ε2u− u(∂xu)

2.

The fact that the linear part is small will reflect that the unperturbed deterministic system
is near a change of stability. Moreover, the reason for neglecting the much more complicated
quadratic terms is the following. If we want to separate the dynamics of the dominant modes
from the other modes, a cubic nonlinearity helps a lot. In contrast to that, quadratic nonlin-
earities tend to mix the dynamics of different modes much more strongly. In many examples,
quadratic nonlinearities map the dominant modes completely onto nondominant ones, allow-
ing complicated interaction of dominant and nondominant modes. This will be the topic of a
forthcoming paper [B03].

One typical example we have in mind is an SPDE such that the unperturbed deterministic
PDE exhibits a pitchfork-bifurcation. In a specific example, this was already treated in
[BMS01]. To be more precise, f should depend on an additional parameter ν such that
in the absence of noise there is a bifurcation at ν = 0 in the deterministic equation. One goal
of the presented approach is then to describe the dynamics of the SPDE near this deterministic
bifurcation, where the time-scales of the dynamics for stable and unstable modes separate.
We sketch briefly some results in section 6.3. We can identify regimes of the bifurcation
parameter ν, where the transient behavior of the SPDE is, for instance, almost deterministic
or independent of ν.

In contrast to the deterministic setting, the stochastic bifurcation is not that well un-
derstood. There are at least two main concepts. The first is a phenomenological bifurcation,
where a qualitative change in the unique invariant measure of the corresponding Markov semi-
group occurs. The second concept of bifurcation considers changes in the number of invariant
measures for the corresponding random dynamical system. Moreover, this second concept is
also related to structural changes in random attractors. See, for instance, [Ar98, section 9] for
precise definitions and discussions of both concepts. One of the major drawbacks of stochastic
bifurcation theory is that, only for one-dimensional SODEs (i.e., state space R), there is a
complete picture of possible bifurcations (see [CIS99]).

Note that we call the second concept simply bifurcation instead of dynamical bifurcation as
in [Ar98]. The reason is that this terminology also exhibits a completely different meaning (see
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section 6.1). We denote by dynamic bifurcation the situation when the bifurcation parameter
is slowly moved through a deterministic bifurcation point.

In our example of a deterministic pitchfork-bifurcation perturbed by additive noise, it is, at
least for simple examples, known that there is only a phenomenological bifurcation (see, e.g.,
[CF98]). In the general SPDE case the shape of the of the invariant measure for the Markov
semigroup is in general unknown, and the precise structure will be the topic of forthcoming
research.

The approach presented does not describe the stochastic bifurcation, as we characterize
only typical transient behavior on long time-scales, in contrast to the behavior for time to
infinity, which is usually not accessible in real-world experiments. Our results are on one hand
related to phenomenological bifurcations, as we could draw conclusions about the structure
of invariant measures, but on the other hand the approach reaches far beyond that, as it
is capable of describing the evolution in time of typical trajectories on very long transient
time-scales.

For multiplicative noise the picture is much more complicated, as in this case bifurcations
can occur easily (see, e.g., [CLR01]). We did not try to apply the machinery of amplitude
equations to these equations, but it is possible, at least on a nonrigorous level, to reduce the
dynamics to SODEs in some of the typical examples.

Our main results can be on a formal level described as follows. We make an ansatz of the
type

u(t) = εa(ε2t) · e+O(ε2),(1.2)

where e = (e1, . . . , en) is some basis in N = N(Lε). Then in many physical examples a
well-known formal calculation shows that plugging ansatz (1.2) into (1.1) yields a system of
SODEs for the amplitude a of the dominant modes corresponding to the basis e. This is
the amplitude equation, and it will be universal in the sense that it is actually independent
of ε. The classical example arising in many applications is the so-called Landau equation
a′ = νa− ca|a|2 + β̇, where β̇ is some noise and c, ν are constant coefficient matrices.

The main theorems of this article are first the attractivity (cf. Theorem 3.3) justifying the
ansatz (1.2) for some initial time, which is not too big. Second, we obtain the approximation
(cf. Theorem 4.3), showing by rigorous estimates of the error that (1.2) remains true on a very
long time-scale of order O(ε−2), where a is given by the amplitude equation. In the proofs we
will follow the strategy to reduce the probability of events giving approximation and attrac-
tivity to large deviation estimates for various random fields like the stochastic convolutions
and the amplitude a. These are usually easy to derive and treated in the applications.

Another interpretation of the main results is the following. We describe a deterministic
approximate center-manifold given by the vector space N . For small solutions of order ε,
where ε2 denotes the noise strength, we show (up to small errors) that N locally attracts
solutions of (1.1) with high probability. Moreover, in an O(ε2)-neighborhood of N , most
solutions of (1.1) are described (up to small errors) by an SODE on N . This is in contrast
to the concept of random invariant manifolds (cf., e.g., [DLS03]). There one can describe the
transient dynamics of all solutions as a flow on the manifold, but the manifold is allowed to
move in time. Nevertheless, the presented result can be used to estimate probabilities of how
the random invariant manifold evolves in time.
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Our theory describes solutions with small noise strength, but in contrast to the well-
known Freidlin–Wentzell theory (cf. [FW98]), we consider small coefficients in the equation,
too. Therefore, we approximate the solutions of (1.1) by the solutions of an SODE, and not by
the solutions of the unperturbed PDE. This is motivated by the fact that we want to describe
a perturbed deterministic pitchfork-bifurcation when the noise strength is of comparable order
to the distance from the bifurcation.

The paper is organized as follows. In section 2 we give the main standing assumptions
valid throughout the whole paper and the formulation of the abstract results. Sections 3 and 4
provide the proofs of our main results, first for the local attractivity of N and then for the
approximation of solutions by the amplitude equation.

The last two sections are devoted to applications. Section 5 summarizes simple large
deviation results necessary to estimate various probabilities occurring in the application of
the main results. Finally, in section 6 we discuss examples. First we consider a dynamic
pitchfork-bifurcation, which was discussed for a one-dimensional SODE in [BG02]. Note again
that this is not the concept introduced in [Ar98]. In our case dynamic bifurcation means that
the bifurcation parameter is time-dependent and is moved slowly through the bifurcation.
Problems like this are for SPDEs still the topic of active numerical and experimental research
(see [MG99, GM03] and the references therein). In an example we carry over the results
of [BG02] to some SPDEs, allowing us to describe the transient behavior of solutions very
precisely.

Then we focus on pattern formation below the threshold of instability, where, due to the
presence of noise, a pattern appears in an otherwise stable deterministic system. This effect is
also well known from experiments (see, e.g., [SR94]) and, for instance, in the context of con-
vection problems still subject to recent experimental investigation (see [SA02]). Nevertheless
the problem is not fully understood and there is no rigorous mathematical verification of the
pattern being present (see, e.g., [HS92] or [SA02] and the references therein). We present a
method giving for an example a first step into that direction.

2. Notation and formulation of the problem. This section summarizes standing assump-
tions valid throughout the whole article. For the linear operator Lε in (1.1), we assume the
following.

Assumption 2.1. For all ε > 0 suppose Lε is some possibly unbounded linear operator on X.
The kernel (or nullspace) of Lε is denoted by N := {v ∈ D(Lε) : Lεv = 0}, and it is assumed
to be independent of ε. We denote a projection onto N by Pc and define n := dim(N ).

Later there will be further restrictions on the choice of the projection Pc. The typical
example we have in mind is the spectral projection onto N , and many assumptions would be
automatically fulfilled in that case.

One complementary projection to Pc is given by Ps := I − Pc. As the dimension of N is
finite, it is well known that both Pc and Ps are bounded linear operators (cf. [W80]).

The second assumption on Lε and Pc is the following.
Assumption 2.2. We assume that Lε from Assumption 2.1 generates a strongly continuous

semigroup {etLε}t≥0 of linear operators on X which is exponentially stable on PsX. To be
more precise, there are constants ω > 0 and M ≥ 1, independent of ε, such that

‖etLεPsx‖X ≤ Me−tω‖x‖X for all t ≥ 0, x ∈ X.(2.1)
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To deal with the nonlinearity, suppose there is a second Banach space Y , such that X is dense
and continuously imbedded into Y . Assume that etLε and Pc can be extended to operators on
Y , and for some α ∈ [0, 1) we have

‖PsetLεy‖X ≤ M(1 + t−α)e−tω‖y‖Y for all t > 0, y ∈ Y.(2.2)

Moreover, suppose that Pc, and hence Ps, commutes with etLε on X and Y .
Let us briefly comment on the previous assumption. First, the assumption that Pc com-

mutes with etLε is always true for the spectral projection of Lε onto N . For self-adjoint
operators Lε in Hilbert spaces, we can, for instance, simply choose the orthogonal projection.

Moreover, under the other assertions of Assumption 2.2 the spectral projection can be
extended to a continuous linear operator from Y to N (i.e., Pc ∈ L(Y,N )). The main ideas
are first to use (2.2) to verify that the residual of Lε is in L(Y,X) and second to use the
Dunford calculus giving a representation for Pc in terms of the residual (see, e.g., [K95]).

One typical example for Y that we have in mind is an interpolation space between the
dual of D(L) and X—for instance, the dual of fractional power spaces in the case when Lε
generates an analytic semigroup.

As Lε ≡ 0 on N , it is easy to verify that etLε = Id on N for all t ≥ 0. Therefore, we can
assume without loss of generality that M is large enough such that

‖etLεx‖X ≤ M‖x‖X for all t ≥ 0, x ∈ X.

Moreover, as N is finite-dimensional, we can also assume that M is sufficiently large such that

‖etLεPcy‖X ≤ M‖Pcy‖Y for all t ≥ 0, y ∈ Y.

For the stochastic perturbation the following assumption is true. For a detailed discussion of
Q-Wiener processes and stochastic convolutions, see [dPZ92].

Assumption 2.3. Suppose that ξ is the generalized derivative of some Q-Wiener process
{W (t)}t≥0 on some probability space (Ω,F ,P) such that the stochastic convolution

WLε(t) =

∫ t
0
e(t−τ)LεdW (τ)(2.3)

is a well-defined stochastic process with continuous paths in X.
As Pse

tLε = etLεPs, it is straightforward to verify that

Ps[WLε(t)] =

∫ t
0
e(t−τ)LεdPsW (τ) and Pc[WLε(t)] = PcW (t).

To give a meaning to (1.1) we will always consider mild solutions.
Assumption 2.4. We assume that for any (stochastic) initial condition u0 ∈ X, (1.1) has

a mild local solution u. This means we have a stopping time t∗ > 0 and a stochastic process
u such that u : [0, t∗] → X is P-a.s. a solution of

u(t) = etLεu0 +

∫ t
0
e(t−τ)Lεf(ε, u(τ), τ)dτ + ε2WLε(t) for t ≤ t∗.(2.4)
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The existence of local solutions is standard if we consider locally Lipschitz-continuous
nonlinearities (see, e.g., [dPZ92], and for Lp-theory with application to the Navier–Stokes
equation see, e.g., [BP99, BP00]).

We can split the variation of constants formula (2.4) into two parts:

Psu(t) = etLεPsu0 +

∫ t
0
e(t−τ)LεPsf(ε, u(τ), τ)dτ + ε2

∫ t
0
e(t−τ)LεdPsW (t)(2.5)

and

Pcu(t) = Pcu0 +

∫ t
0
Pcf(ε, u(τ), τ)dτ + ε2PcW (t).(2.6)

We call us(t) = Psu(t) fast modes, as they are subject to an exponential decay on a
time-scale of order O(1). Moreover, uc(t) = Pcu(t) will be the slow modes.

For f we suppose the following.
Assumption 2.5. There is an ε0 > 0 such that f defines a family of (nonlinear) operators

f(ε, ·, t) : X → Y for all ε ∈ (0, ε0] and t > 0, where Y was defined in Assumption 2.2.
Suppose we have the following Taylor expansion for f with respect to u:

f(ε, u, t) = ε2f1(ε, t)u+ f3(ε, t)[u]
3 + g(ε, u, t),(2.7)

where f1(ε, t) ∈ L(X,Y ) is a continuous linear map that leaves N invariant (i.e., f1(ε, t)N ⊂
N ), and f3(ε, t) ∈ L3(X,Y ) is a continuous trilinear operator.

Suppose there are constants all denoted by Cf such that

sup
t∈[0,T0ε−2]

‖g(ε, u, t)‖Y ≤ Cf‖u‖4
X for ‖u‖X ≤ δ0, ε ∈ (0, ε0],(2.8)

sup
t∈[0,T0ε−2]

‖f1(ε, t)‖L(X,Y ) ≤ Cf for ε ∈ (0, ε0],(2.9)

sup
t∈[0,T0ε−2]

‖f3(ε, t)‖L3(X,Y ) ≤ Cf for ε ∈ (0, ε0].(2.10)

There are functions ν : [0, T0] → L(X,Y ) and µ : [0, T0] → L3(X,Y ) and an η > 0 such that

sup
t∈[0,T0ε−2]

‖f1(ε, t)− ν(ε2t)‖L(X,Y ) ≤ Cfε
η for ε ∈ (0, ε0](2.11)

and

sup
t∈[0,T0ε−2]

‖f3(ε, t)− µ(ε2t)‖L3(X,Y ) ≤ Cfε
η for ε ∈ (0, ε0].(2.12)

Example 2.6. The simplest examples fulfilling Assumption 2.5 are for some given constants
ν̃ ∈ R and τ0 > 0

f(ε, u, t) = ν̃ε2u− u3 or f(ε, u, t) = ν̃ε4(t− τ0ε
−2)u− u3,(2.13)
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for example, with X = Y = C0([a, b]), which is the space of continuous functions from [a, b]
to R. We will use these nonlinearities in our examples in section 6. Note that we can take
η > 0 arbitrarily large and g ≡ 0.

Remark 2.7. We will see later in the proof that the assumption on f1(ε, t) to leave N
invariant is important to decouple the dynamics of (2.6) for the slow modes from the dynamics
of the fast modes. The assumption is true, for example, if f1 commutes with Lε, which in
turn is obviously true if f1(ε, t) is just multiplication by a scalar.

The time-dependence of ν and µ (cf. (2.11) and (2.12)) reflects the fact that the slow
modes should change on a slow time-scale T = ε2t.

2.1. The amplitude equation. The amplitude equation is a (system of) SODE that de-
scribes the essential dynamics of mild solutions of (1.1) near 0. Some constants in this equation
depend heavily on the choice of some basis e in N . One can try to simplify the structure by
changing e.

Consider some basis e = (e1, . . . , en) of N with ‖ek‖X = 1 for all k = 1, . . . , n. For
a ∈ R

n denote a · e =
∑n
k=1 akek. Moreover, define the canonical projection Π : X → R

n

by Π(a · e + z) = a for all a ∈ R
n and all z ∈ kernel(Pc). As the spaces N and R

n are
finite-dimensional, we easily obtain that Π is continuous; i.e., there is a constant Cπ > 0 such
that |Π(x)| ≤ Cπ‖x‖ for all x ∈ X.

We define the cubic nonlinearity µe(T )[·]3 : R
n → R

n for T ∈ [0, T0] by

µe(T )[a]
3 = Π{µ(T )[a · e]3} =

n∑
i,j,k=1

aiajakΠ{µ(T )[ei, ej , ek]}(2.14)

and the linearity νe(T ) : R
n → R

n by

νe(T )a = Π{ν(T )(a · e)} =

n∑
i

aiΠ{ν(T )ei}.(2.15)

The amplitude equation is now given by

a(T ) = a0 +

∫ T
0

νe(s)a(s)ds+

∫ T
0

µe(s)[a(s)]
3ds+ β(T ),(2.16)

where {β(T )}T≥0 is a Wiener process in R
n given by β(T ) = εΠ(W (ε−2T )).

Remark 2.8. The distribution of β is actually independent of ε due to the scaling properties
of a Wiener process. Hence the distribution of solution of (2.16) is independent of ε.

2.2. Sketch of the results. Our main results are the attractivity (see Theorem 3.3) and
the approximation (see Theorem 4.3). In the following we sketch these main results.

For the attractivity result assume that the initial condition is of order O(ε) and we have
large deviation bounds on the stochastic convolution. Then there is a time tε = O(ln(ε−1))
such that with high probability for all mild solutions of (1.1) we have

u(tε) = εaε · e+ ε2Rε with |aε|Rn = O(1) and ‖Rε‖X = O(1).
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εa0 · e

O(ε2−κ + ε1+η−κ)

εa(T ) · e

O(ε)

u0

in X

time-scale O(ε−2)time-scale O(ln(ε−1))
Attractivity Approximation

N

Figure 2.1. Two typical trajectories of solutions of (1.1).

For the approximation result consider some solution a(T ) of the amplitude equation (2.16)
and define the approximation εψ(t) := εa(ε2t) · e. Assume that we have nice large deviation
bounds on the stochastic convolution and on the solution a(T ), and fix some small 0 < κ � η.
Then we obtain for all mild solutions u of (1.1) that

sup
t∈[0,T0ε−2]

‖u(t)− εψ(t)‖X < Const ·
(
ε2−κ + ε1+η−κ

)
(2.17)

with high probability provided ‖u(0) − εψ(0)‖X = O(ε2−κ + ε1+η−κ) with high probability.
The optimal bound in (2.17) would be O(ε2). Nevertheless, for technical reasons, we are by
some κ slightly smaller than that. The constant η > 0 was defined in (2.11) and (2.12), and
we expect η ≥ 1 in many examples.

Combining the attractivity and approximation results, we get a good description of the
typical trajectories of (1.1), once we have a good control on various probabilities. A sketch of
the typical dynamics is given in Figure 2.1.

Moreover, we can give estimates for the stopping time t∗ from Assumption 2.4 like t∗ ≥
Teε

−2 with high probability.

The O-notation is used in the following way. A term Gε = O(gε) if and only if there are
positive constants ε0 and C depending only on other constants such that |Gε| ≤ Cgε for all
ε ∈ (0, ε0].

3. The attractivity. First we establish a bound on mild solutions u of (2.4). We show
that solutions with initial conditions of order O(ε) stay of order O(ε) on a large time-scale of
order O(ε−1).
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Lemma 3.1. Suppose all assumptions of section 2 are true. For all times tε ≤ ε−1 and all
constants 0 ≤ κ < 1, δ > 0, and D := 2Mδ, there is an ε0 > 0 sufficiently small such that for
all ε ∈ (0, ε0] we obtain

{
sup
t∈[0,tε]

‖WLε(t)‖X ≤ ε−κ, ‖u0‖X ≤ δε

}
⇒ sup
t∈[0,tε]

‖u(t)‖X ≤ Dε.(3.1)

Remark 3.2. The bound ε−κ on the supremum of the stochastic convolution looks strange
at first glance; nevertheless, it is natural. In general we expect (cf. section 5)

P

(
sup
t∈[0,tε]

‖PsWLε(t)‖X ≤ Cw

)
→ 0 for tε → ∞.

Moreover, for the Brownian motion PcW = PcWLε

P

(
sup
t∈[0,tε]

‖PcWLε(t)‖X ≤ Cw

)
= O(ectε/C

2
w) for tε and Cw > 0 large.

Proof. Using the Assumption 2.5 on f for εD ≤ δ0, we easily show that there is a constant
still denoted by Cf such that for ‖v‖X ≤ Dε and τ ≤ tε

‖f(ε, v, τ)‖Y ≤ Cf (ε
2‖v‖X + ‖v‖3

X).(3.2)

Define the stopping time τ∗ε := inf{τ > 0 : ‖u(τ)‖X > Dε}. Hence, as long as τ < τ∗ε , we
obtain

‖f(ε, u(τ), τ)‖Y ≤ Cfε
3(1 +D2)D.(3.3)

Now we derive from (2.4) for t ≤ min{tε, τ∗ε }

‖u(t)‖X ≤ M‖u0‖X +M

∫ t
0
(1 + (t− τ)−α)‖f(ε, u(τ), τ)‖Y dτ + ε2‖WLε(t)‖X

≤ [Mδ + ε1−κ]ε+MCfε
3(1 +D2)D

∫ tε
0

(1 + τ−α)dτ

≤ [Mδ + ε1−κ]ε+MCf (1 +D2)D
2− α

1− α
· ε2

< Dε

for ε sufficiently small. This yields immediately τ∗ε ≥ tε on the set on interest, which finishes
the proof.

Theorem 3.3 (attractivity). Suppose all assumptions of section 2 are true. Fix the time
tε = 1

ω ln(ε
−2) with ω from (2.1) and some 0 ≤ κ < 1. We can write the mild solution of

(1.1) as

u(tε) = εaε · e+ ε2Rε
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with aε ∈ R
n and Rε ∈ PsX such that for all δ > 0 and Cw > 0

{
‖u0‖ ≤ δε, sup

t∈[0,tε]
‖WLε(t)‖ ≤ ε−κ, ‖PsWLε(tε)‖ ≤ Cw

}

⇒
{
|aε|Rn ≤ 2CπMδ, ‖Rε‖ ≤ 2Cw

}

for sufficiently small ε > 0.

Proof. Define εaε = Π(u(tε)) and ε2Rε = Psu(tε). By Lemma 3.1 all we need to show is
a bound on Psu, as |εa| = |Π(u(tε))| ≤ CπDε with Cπ from subsection 2.1.

Using (2.5) and (2.1), we obtain

‖Psu(tε)‖X ≤ Me−ωtε‖u0‖X + ε2‖PsWLε(tε)‖X
+M

∫ tε
0

(1 + (tε − τ)−α)e−(tε−τ)ω‖f(ε, u(τ), τ)‖Y dτ.

As τ ≤ ε−1 and ‖u(τ)‖ ≤ Dε by Lemma 3.1, we use (3.3) to finally end up with

‖Psu(tε)‖X ≤ Mδε3 +MCfε
3(D +D3)

∫ ∞

0
(1 + τ−α)e−τωdτ + Cwε

2.

This implies the result.

4. Approximation. For a solution a of (2.16) we define the approximation εψ depending
on a slow time-scale T = ε2t by

εψ(t) := εa(ε2t) · e.

The residual of εψ is given by

Res(εψ(t)) = −εψ(t) + etLεεψ(0) +

∫ t
0
e(t−τ)Lεf(ε, εψ(τ), τ)dτ + ε2WLε(t).(4.1)

In order to show that εψ is a good approximation of a solution u of (2.4), we have to control
the residual.

Theorem 4.1 (residual). Suppose all assumptions of section 2 are true. Fix 0 < κ < η and
constants Ca, Cw > 0. Then there exists a constant Cres > Cw such that for sufficiently small
ε > 0 we obtain for all solutions a of (2.16)

{
sup
s∈[0,T0]

|a(s)|Rn ≤ Caε
−κ/4, sup

t∈[0,T0ε−2]

‖PsWLε(t)‖X ≤ Cwε
−κ
}

⇒ sup
t∈[0,T0ε−2]

‖Res(εψ(t))‖X ≤ Cres(ε
1+η−κ + ε2−κ).

Remark 4.2. The results of Theorem 4.1 obviously remain true if we replace sups∈[0,T0] |a(s)|
≤ Caε

−κ/4 by sups∈[0,T0] |a(s)| ≤ Ca.
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Proof. Let T = ε2t be the slow time. Now (2.7) and etLε = Id on N readily imply

Res(εψ(t)) = ε2PsWLε(t)(4.2)

− εa(T ) · e+ εa(0) · e+ ε2PcW (Tε−2)(4.3)

+

∫ Tε−2

0
[ε2f1(ε, τ)(εa(ε

2τ) · e) + Pcf3(ε, τ)[εa(ε
2τ) · e]3]dτ(4.4)

+

∫ t
0
e(t−τ)LεPsf3(ε, τ)[εa(ε

2τ) · e]3dτ(4.5)

+

∫ t
0
e(t−τ)Lεg(ε, εa(ε2τ) · e, τ)dτ.(4.6)

Now (4.2) is bounded by Cwε
2−κ by assumption, and Cres > Cw is necessary. We choose

Cres > 3Cw. Using (2.8), we obtain for t ≤ T0ε
−2

‖(4.6)‖X ≤ M

∫ t
0
(1 + (t− τ)−α)‖g(ε, εa(ε2τ) · e, τ)‖Y dτ

≤ MCfε
4 sup
τ∈[0,T0ε−2]

‖a(ε2τ) · e‖4
X

∫ t
0
(1 + (t− τ)−α)dτ

≤ MCf sup
s∈[0,T0]

|a(s)|4n2

(
T0ε

−2 +
(T0ε

−2)1−α

1− α

)

≤ MCfC
4
an

2T0

(
1 +

T−α
0

1− α

)
· ε2−κ <

1

3
Cresε

2−κ,

which gives us a second condition on Cres. Note that for all a ∈ R
n, ‖a · e‖X ≤ ∑ni=1 |ai| ≤

n1/2|a|Rn (as ‖ei‖X = 1). Using (2.10) and (2.1), we analogously derive

‖(4.5)‖X ≤ MCfn
3/2 sup

τ∈[0,t]
|εa(ε2τ)|3

∫ t
0
(1 + (t− τ)−α)e−τωdτ

≤ MCfn
3/2C3

a

∫ ∞

0
(1 + τ−α)e−(t−τ)ωdτ · ε3−3κ/4.

This can be also bounded by 1
3Cresε

2−κ, which implies a third condition on Cres.
For (4.4) recall that N is invariant under f1(ε, τ) by Assumption 2.5. Using the substitu-

tion s = ε2τ together with (2.11) and (2.12), we obtain

(4.4) =

∫ T
0

[
εΠ
{
f1(ε, ε

−2s)a(s) · e+ f3(ε, ε
−2s)[a(s) · e]3} · e] ds

= ε

∫ T
0

[
νe(s)(a(s)) + µe(s)[a(s)]

3
] · e ds

+ εT0CπCfε
η ·
[
n1/2Caε

−κ/4 + n3/2C3
aε

−3κ/4
]

= ε

∫ T
0

[
νe(s)(a(s)) + µe(s)[a(s)]

3
]
ds · e+O(ε1+η−κ).
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Now we can use the amplitude equation (2.16) to cancel out the remaining terms in (4.3) and
(4.4). This yields a fourth condition on Cres if we compute the O-terms explicitly.

We finally derive ‖Res(εψ(t))‖ ≤ Cres(ε
1+η−κ + ε2−κ) for all t ∈ [0, T0ε

−2].
Theorem 4.3 (approximation). Suppose all assumptions of section 2 are true. Fix the con-

stants Cres, T0, Ca, δ > 0, and κ ∈ (0, η). Then there is a constant Catt such that for sufficiently
small ε > 0 we obtain for all solutions u of (2.4) and all solutions a of (2.16){

‖u0 − εψ(0)‖X ≤ δε2, sup
s∈[0,T0]

|a(s)|Rn ≤ Can
−1/2,

sup
t∈[0,T0ε−2]

‖Res(εψ(t))‖X ≤ Cres(ε
2−κ + ε1+η−κ)

}

⇒ sup
t∈[0,T0ε−2]

‖u(t)− εψ(t)‖X ≤ Catt(ε
1+η−κ + ε2−κ).

Proof. Define ε2R(t) := u(t)− εψ(t). Now (2.4) and (4.1) imply

R(t) = etLεR(0) + ε−2Res(εψ(t))(4.7)

+ ε−2

∫ t
0
e(t−τ)Lε [f(ε, u(τ), τ)− f(ε, εψ(τ), τ)]dτ.

The Taylor expansion of f from (2.7) yields

f(ε, u(τ), τ)− f(ε, εψ(τ), τ)

= ε4f1(ε, τ)R(τ) + f3(ε, τ)[εψ(τ) + ε2R(τ)]3 − f3(ε, τ)[εψ(τ)]
3

+ g(ε,+ε2R(τ), τ)− g(ε, εψ(τ), τ).

First expand the trilinear form to cancel [εψ(τ)]3. Then using the bound on a(s), it is easy
to derive ‖ψ(τ)‖X ≤ Ca. Therefore, as long as ‖R(τ)‖X ≤ ε−1,

‖f(ε, u(τ), τ)− f(ε, εψ(τ), τ)‖Y
≤ ε4‖R(τ)‖XCf + ε4‖R(τ)‖XCf [3C2

a + 3Ca + 1] + Cfε
4([Ca + 1]4 + C4

a)

≤ 3ε4‖R(τ)‖XCf [Ca + 1]2 + 2ε4Cf [Ca + 1]4.

By assumption ‖R(0)‖X ≤ δ. In a first step we prove that ‖R(t)‖X ≤ ε−1 for all t ∈ [0, T0ε
−2].

Therefore, we further split

R = Rc +Rs = PcR+ PsR.

Hence, as long as ‖R(t)‖X ≤ ε−1 and t ≤ T0ε
−2, we obtain from (4.7)

‖Rs(t)‖X ≤ M‖Rs(0)‖X + Cres(ε
−κ + ε−1+η−κ)‖Ps‖L(X)

+ ε2M

∫ ∞

0
(1 + τ−α)e−τωdτ [3ε−1 + 2]Cf [Ca + 1]4‖Ps‖L(X)

≤ 2Cres(ε
−κ + ε−1+η−κ)‖Ps‖L(X)(4.8)

<
1

2
ε−1 for sufficiently small ε > 0.(4.9)



476 DIRK BLÖMKER

Additionally we obtain

‖Rc(t)‖X ≤ M‖Rc(0)‖X + Cres(ε
−κ + ε−1+η−κ)‖Pc‖L(X)

+ 3Cf [Ca + 1]2‖Pc‖L(X)ε
2M

∫ t
0
‖R(τ)‖Xdτ +O(1).

Now we use ‖R(t)‖X ≤ ‖Rc(t)‖X + O(ε−κ + ε−1+η−κ) by (4.8) and the Gronwall inequality
to obtain

‖Rc(t)‖X ≤ O(ε−κ + ε−1+η−κ) · exp{3Cf [Ca + 1]2T0M‖Pc‖L(X)}(4.10)

<
1

2
ε−1.(4.11)

Hence, for sufficiently small ε > 0 we obtain from (4.9) and (4.11) first that ‖R(t)‖X < ε−1

for all t ≤ T0ε
−2.

Moreover, (4.8) and (4.10) imply supt∈[0,T0ε−2] ‖R(t)‖X = O(ε−κ + ε−1+η−κ).

5. Large deviation results. This section provides large deviation results to control the
various probabilities that arise in our application of the abstract result to SPDEs. First
we provide estimates for solutions of the amplitude equation (2.16). Then we discuss the
stochastic convolution WL in C0([a, b]), where the operator L is a differential operator.

5.1. Amplitude equation. Consider any solution a(T ) of (2.16). Without the cubic non-
linearity or with Lipschitz-continuous nonlinearities there are numerous results, especially for
small noise strength (see, e.g., [FW98]). Nevertheless, for our examples we provide an elemen-
tary result, which is based only on a priori estimates and large deviation results for Wiener
processes. In our cubic case we have to distinguish between the case of stable or unstable
cubic nonlinearities.

Theorem 5.1. Suppose Assumption 2.5 is true, and fix some solution a(T ) of (2.16). Then
there is a constant c > 0 depending only on the covariance matrix of β such that the following
are true:

(I) The unstable case: For all constants Ca > 0 and all T1 ∈ (0, T0] with T1 < (2Cf (1 +
C2
a))

−1 we obtain

P

(
sup
s∈[0,T1]

|a(s)| ≥ Ca

)
≤ P

(
|a(0)| ≥ Ca/4

)
+ 4ne−cC

2
a/T1n.

(II) The stable case: Suppose that µe(T )[b]
3 · b ≤ −Ce|b|4 for all b ∈ R

n. Then there is a
constant C > 0 depending only on Cf and Ce such that for all constants T1 ∈ (0, T0] and all
Ca > C we obtain

P

(
sup
s∈[0,T1]

|a(s)| ≥ Ca

)
≤ P

(
|a(0)| ≥ Ca/2

)
+ 4n exp

{
− c

T1n

√
C4
a

C4
− 1

}
.

Remark 5.2. Unfortunately the unstable case has serious drawbacks. High probability is
paid by validity of the result only on small time-intervals, although this still gives us for the
original equation a time-scale of order O(ε−2).
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Proof. Using (2.10) and (2.12), we easily obtain that there is a constant also denoted by
Cf such that

|µe(T )[a]3| ≤ Cf |a|3 for all a ∈ R
n, T ∈ [0, T0],(5.1)

where Cf actually depends only on Cπ, n, and the constants in Assumption 2.5. Analogously
we obtain

|νe(T )[a]| ≤ Cf |a| for all a ∈ R
n, T ∈ [0, T0].(5.2)

Using (5.2) and (5.1), we obtain from (2.16)

|a(T )| ≤ |a(0)|+ Cf

∫ T
0

(|a(s)|+ |a(s)|3)ds+ |β(T )|.

Suppose |a(0)| < Ca/4 and supT∈[0,T1] |β(T )| < Ca/4. As long as |a(T )| < Ca we obtain

|a(T )| ≤ Ca/2 + CfT (Ca + C3
a) < Ca,

as long as T ≤ 1/(2Cf (1 + C2
a)). Hence

P

(
sup
s∈[0,T1]

|a(s)| < Ca

)
≥ P

(
|a(0)| < Ca/4, sup

s∈[0,T1]
|β(s)| < Ca/4

)
.

To finish the proof of the unstable case, use, e.g., [DZ98, section 5.2]. As β is a Brownian
motion in R

d, we easily obtain the existence of a constant c depending only on the covariance
matrix of β such that

P

(
sup
s∈[0,T1]

|β(s)| > Ca/4

)
≤ 4ne−cC

2
a/T1n.(5.3)

In the stable case define b = a− β. Hence

b ∈ C1 with ∂T b = νe[b+ β] + µe[b+ β]3.

In the following we denote all constants depending only on Cf or Ce simply by C. Using (5.2),
the assumption on µe, and Young’s inequality, we obtain

1

2
∂T |b|2 ≤ Cf |b+ β||b|+ µe[b+ β]3 · b

≤ −Ce
2
|b|4 + C|β|4 + C.

Suppose |β|4 < R and |a(0)| < δ. Then Lemma 5.3 implies

|b(T )|2 < max

{
δ2, C

√
R4 + 1

C
1/2
e

}
.
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Hence

|a(T )| < 1

2
C(R4 + 1)1/4 + δ

for all T > 0.

Define R4 = (Ca/C)4 − 1 and δ = Ca/2; then for all T1 and all Ca > C

P

(
sup
s∈[0,T1]

|a(s)| ≤ Ca

)
≥ P

(
|a(0)| < Ca/2, sup

s∈[0,T2]
|β(s)| < 4

√
(Ca/C)4 − 1

)
.

By (5.3) we easily finish the proof.

Lemma 5.3. Suppose for some constant d, c > 0 we have a real-valued function y such that
y(0) ≥ −c/d and y′ ≤ −d2y2 + c2. Then

y ≤ max{y(0), c/d} for all t > 0.

Proof. A comparison principle (see, e.g., [Ha80]) yields y ≤ x with x(0) = y(0) and
x′ = −d2x2 + c2. For the proof we just have to use first that ±c/d are the only stationary
solutions for x and then that x is growing if and only if |x| ≤ c/d.

5.2. Stochastic convolution. There are many general results for exponential tail esti-
mates for stochastic convolutions in Banach or Hilbert spaces. One of the first results is
[CM90]; for recent results, see, for instance, [BP00b] and the references therein. A recent new
approach relying on Zygmund’s interpolation inequality is [SS03].

For our applications we need estimates for sectorial differential operators in the space of
continuous functions. We need especially the dependence of the constants on the time-interval
[0, T ] which is frequently not covered. For simplicity we will basically apply the results of [P92].
This is not optimal, but it is sufficient for our examples.

Assumption 5.4. Suppose Assumption 2.2 is true, and let L be some nonpositive self-adjoint
differential operator of order 2m subject to suitable boundary conditions on some sufficiently
smooth bounded domain G ⊂ R

d (e.g., L = p(∆) for some polynomial p of degree m). Suppose
that Assumption 2.1 is true with Pc as the L

2-orthogonal projection onto N = N(L) and that
L generates an analytic semigroup {etL}t≥0 on L2(G) and therefore also on H = PsL

2(G),
where Ps = I − Pc as before.

Define E = PsC
0(G), where C0(G) is the standard space of continuous functions with

sup-norm. Then it is easy to verify that the assumptions (E.1) and (E.2) of [P92] are fulfilled
(see, e.g., [L94, section 3]). Also, Assumption 2.2 is true with X = E = Y . Note that the
L2-orthogonal projection Pc is still the spectral projection for L defined on E.

Suppose W is a Q-Wiener process as in Assumption 2.3. Then we can write W (t) =
Q1/2W̃ (t) with W̃ (t) =

∑∞
k=1 βk(t)fk, where {βk}k∈N is some family of independently and

identically distributed real-valued Brownian motions, and {fk}k∈N is an orthonormal basis in
L2(G) of eigenfunctions of Q.
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For all γ0 ∈ (0, 1/2) and p0 > 1 define as in [P92]

κp0T :=

∫ T
0

t(γ0−1)p0‖etL‖p0L(H,E)dt,(5.4)

ηT := sup
t∈[0,T ]

∫ t
0
τ−2γ0trL2

(
Q1/2Pse

2τLQ1/2
)
dτ.(5.5)

Provided κT and ηT are finite, then [P92, Theorem 1.1] implies

P

(
sup
t∈[0,T ]

‖PsWL(t)‖C0 ≥ δ

)
≤ C(T, p0) exp

{ −δ2

κ2
T ηT

}
,

with C(T, p0) = 4T exp{(4Tn0!)
1/n0} and n0 = [p0(2p0 − 2)−1] + 1.

For s > d/2 we easily check using Sobolev imbedding of E into Hs(G) that Assumption 2.2
is also true with X = E, Y = H, α = s/2m, and some ω > 0 which is some spectral gap to
the first nonzero eigenvalue of L. Now for u ∈ H

‖etLu‖E = ‖PsetLu‖C0 ≤ M(t−s/2m + 1)e−ωt‖u‖L2 .

We easily obtain κT < Cκ for all T > 0 with some constant Cκ > 0 (depending only on s, m,
p0, γ0, and ω) if and only if (1/p0 − 1+γ0)2m > s. If we choose p0 near 1 and γ0 near 1

2 , then

we will always find such an s > d
2 provided 2m > d. Moreover, if γ0 = 1

4 , we will always find
s provided m > d.

If tr(Q) < ∞, then tr(Q1/2Pse
2tLQ1/2) ≤ tr(Q)Me−2ωτ . This implies the existence of

some constant Cη depending only on α0 and ω such that ηT < CηMtr(Q).
For Q = I we obtain

ηT = sup
t∈[0,T ]

∫ t
0
τ−2γ0

∑
λk 
=0

e2τλkdτ ≤
∑
λk 
=0

1

|λk|1−2γ0

∫ ∞

0
s−2γ0e−2sds.(5.6)

As λk is proportional to −k2m/d (cf., e.g., [EE87]), we obtain that (5.6) is finite if and only if
2m(1− 2γ0) > d, which in turn is true for γ0 = 1

4 and m > d.
Applying the results of [P92], we immediately prove the following.
Theorem 5.5. Let Assumption 5.4 be true, and let W be a Q-Wiener process as in As-

sumption 2.3. Fix some arbitrary small ζ > 0, and suppose either tr(Q) < ∞ and 2m > d or
Q = I and m > d.

Then there are constants c1, c2 > 0 such that for all T, δ > 0 we have

P

(
sup
t∈[0,T ]

‖PsWL(t)‖C0 > δ

)
≤ exp{c1T ζ − c2δ

2}.

We remark without proof that the condition m > d is not optimal for Q = I; here 2m > d
should be also true.
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Using a result similar to (5.3) for PcW , we obtain the following.
Corollary 5.6. Let the assumptions of the previous theorem be true. Then there are con-

stants ci > 0 such that for all T,Cw > 0, we obtain

P

(
sup
t∈[0,T ]

‖WL(t)‖C0 > Cw

)
≤ c3 exp{−c4C

2
w/T}+ exp{c1T ζ − c2C

2
w}.

For sufficiently large t > 0 and all δ > 0 it is well known that

P

(
‖PsWLε(t)‖C0 > Cw

)
≤ c6 exp{−c5C

2
w}.(5.7)

This is, for example, easily proven by using the imbedding of C0 into Hs for s > d/2 and
by calculating that for some small h > 0 the exponential moment E exp{h‖PsWL(t)‖2

Hs} is
uniformly bounded with respect to t.

6. Applications. In our applications we consider for simplicity of presentation only ex-
amples which are restricted to scalar SPDEs in one space dimension d = 1. Moreover, we will
consider only examples where the amplitude equation is only an SODE in R. We could treat
systems of SPDEs in higher dimension or higher-dimensional SODEs as amplitude equations,
but we want to keep the notation as simple as possible in order to demonstrate the main ideas
of our applications.

Let us fix some notation needed in what follows. Suppose W is some Q-Wiener process
with either tr(Q) < ∞ or Q = I. Define L = −(1 + ∂2

x)
2, which is a self-adjoint operator on

L2([0, π]) subject to zero Dirichlet boundary conditions for u and ∂2
xu.

It is well known that the fourth order differential operator L generates a bounded semi-
group on Y = X = C0([0, π]), which fulfills Assumptions 2.1 and 2.2 with N = span{sin}
and α = 0 in (2.2). Therefore, we fix Pc to be the L2-orthogonal projection onto N , which
coincides in this case with the spectral projection of L defined on X. It is also easy to check
that Assumption 2.3 is true.

Moreover, we have the L2-orthogonal basis of eigenfunctions ek(x) = sin(kx) in X with
‖ek‖X = 1. Note that Assumption 5.4 is true with m = 2 and p(z) = −(1 + z2)2. Therefore,
we can apply all large deviation results of the previous subsection.

6.1. Dynamic pitchfork-bifurcation. The dynamic pitchfork-bifurcation is a well-studied
experimental effect (see, e.g., [BK99, ME87, GM03] and the references therein). It refers to a
system which is moved slowly though some deterministic bifurcation point by slowly changing
the bifurcation parameter with time. This leads to hysteresis-type effects, where the solution
stays near the unstable equilibrium after passing through the deterministic bifurcation point.
This result was studied rigorously for the deterministic and the stochastic equations (see
[BG02] and the references therein), both in an ODE setting. We will describe how the latter
result can be immediately carried over to SPDEs by the results presented in the previous
sections.

Consider as an example the scalar SPDE

∂tu(t) = Lu(t) + ν̃ε4(t− τ0ε
−2)u(t)− u3(t) + σε2∂tW (t) for t > 0,(6.1)
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subject to zero Dirichlet boundary conditions on [0, π] and initial condition u(0) = u0. Here
ν̃ and τ0 are some constants fixed later on. It was already discussed in Example 2.6 that
Assumption 2.5 is true with X = Y = C0([0, π]).

As obviously N = span{sin}, the corresponding amplitude equation describes the ampli-
tude a ∈ R of the sine. It is given by an easy calculation (cf. section 2.1):

a′(T ) = (s− τ0)ν̃a(T )− 3π

8
a3(T ) + σβ′(T ) for T > 0,(6.2)

where β(T ) = 〈εW (Tε−2), sin〉L2 is a real-valued Brownian motion.
We will first state rigorous results that verify u(t) ≈ a(ε2t) sin. After that we briefly

comment on the dynamic pitchfork-bifurcation. Note that (6.2) exhibits exactly the same
structure as the equations discussed in [BG02]. Therefore, an analogue of their result for (6.1)
follows immediately.

Theorem 6.1 (attractivity). There are constants ci > 0 such that for any choice of τ0 > 0
and ν̃, σ ∈ [−1, 1], all mild solutions u of (6.1), and all solutions a of (6.2), we obtain the
following.

For tε = ln(ε−1) we can write u(tε) = εaε sin + ε2Rε with

P

(
|aε| ≤ 2CπMδ, ‖Rε‖C0 ≤ 2Cw

)

≥ P

(
‖u0‖C0 ≤ δε

)
− c1e

−c2ε−1 − c3e
−c4C2

w

for all Cw, δ > 0, and sufficiently small ε > 0.
Note that the probability bound on the right-hand side is in general only positive for ε

small and Cw large.
Proof. The proof is by straightforward application of Theorem 3.3 together with Corol-

lary 5.6 and (5.7) to bound the probabilities.
Theorem 6.2 (approximation). For all T0 > τ0 > 0 and 0 < κ < 1 there are constants

ci > 0 such that the following is true.
Given δ > 0, Ca > 0, Cw > 0, there is a constant Catt > 0 such that for any choice of

ν̃, σ ∈ [−1, 1], all mild solutions u of (6.1), and all solutions a of (6.2),

P

(
sup

t∈[0,T0ε−2]

‖u(t)− εa(ε2t) sin‖C0 ≤ Cattε
2−κ
)

(6.3)

≥ 1− P

(
‖u0 − εa(0) sin‖C0 > Cwε

)

− P

(
|a(0)| > Ca

)
− c1e

−c2ε−κ − c3e
−c4C2

a/T0

for sufficiently small ε > 0.
Proof. The proof is by application of Theorems 4.3 and 4.1 together with Theorems 5.5

and 5.1 to bound probabilities.
We can further bound (6.3) in Theorem 6.2 by Theorem 6.1. Summarizing both theorems,

we can write with high probability all mild solutions u of (6.1) with ‖u(0)‖ = O(ε) as

u(t) = εa(ε2t) sin +O(ε2−κ)(6.4)
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for all t ∈ ln(ε−1)+[0, T0ε
−2], where a is a solution of the amplitude equation (6.2) with initial

condition a0 = ε−1Πu(tε), where the projection Π was defined in section 2.1.

Now we can immediately apply the results of [BG02] first to (6.2) and then via (6.4) to
solutions of (6.1). Hence, for ε sufficiently small, (6.1) exhibits the same dynamics as the
one-dimensional dynamic pitchfork-bifurcation, but on a much slower time-scale. To keep
the presentation short, we refrain from restating the elaborate description of the transient
dynamics from [BG02]. Note, finally, that it is essential to derive a one-dimensional kernel N ,
as the results of [BG02] are only valid for one-dimensional amplitude equations.

6.2. Pattern formation. The formation of a pattern below the threshold of a change of
stability is a well-known experimental phenomenon. See, for example, [SA02] or [SR94] for
noise-induced convection rolls below the onset of convection in Bénard’s problem. In this case
the system is slightly below a change of stability in the unperturbed (deterministic) system,
which undergoes a pitchfork-bifurcation.

Unfortunately, this problem is out of reach for the present approach, as it consists of a
three-dimensional Navier–Stokes equation which is coupled to a heat equation. We could
treat systems of SPDEs on three-dimensional domains, but we cannot treat the quadratic
nonlinearity with the method presented in this article. This will be a topic of further research
(see [B03]).

We sketch a simple problem, which exhibits pattern formation below threshold of stability.
Let us consider the well-known Swift–Hohenberg equation, which is in the theory of convection
frequently used as a simplified model for the first convective instability. It is similar to the
equations of the previous section,

∂tu(t) = Lu(t) + νε2u(t)− u3(t) + ε2∂tW (t) for t > 0,(6.5)

subject to zero Dirichlet-type boundary conditions on [0, π] and initial condition u0 = 0, where
L and W are given in the beginning of section 6 and ν is some parameter.

The pattern in our toy-model us just the sine representing the convection roll in the full
problem. Due to the special size of the domain, we have only one period of the sine. If we
would consider large domains, we would get several periods of the pattern depending on the
size of the domain. Nevertheless, for sake of simplicity we stay with this very simple model.

For the unperturbed deterministic equation it is well known that it undergoes a pitchfork-
bifurcation at ν = 0. There sin ∈ N(L) becomes unstable. For ν < 0 the homogeneous
solution u = 0 is the only stable solution, and for ν > 0 we end up with a stable pattern that
is a small deformation of the sine. To verify this result is a lot of work but is standard, using,
for instance, the celebrated theory of Crandel and Rabinowitz. In contrast to that, we will see
that also in the case of ν < 0 due to additive noise the pattern appears and sustains for long
times, although it should decay due to the stability of the homogeneous solution u = 0. In the
following we will verify a result that the probability P(pattern visible for “most” t ∈ [0, T0ε

−2])
is near 1, where T0 is just some arbitrary constant.

Let us first apply the main results of this paper to (6.5). Due to u(0) = 0 it is obvious
that the assertion of the attractivity result readily holds with tε = 0, aε = 0, and Rε = 0.

Moreover, an easy calculation (see section 2.1) establishes that the corresponding ampli-
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tude equation is

a′ = νa− 3π

8
a3 + β′,(6.6)

where β(T ) = 〈εW (Tε−2), sin〉L2 as before in section 6.1. Now we can easily verify an ap-
proximation result as in Theorem 6.2 to obtain

u(t) = εa(ε2t) sin +O(ε2−κ) uniformly for all t ∈ [0, Teε
−2](6.7)

with high probability for all ε ∈ [0, ε0]. We are free to choose any T0 > 0 we want, but we
have to pay for that with ε0 > 0 small. We refrain from restating the precise result, as it is
completely analogous to Theorem 6.2.

To prove a pattern result, we can, for example, verify that |a(T )| ≥ Cε1/2 for “a lot of”
times T ∈ [0, T0]. In what follows we give a short argument for this.

First define

lε(T ) := |{s ∈ [0, T ] : |a(s)| ≤ ε1/2}|.
This is the “bad” set of times, where we possibly do not see the pattern. However, we will
definitely see the pattern for all times in [0, T0ε

−2]− lε(T0). The following remark summarizes
the result, which is now possible to verify. We refrain from stating an abstract theorem.

Remark 6.3. For a main result on pattern formation, we will verify

P(lε(T0) ≥ ε1/4) ≤ Cε1/4T0(6.8)

for T0 large and ε small enough.
Hence the probability is high to see the pattern on a set of times with measure (T0 −

Cε1/4)ε−2 for any choice of the bifurcation parameter ε2ν, provided, for example, |ν| ≤ 1.
Note finally that there is nothing special about dimension one. Similar results will apply

in case n = dim(N ) > 1, where N is then some space of pattern. The only thing we rely
on are some technical assumptions for the existence of an invariant Markov measure for the
amplitude equation.

To establish (6.8) first recall that the distribution of a is independent of ε by Remark 2.8.
Moreover, it is well known under certain assumptions on the noise (e.g., full rank of the covari-
ance matrix) and the stability of the cubic nonlinearity that there exists a unique invariant
Markov measure P

∗ for the amplitude equation. Moreover, the Lebesgue-density p∗ := dP
∗/dλ

of this measure is continuous.
By the definition of lε

Elε(T ) =

∫ T
0

P(|a(s)| ≤ ε1/2)ds.

Now the celebrated Birkhoff ergodic theorem (cf., e.g., [dPZ96]) for invariant Markov measures
implies

1

T
Elε(T ) → P

∗([−ε1/2, ε1/2]) for T → ∞.
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Moreover, we obtain 1
2ε

−1/2
P
∗([−ε1/2, ε1/2]) → p∗(0) by the continuity of the density. Fur-

thermore, by the Chebyshev inequality,

P(lε(T ) ≥ ε1/4) ≤ ε−1/4
Elε(T ) ≈ 2ε1/4Tp∗(0),

and it is straightforward to establish (6.8).

6.3. Bifurcation. In this section we briefly sketch transient stochastic dynamics near a
deterministic pitchfork-bifurcation. As mentioned in the introduction, we will not describe
the whole bifurcation but rather will focus on examples of parameter regimes, where we can
establish the amplitude equation describing finite time behavior of solutions.

As we will see, there are different scenarios depending on the ratio between noise-strength
and bifurcation parameter. This will give another indication to the well-known fact that a
stochastically perturbed bifurcation leads to a soft transition of the transient dynamics (cf.,
e.g., [Ar98]), in contrast to the sharp separation in case of a deterministic bifurcation.

Consider the same type of equation as in the previous section, which is for σ = 0 a classical
example of a pitchfork-bifurcation in a PDE:

∂tu = Lu+ µu− u3 + σ2∂tW,(6.9)

subject to zero Dirichlet-type boundary conditions on [0, π].
We can distinguish between three different regimes, and in the following we just give

the corresponding amplitude equation and discuss the transient dynamics that we expect.
Moreover, in the end we sketch the basic ideas of how to modify our results to derive the
amplitude equations for the different cases. Note that we do not specify the constant c
appearing in the equations, as it depends on the normalization of the function e spanning N .

1. Case |µ| ≈ σ2 ≈ ε2.
Fix σ2 = ε2 and µ = νε2. The amplitude equation is a′ = νa− ca3 + β′.

2. Case |µ| � σ2 ≈ ε2.
Fix σ2 = ε2 and |µ| ≤ ε3. The amplitude equation is a′ = −ca3 + β′.

3. Case σ2 � |µ| ≈ ε2.
Fix ε2 = |µ| and σ ≤ ε3. The amplitude equation is a′ = sgn(µ)a− ca3.

Case 2 corresponds to the case when we are very near to the deterministic bifurcation point.
The amplitude equation and the dynamics are independent of the bifurcation parameter in
this case. Hence the deterministic bifurcation point is widened to a longer interval.

Case 3 corresponds to the case when we are far away from the bifurcation. Here the
dynamics is essentially given by the stable equilibria of the deterministic equation. The
stochastic nature of the original SPDE is only seen in small fluctuations around these fixed
points.

In Case 1, we have an intermediate regime, when we are of order noise-strength away
from the bifurcation. Here the amplitude equation is stochastic, and the dynamical behavior
interpolates between the deterministic behavior (Case 3) and the bifurcation regime (Case 2).

Let us finally comment on how to rigorously derive the amplitude equations in the previous
statements. Case 1 was already discussed in the previous sections. The second case is rather
easy. We can, for instance, follow our proofs of the approximation result to see that all ν-
dependent terms are now of lower order. Hence they disappear into the error terms, and there
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will be no contribution to the amplitude equation. For Case 3 we can also follow our approach.
This would give an amplitude equation of the type a′ = sgn(µ)a − ca3 + σ2ε−2β′. Then we
can add a Freidlin–Wentzell-type argument to eliminate the noise term, as σ2ε−2 → 0.
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Abstract. We develop partial differential equation (PDE) methods to study the dynamics of pattern forma-
tion in partial integro-differential equations (PIDEs) defined on a spatially extended domain. Our
primary focus is on scalar equations in two spatial dimensions. These models arise in a variety
of neuronal modeling problems and also occur in material science. We first derive a PDE which
is equivalent to the PIDE. We then find circularly symmetric solutions of the resultant PDE; the
linearization of the PDE around these solutions provides a criterion for their stability. When a solu-
tion is unstable, our analysis predicts the exact number of peaks that form to comprise a multipeak
solution of the full PDE. We illustrate our results with specific numerical examples and discuss
other systems for which this technique can be used.
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1. Introduction. Pattern formation in neuronal networks is an area of ongoing interest
[10, 11, 12, 13, 19, 26, 31, 35, 37, 40, 42, 43, 53, 54, 59, 60, 65]. In this paper, we investigate
spatially localized regions of high activity, often referred to as “bumps.” These are of interest
in modeling working memory, the ability to remember information over a time-scale of a few
seconds [18, 40, 63, 66]. Experiments on primates show that there exist regions of neurons that
have elevated firing rates during the period that the animal is “remembering” some aspect of
an object or event [17, 29, 45]. These regions are spatially localized in a location determined
by the relevant aspect of the object or event being remembered. Further applications of
pattern formation in neural systems include head-direction systems [58, 67], where a constantly
updated bump of activity represents the current heading of an animal, and feature selectivity
in the visual cortex [12, 13, 37], where bump formation may be related to the “tuning” of a
particular neuron’s response. Similar models to those studied here have been used to model
the “look, plan, reach, remember” dynamics in the perseverative reaching of infants and their
longer term cognitive development [60]. Also, in a recent book, Giese [31] uses systems of
the form (1.1) to study problems related to visual perception of motion, the planning of eye
movements, and robot navigation.

Realistic models for these types of activity involve spatially extended systems of coupled
neural elements and the study of localized areas of high activity in these systems. Previous
studies have focused on nonlocal rate models [1, 2, 3, 10, 11, 12, 13, 31, 37, 42, 53, 54, 66],
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in which a neural element is described by a scalar variable (e.g., a firing rate), and more
complicated “spiking neuron” models [18, 35, 40, 63], which take into account the intrinsic
dynamics of single neurons. We concentrate here on rate models exclusively.

In this paper, our goal is to develop PDE methods to analyze the dynamics of localized
pattern formation in rate models of the form

∂u(x, y, t)

∂t
= −u(x, y, t) +

∫∫
Ω
w(x− q, y − s)f(u(q, s, t)− th) dq ds,(1.1)

where Ω ⊂ R2. In the context of the neuronal models discussed above, u(x, y, t) represents
the synaptic input to a neuron at position (x, y) ∈ Ω at time t, w denotes the connectivity,
or coupling, between neural elements, f(u(x, y, t)− th) is the firing rate of the neuron at the
position (x, y), and th is the threshold of excitation. Equations of the form (1.1) and its one-
dimensional analogue have been used extensively in neural modeling [11, 12, 13, 26, 31, 37, 40,
43, 59, 65]. However, most of the previous attention has been focused on the one-dimensional
analogue of (1.1):

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω
w(x− y)f(u(y, t)− th) dy.(1.2)

Because of the lower dimensionality of this system, it is easier to study than (1.1), and for
applications such as the head-direction system and feature selectivity in the visual system this
one-dimensional system may be appropriate, since the independent variable x corresponds to
a one-dimensional quantity, an angle. However, the cortex is an essentially two-dimensional
sheet, and thus (1.1) is a more realistic model for pattern formation in a neuronal system.

Little analytical work has been done on (1.1). Specifically, there are results relating to
circularly symmetric solutions [59, 65], for which the two-dimensional problem is effectively
reduced to a one-dimensional one. There has also been some very recent work on a “two
layer” analogue of (1.1), where the activity of two populations of neurons are modeled [25].
However, these authors primarily studied target patterns, which also have circular symmetry.
Also, Bressloff et al. have studied (1.1) on a sphere [12] and have also considered this equation
when there is a lattice of inhomogeneities in the domain, using the symmetry of this lattice
to determine the types of solution that can occur [11, 13].

Equations similar to (1.1) and (1.2) also occur in material science [5, 6, 7, 8, 16, 27, 28].
An often-studied equation is

∂u(x, t)

∂t
= −ju+ f(u) +

∫ ∞

−∞
w(x− y)u(y, t) dy,(1.3)

where j =
∫∞
−∞w(x) dx, w represents nonlocal interactions, and f typically has three zeros.

Physically important solutions include heteroclinic, homoclinic, and periodic orbits. Solutions
remain continuous when the function g(u) ≡ ju−f(u) is monotonic. In this case, the equation
v = g(u) can be inverted to give u = h(v) ≡ g−1(v), and (1.3) becomes

h′(v)
∂v(x, t)

∂t
= −v(x, t) +

∫ ∞

−∞
w(x− y)h(v(y, t)) dy.(1.4)
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The similarities between (1.4) and its two-dimensional generalization, and (1.2) and (1.1),
suggest that many of the results presented here will also be applicable to those models.

Our main focus will be on the two-dimensional model (1.1). We will develop techniques
which describe how families of multibump solutions form when the coupling function w(x, y)
is a function of distance in R2 only, i.e.,

w(x, y) = w
(√
x2 + y2

)
.(1.5)

Solutions of (1.1) are translationally invariant when (1.5) holds.

Our approach is twofold: first, we develop a method to derive a fourth order PDE which
is equivalent to the integral equation. To our knowledge an equivalent PDE for the two-
dimensional problem has not previously been derived. Second, we will analyze the PDE and
develop techniques which show how families of peaks form when circularly symmetric steady
states of (1.1) are unstable.

We hope that the insights obtained by considering coupling functions satisfying (1.5) will
provide a basis for extensions to more complicated settings. For example, in the cortex it is
important to consider connectivity functions that incorporate the “patchy” nature of neural
connections [9, 34, 44], which break the translational invariance of the system. As mentioned
above, Bressloff et al. have studied this effect [11, 13].

One assumption in studying (1.1) and (1.2) is that the behavior of neurons can be charac-
terized by their firing rate alone and, more importantly, that excitatory and inhibitory neurons
can be represented by a single population with a connectivity function that takes both posi-
tive and negative values. A more realistic approach would involve two variables, representing
the activities of the excitatory and inhibitory populations, and coupling functions between
and within the populations that are nonnegative. Although our models are less realistic in
the sense that we use only one population, lumping the excitatory and inhibitory neurons
together, they have the advantage of involving only one variable.

Note that we are not addressing the processes involved in the formation of the connectiv-
ities represented by w(x) but are instead interested in the possible patterns of neural activity
that can exist in the system once these connectivities are in place.

Overview. In the next section, we summarize previous results for one-dimensional models.
The insights obtained in the study of the one-dimensional case play an important role in
section 3, where we study two-dimensional models. Section 3 begins with numerical results
which show the types of multibump solutions that can arise for specific examples. We then
proceed with our analytical approach in which we (i) derive a PDE which approximates the
integral equation and (ii) show how an appropriate linearization of the PDE will lead to a
prediction of the exact number of peaks that form when a circularly symmetric solution is
unstable. At the end of section 3, we show how families of 3-bump, 7-bump, and 12-bump
solutions form for a specific example. Section 4 gives a summary of our results and some
directions for future study.

2. Background: One-dimensional models. Much of the present research into rate models
stems from the early work of Wilson and Cowan [66] and subsequent studies by Amari [1, 2, 3]
and Kishimoto and Amari [39]. These authors model the dynamics of a single layer of neurons
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Figure 2.1. An example of a coupling function giving “lateral inhibition” (positive for small |x| and negative
for large |x|).

with rate equations of the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy + s(x, t) + h.(2.1)

Here u(x, t) is the synaptic input to a neural element at time t ≥ 0 and position x ∈ (−∞,∞),
w(x) determines the coupling between elements, and f(u) gives the firing rate of a neuron
with input u. Neurons are said to be “active” if f(u(x, t)) > 0. The function s(x, t) denotes
a variable external stimulus, and h is a constant stimulus applied to the entire field.

In [2], Amari set f(u) = H(u), where H(u) is the Heaviside function, and assumed the
following:
(H1) w > 0 and w′ < 0 on an interval (0, x̄), w(−x̄) = w(x̄) = 0, and w(x) < 0 if |x| > x̄.
(H2) w is a continuous even function, and

∫∞
−∞w(y) dy is finite.

An example of this “lateral inhibition”–type coupling is given in Figure 2.1. He then analyzes
stationary solutions of (2.1) when s(x, t) = 0. Setting ∂u(x, t)/∂t = 0 reduces (2.1) to

u(x) =

∫ ∞

−∞
w(x− y)H(u(y)) dy + h.(2.2)

The “region of excitation” of a stationary solution is the set R(u) = {x|u(x) > 0}. A 1-bump
solution is a solution whose region of excitation is a finite interval. If the region of excitation
consists of N ≥ 1 disjoint finite intervals, then u(x) is an N -bump solution. In [1, 2], Amari
analyzes the existence, multiplicity, and stability of 1-bump solutions of (2.2).

In [43], we extended Amari’s work and chose a specific w(x), which changes sign infinitely
often. For simplicity, we set s(x, t) ≡ 0 and studied

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)− th) dy,(2.3)

where

w(x) = e−b|x|(b sin |x|+ cosx) and f(u) = 2e−τ/u
2
H(u),(2.4)
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and b, th, and τ are positive constants. The parameter b controls the rate at which oscillations
in w decay with x, th is the threshold (effectively replacing h in (2.1)), and τ controls the
slope of f(u). Note that f(u) is a C∞ extension of (twice) the Heaviside function when τ > 0,
and f(u− th) = 0 if u ≤ th. An example of w and f are shown in Figure 2.2.

−20 20

1

w

x

 
    

|

−5
|

|

|

2

5th

f

u

Figure 2.2. Examples of w(x) (left) and f(u) (right) (2.4). Parameters are b = 0.25, th = 1.5, and τ = 0.005.

It is thought that the oscillatory form of coupling, (2.4), better represents the connectivity
known to exist in the prefrontal cortex, where labeling studies have shown that coupled
groups of neurons have “patchy” distributions, with a characteristic distance between patches
[9, 34, 44].

As before, we define a stationary solution of (2.3)–(2.4) to be a solution of

u(x) =

∫ ∞

−∞
w(x− y)f(u(y)− th) dy.(2.5)

To compare the two-dimensional results in the next section with the one-dimensional case,
we give a brief derivation of the PDE and ODE which are equivalent to (2.3) and (2.5). We
use the Fourier transform, defined by F̂(g) =

∫∞
−∞ e

−iαηg(η) dη, where g ∈ L1(R) and α ∈ R.
Assume that u satisfies (2.5) and that u and ut are continuous and integrable for x ∈ R.
Applying the Fourier transform to (2.3) and using its convolution property, we obtain

F̂(u+ ut) = F̂(w)F̂(f(u− th)).(2.6)

Evaluating F̂(w) results in

F̂(u+ ut) =
4b(b2 + 1)

α4 + 2α2(b2 − 1) + (b2 + 1)2
F̂(f(u− th)).(2.7)

Next, multiplying (2.7) by α4 + 2α2(b2 − 1) + (b2 + 1)2 and taking the inverse Fourier trans-
form of both sides, we obtain the PDE

(u+ ut)xxxx − 2(b2 − 1)(u+ ut)xx + (b2 + 1)2(u+ ut) = 4b(b2 + 1)f(u− th).(2.8)

This PDE is exactly equivalent to the partial integro-differential equation (PIDE) (2.3). Using
this equivalence and setting ut = 0 in (2.8), we see that N -bump stationary solutions of (2.3)
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Figure 2.3. Stable 2-bump (left) and 3-bump (right) solutions of (2.3)–(2.4). Parameters are τ = 0.1,
th = 1.5, and b = 0.25.
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Figure 2.4. Bifurcation diagram for N-bump solutions of (2.9) when N is odd. The vertical axis is the L2

norm of the solution. Parameters are τ = 0.1, th = 1.5.

must satisfy the ODE problem

{
u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u− th),
limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0).

(2.9)

In summary, by a judicious choice of coupling function w, we have exactly transformed the
PIDE (2.3) into the PDE (2.8), whose stationary solutions satisfy the ODE problem (2.9). The
new work in this paper consists of applying similar ideas to the two-dimensional system (1.1).

Numerical results. In [43], we solved (2.3) with initial conditions of the form

u(x, 0) = cos

(
Lx

12.5π

)
exp

(
−
(
Lx

12.5π

)2
)
, −12.5π < x < 12.5π,(2.10)

for different values of L (dashed curves in Figure 2.3). For appropriately chosen L, the initial
condition evolves into a stationary N -bump solution which satisfies (2.9). To understand the
global structure of solutions, we then used AUTO97 [22] to continue these N -bump solutions
as b varied. This resulted in the bifurcation diagram shown in Figure 2.4, where Γ+

N and Γ−
N

are branches of stable and unstable N -bump solutions. (N is odd in this diagram—a similar
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diagram showing families of N -bump solutions exists when N is even.) For N ≥ 3, solutions
arise at b = 0 through a bifurcation from a periodic orbit. Figure 2.4 suggests that a “snaking”
phenomenon occurs in the branches of the bifurcation curve; solutions gain more bumps as
the L2 norm of the solution increases, with branches of stable solutions separated by branches
of unstable solutions. See [43] for more details. Similar phenomena occur in other higher
order ODE models [19, 38, 52]. For some applications, it is important to find ways to steer
a system from one stable N -bump configuration to another. For example, switching from an
N -bump to a 1-bump solution is of particular interest in the work of Thelen et al. [60], as it is
proposed that this represents the process of decision-making by infants in the face of multiple
choices.

3. The two-dimensional model. In this section, we analyze the formation of N -bump
solutions in the two-dimensional model

∂u(x, y, t)

∂t
= −u(x, y, t) +

∫∫
Ω
w(x− q, y − s)f(u(q, s, t)− th) dq ds,(3.1)

where f(u) is a positive multiple of the firing function defined in (2.4) and w(x, y) satis-
fies (1.5). Stationary solutions of (3.1) satisfy the associated equation

u(x, y) =

∫∫
Ω
w(x− q, y − s)f(u(q, s)− th) dq ds.(3.2)

For a given solution u of (3.2), we define its region of excitation to be

R(u) = {(x, y)| u(x, y) > th}.(3.3)

A solution of (3.2) is an N -bump solution if its region of excitation consists of N finite disjoint
components.

We will address the following basic questions:
(i) Is there a correspondence between families of N -bump solutions in one dimension

and those in two dimensions? Do solutions exist in two dimensions that do not have
one-dimensional counterparts?

(ii) What are the dynamics responsible for the formation of N -bump solutions? How can
we derive a PDE that is equivalent to (3.1)?

3.1. Numerical examples. Thus far we have numerical results for three specific systems
[42, 43]. The first is (3.1) with f(u) = H(u) and

w(x, y) = Ke−k
√
x2+y2 −Me−m

√
x2+y2 .(3.4)

In polar coordinates, (3.4) becomes w(r) = Ke−kr −Me−mr. If K > M and k > m, then
w(r) has one positive zero. Figure 3.1 (upper left panel) shows a numerically stable 2-bump
solution on a 10× 10 square domain. Here K = 3.5, k = 1.8, M = 2.8, m = 1.52, and th = 0.
In our study of the one-dimensional case, we found that stable 2-bump solutions could not
exist for these parameter values, yet this computation suggests that stable 2-bump solutions
do exist in two dimensions. We conjecture that this property can be explained using the
analytical approach described in section 3.3.
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Figure 3.1. Examples of multibump solutions for couplings (3.4), (3.5), and (3.6). See text.

In our second example, we solve the two-dimensional analogue of (2.1) on a 40× 40 grid
with f(u) = H(u), s(x, t) ≡ 0, and h = −1, and with the following coupling (studied in [42]):

w(x, y) = 2e−k
√
x2+y2

[
1− d1(x2 + y2) + d2(x

2 + y2)2 − d3(x2 + y2)3
]
.(3.5)

In polar coordinates, (3.5) becomes w(r) = 2e−kr(1−d1r2+d2r4−d3r6). For the choice of pa-
rameters (k, d1, d2, d3) = (1, 23 ,

1
18 ,

1
1200) the function w(r) has three positive zeros. Figure 3.1

(upper right) shows a numerically stable 2-bump solution for this case.

The third problem we have studied consists of (3.1), with the firing rate coupling (2.4)
and with the coupling function

w(x, y) = e−b
√
x2+y2

(
b sin

(√
x2 + y2

)
+ cos

(√
x2 + y2

))
,(3.6)
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where b > 0. The coupling in (3.6) is the two-dimensional analogue of (2.4). In polar coordi-
nates, (3.6) becomes w(r) = e−br(b sin r+cos r), and w(r) has infinitely many zeros. Figure 3.1
(lower panels) shows two numerically stable solutions computed on a square domain of size
40×40. For b = 0.3, the solution fills the entire domain with bumps (lower right panel). A sim-
ilar “progressive recruitment” phenomenon is found by Gutkin, Ermentrout, and O’Sullivan
in a one-dimensional model [34]. Usher, Stemmler, and Olami [62] found similar patterns in a
stochastic model of spiking neurons that had short-range excitation and long-range inhibition.
Raising b to b = 0.4, we find a 3-bump solution (lower left panel). As in the one-dimensional
case, other N -bump solutions coexist.

3.2. Circularly symmetric solutions. Our numerical study shows that (3.1) has a rich
structure of stable N -bump solutions for a wide range of coupling functions. In section 3.3,
we will describe the fundamental role of circularly symmetric solutions in the formation of
these solutions. To set the stage for section 3.3, our goal here is to summarize the important
properties of the circularly symmetric solutions.

In polar coordinates, writing x = r cos θ, y = r sin θ, q = η cosα, s = η sinα, (3.1) becomes

∂u(r, θ, t)

∂t
= −u+

∫ ∞

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cos (θ − α)

)
f(u(η, α, t)− th)η dα dη.(3.7)

Stationary solutions of (3.7) satisfy

u(r, θ) =

∫ ∞

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cos (θ − α)

)
f(u(η, α)− th)η dα dη.(3.8)

A solution is a circularly symmetric 1-bump solution if u is independent of θ and there is an
R0 > 0 such that

u(r) > th for 0 < r < R0, u(R0) = 0, and u(r) < th for r > R0.(3.9)

Since u is assumed to be independent of θ, we set θ = 0, and (3.8) reduces to

u(r) =

∫ R0

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cosα

)
f(u(η, α)− th)η dα dη.(3.10)

Thus a 1-bump circularly symmetric solution satisfies (3.9)–(3.10). When N > 1, circularly
symmetric N -bump solutions are similarly defined.

Thus far, the only analytical results for circularly symmetric solutions are those given by
Taylor [59] and Werner and Richter [65]. Taylor [59] discusses the case f(u) = H(u), in which
case u(r) satisfies

u(r) =

∫ R0

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cosα

)
η dα dη(3.11)

for couplings of the form

w(r) = Ke−kr
2 −Me−mr2 ,(3.12)
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where K > M > 0 and k > m > 0. He classifies some of the solutions and discusses their
stability with respect to perturbations that vary only the radius of the solution. Werner and
Richter [65] also discuss solutions of (3.11), in particular, circular and ring solutions, some
of which were not found by Taylor. They also discuss the stability of these solutions with
respect to perturbations that vary only the radius of the solution. In the next section, we will
show how circularly symmetric N -bump solutions play an important role in the formation of
asymmetric N -bump patterns.

We end this section by stating an open problem. Suppose that the region of excitation of
a solution of (3.8) is a disc and that the firing rate function is a continuous increasing function
of u. Then is it the case that u must be independent of θ? Or is it possible that there are
coupling functions for which solutions exist which are not circularly symmetric? For elliptic
PDEs the analogous problem of classifying positive solutions on a disc is very important and
has been extensively studied [30, 57].

3.3. Noncircularly symmetric solutions: The PDE approach. There have been few at-
tempts to analyze solutions of (3.1) that do not have circular symmetry. Recently we have
made progress on this problem by successfully deriving a PDE that is equivalent to the
PIDE (3.1). We have also developed a method of analysis of the PDE which explains the
formation of N -bump solutions similar to those in Figures 3.7, 3.8, and 3.12. Our approach
is described below.

The first step is to apply the two-dimensional Fourier transform, defined by F (g) ≡
(2π)−1

∫∞
−∞

∫∞
−∞ e

−i(αx+βy)g(x, y)dx dy to (3.1). Note that F (g) is a function of α and β. We
obtain

F (u+ ut) = F (w)F (f(u− th)).(3.13)

For functions w(x, y) that depend only on
√
x2 + y2, it is known that F (w) is a function of√

α2 + β2 only. See Appendix A for a short proof. The coupling functions given in (3.4),
(3.5), and (3.6) satisfy these properties. However, in each case F (w) has a complicated form
which prevents the use of (3.13) to derive a PDE. To circumvent this problem, we approximate
F (w) by a rational function, G, of

√
α2 + β2 containing only even powers of its argument. The

rationale behind this is the same as for the one-dimensional case: we are using the observation
that F (∇2f) = −(α2 + β2)F (f).

We begin by choosing functions of the form

G
(√
α2 + β2

)
=

A

B + (α2 + β2 −M)2
,(3.14)

where A, B, and M are parameters. Once G is known, the approximate coupling function
ŵ(x, y) is given by the inverse two-dimensional Fourier transform of it. Because of the sym-
metry of G, this reduces to a Hankel transform of order 0:

ŵ(r) =

∫ ∞

0
sG(s)J0(rs) ds,(3.15)

where J0 is the Bessel function of the first kind of order zero (see Appendix A). In Figure 3.2,
we illustrate an example of a coupling function ŵ when G is of the form (3.14). Note the
similarity between this coupling function and the coupling function (3.6).
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Figure 3.2. ŵ(r) (3.15) for parameter values M = 1, A = 0.4, and B = 0.1.

We now derive the PDE. First, replace F (w) in (3.13) with (3.14). Next, multiply both
sides of (3.13) by B + (α2 + β2 −M)2 and take the inverse two-dimensional Fourier transform
to obtain

∇4(u+ ut) + 2M∇2(u+ ut) + (B +M2)(u+ ut) = Af(u(x, y, t)− th).(3.16)

This equation is exactly equivalent to the PIDE (3.1) if w is given by (3.15), where F (w) is
given by (3.14). It is interesting to note that the derivative of u with respect to time cannot
be separated from (3.16).

One can view this process of derivation of a PDE in two different ways. One is that, given a
coupling w(r), we can find its Fourier transform and then approximate that by an appropriate
rational function of

√
α2 + β2. This rational function can then be used to derive a PDE whose

dynamics will in some way approximate the dynamics of the original PIDE. The other way
to view it is that we define w(r) through (3.15) and, by varying the parameters A, B, and M
in (3.14) (or in another appropriate rational function of

√
α2 + β2), move through the space

of possible coupling functions that can be treated this way. From this second point of view,
there are no approximations made, but the tradeoff is that, by restricting G to be only rational
functions of

√
α2 + β2 with even powers of its argument, we may not be able to investigate

all coupling functions w(r) of interest. See section 3.5 for more discussion.
We now seek circularly symmetric solutions of (3.16). Under the assumption that u is not

a function of θ, (3.16) becomes[
∂4

∂r4
+
2

r

∂3

∂r3
− 1

r2
∂2

∂r2
+

1

r3
∂

∂r
+ 2M

(
∂2

∂r2
+
1

r

∂

∂r

)

+B +M2

](
u+
∂u

∂t

)
= Af(u− th).(3.17)

Stationary solutions of (3.17) satisfy the ODE boundary value problem{
u′′′′ + 2

ru
′′′ − 1

r2
u′′ + 1

r3
u′ + 2M

(
u′′ + 1

ru
′)+ (B +M2)u = Af(u(r)− th),

u′(0) = u′′′(0) = 0, and limr→∞(u, u′, u′′, u′′′) = (0, 0, 0, 0).
(3.18)



498 CARLO R. LAING AND WILLIAM C. TROY

In order to determine the stability of a stationary solution ũ(r) of (3.17), we linearize the full
PDE (3.16) around it. To do this, we follow [20] and write

u(r, θ, t) = ũ(r) + µν(r, t) cos (mθ),(3.19)

where µ is a small parameter, ν(r, t) is a perturbation function, and m ≥ 0, an integer, is the
azimuthal index. We choose this form of solution in order to investigate solutions that break
the circular symmetry of the system. Substituting (3.19) into (3.16) and linearizing in µ, we
obtain a PDE for ν:[

∂4

∂r4
+
2

r

∂3

∂r3
+

(
2Mr2 − 2m2 − 1

r2

)
∂2

∂r2
+

(
2m2 + 1 + 2Mr2

r3

)
∂

∂r

+
m4 − 4m2 + (B +M2)r4 − 2Mm2r2

r4

](
ν +
∂ν

∂t

)
= Af ′(ũ− th)ν.(3.20)

Since this is a linear equation in ν, we expect the solution to be of the form ν(r, t) ∼ ν(r)eλt
as t → ∞, where λ is the most positive (real) eigenvalue and ν(r) is the corresponding
eigenfunction. In order to determine the stability of a particular circularly symmetric solution
with radial profile ũ(r), we substitute ũ(r) into (3.20), and for each integer m ≥ 0 we find the
largest value of λ(m). Then we determine the positive integer N at which λ is the greatest.
If λ(N) > 0, then the solution with radial profile ũ(r) is unstable. Our analysis predicts that
N bumps will form if the initial condition for (3.16) consists of a small random perturbation
of the circularly symmetric solution whose radial profile is ũ(r). The distance from the origin
at which these N bumps appear is determined by the shape of the eigenfunction ν(r) (see
examples below).

To numerically determine λ and ν(r), we integrated (3.20) with a randomly chosen initial
condition ν(r, 0). In general this is composed of many eigenfunctions, but due to the exponen-
tial growth or decay in time, for large t, ν(r, t) is dominated by the eigenmode with the most
positive corresponding λ. The quantity λ can thus be determined by plotting the log of the
norm of ν(r, t) as a function of time and measuring the slope of the corresponding graph after
transients have died away. The eigenfunction ν(r) is simply ν(r, t) when t is large, suitably
scaled in amplitude if necessary. This process was repeated with a number of different random
initial conditions to verify that they did not affect the determination of λ and ν. In all of our
experiments, we found that the eigenfunctions either grew or decayed monotonically in time
as t → ∞. This reinforces our assumption that the dominant eigenvalue is real. It would be
interesting to investigate this further and provide a proof to rigorously determine the nature
of the dominant eigenvalue.

Below we use the procedures described above to compute specific multibump solutions.
To solve the PDEs (3.17) and (3.20), we used a finite difference scheme with 100 equally
spaced r values in the interval (0, 30] and an Euler step in time of length dt = 0.5. Boundary
conditions were u = ∂u/∂r = 0 at r = 30. We solved the full PDE (3.16) on the disc
Ω = {(r, θ)|0 ≤ r ≤ 30, 0 ≤ θ ≤ 2π} with boundary conditions u = ∂u/∂r = 0 at r = 30
for all θ ∈ [0, 2π]. Here we also used a finite difference scheme, discretizing the disc Ω into a
100×90 grid of (r, θ) values. In the t direction we again used an Euler step of length dt = 0.5.
The results shown were insensitive to changes in the time-step size, the number of points used
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in the spatial discretization, and whether finite-difference or spectral methods [61] were used
to approximate the spatial derivatives.

3.4. Examples of multibump formation. In this section, we demonstrate how three dif-
ferent families of multibump solutions form. The first is a 3-bump solution, the second is
a 12-bump solution, and the third is a 7-bump solution. Throughout we use the parameter
values M = 1, A = 0.4, and B = 0.1 in (3.14). For the firing rate we use

f(u) = e−τ/u
2
H(u).(3.21)

This function is a scalar multiple of the function in (2.4) and is a natural extension of the
Heaviside function H(u) (i.e., (3.21) reduces to the Heaviside function when τ = 0). We fix
τ = 0.1 in (3.21). The first step is to find a circularly symmetric solution. For this we set
th = 0.25 and solve (3.17) to obtain the solution shown in Figure 3.3 (left, solid curve). Note
that this is only one of a number of stable solutions; it was selected by letting the initial
condition u(r, 0) be an appropriately chosen Gaussian.

u
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16

.25 m
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0
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−.3

Figure 3.3. Left: Stable solution of (3.17) (solid curve, defined as γ1 in the text), and the eigenfunction
corresponding to m = 3 (dashed). The solution is the one at P1 in Figure 3.4. Right: λ as a function of m for
the solution in the left panel.

Next, we use AUTO97 [22] (applied to the system (3.18)) to continue this solution as
the parameter th varies. Figure 3.4 shows the resulting bifurcation curve. The vertical axis
is the maximum value of a solution, and the horizontal axis denotes the parameter th. The
bifurcation curve has multiple folds (compare with Figure 2.4), and solutions gain more bumps
as umax increases. For example, at th = 0.25 there are several coexisting solutions, three of
which are denoted by the points P1, P2, and P3.

The solutions corresponding to these points are shown in Figures 3.3, 3.5, and 3.6, re-
spectively. We have studied the stability of these solutions using (3.20), and for each we have
computed the corresponding function λ(m), shown in the right panels of Figures 3.3, 3.5,
and 3.6.
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Figure 3.4. Bifurcation diagram for solutions of (3.18) satisfying u(0) < 0 and u′′(0) > 0. The solutions
at P1, P2, and P3 are shown in Figures 3.3, 3.5, and 3.6, respectively. Branches marked with a “+” sign are
stable solutions of (3.17).
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Figure 3.5. Left: Unstable stationary solution of (3.17) corresponding to the point P2 in Figure 3.4. The
dashed line is u = th. Right: λ vs. m for the solution in the left panel. Note that λ(0) > 0, and hence we see
the instability of the solution.

3.4.1. The formation of a 3-bump solution. Define γ1 to be the solution of (3.18) shown
with a solid curve in the left panel of Figure 3.3 and Γ1 to be the surface obtained by rotating
γ1 through a full circle about the line r = 0. Note that the positive parts of Γ1 form a set of
concentric annuli (see Figure 3.7, top left). Figure 3.3 (right panel) shows that for γ1, λ < 0
when m = 0. This implies that γ1 is actually a stable solution of (3.17). (Indeed it must be,
as we found it by numerically integrating (3.17).) We also see that m = 3 is the integer with
the largest value of λ and that λ(3) is positive. The eigenfunction corresponding to m = 3
is shown in the left panel of Figure 3.3 (dashed curve). Its largest peak is centered over the
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Figure 3.6. Left: Stable stationary solution of (3.17) (solid curve) corresponding to P3 in Figure 3.4
(defined to be γ3 in the text), and the eigenfunction corresponding to m = 9 (dashed). Right: λ vs. m for the
solution in the left panel.

first positive bump of γ1. Therefore, we expect any instability of Γ1 in the full PDE (3.16) to
have three-fold rotational symmetry and to appear at the annular part of Γ1 corresponding to
the first positive bump of γ1. That is, if the initial condition of (3.16) is a small perturbation
from Γ1, we predict that the resulting solution will evolve into a 3-bump solution. Figure 3.7
illustrates that this is what happens. The upper left panel shows the initial condition, a
small random perturbation of Γ1 (the circularly symmetric solution generated by rotating γ1
through a full circle). The next two panels illustrate the formation of a 3-bump solution as
t increases from t = 0 to t = 30. If the integration is continued past t = 30, the 3-bump
solution stimulates nearby regions and more bumps form, eventually filling the entire region
(not shown). The resulting pattern is similar to that seen in the lower right panel of Figure 3.1.
However, if we raise the threshold from th = 0.25 to th = 0.3 at t = 30, the nearby regions
are not sufficiently stimulated, and the (now stable) 3-bump pattern persists (compare with
Figure 3.1, lower left).

We now briefly describe properties of the solution corresponding to P2, shown in the left
panel of Figure 3.5. This solution has two intervals on which u > th and is an unstable solution
of (3.17) since λ(0) > 0. Note that we had to use AUTO97 to find this solution due to its
instability. (Note also that it is not a stable solution of (3.16)).

3.4.2. The formation of a 12-bump solution. We now focus on the stationary solution
of (3.17), which we define as γ3, corresponding to the point P3 in Figure 3.4 (see Figure 3.6).
Upon rotation through a full circle about the line r = 0, γ3 generates the multiring annular
solution which we define to be Γ3, similar to that shown in the upper left panel of Figure 3.8.
γ3 is a stable solution of (3.17) since λ(0) < 0. However, it is an unstable solution of (3.16)
since for some m, λ(m) > 0. (Indeed, m = 9 is the integer with the largest positive λ.)
The eigenfunction corresponding to m = 9 is shown dashed in Figure 3.6 (left). The largest
peak of the eigenfunction is centered over the second positive bump of γ3. Thus, if a small
perturbation of Γ3 was used as the initial condition for (3.16), we predict that the solution
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Figure 3.7. The 3-peak solution resulting from the instability of the circularly symmetric solution whose
radial profile is given by the solid curve in Figure 3.3 (left). Top left: Initial condition (a small random
perturbation of Γ1). Top right: At t = 25. Bottom left: At t = 35. Bottom right: Level curve diagram at
t = 35. Clicking on the top left or bottom right panels will show movies of the development of the solution from
different viewpoints.

would develop 9-fold rotational symmetry, with the nine new bumps appearing in place of
the annulus corresponding to the second positive bump of γ3. That is, we predict that the
second ring will break into nine bumps. In Figure 3.8 we see that this is what happens. As t
increases from t = 0 to t = 25, the inner ring retains its circularly symmetric structure.

Although it is not easily seen in Figure 3.8, there is a subtle two-step process that happens
next. First, as t increases from t = 25, the amplitude of the inner ring shrinks until the inner
ring (taken in isolation) is the same size as the single ring shown in the upper left panel of
Figure 3.7. (Recall that this solution corresponds to the point P1 in Figure 3.4.) After this
point, the inner ring begins its evolution into a 3-bump structure, while the outer nine bumps
remain (lower panels of Figure 3.8). To understand the “shrinking” phenomenon, we have a

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_02.mpg
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Figure 3.8. The formation of a 12-peak pattern resulting from the instability of the circularly symmetric
solution whose radial profile is given by the solid curve in Figure 3.6 (left), the axially symmetric solution at
P3. Top left: Initial condition (a small random perturbation of Γ3). Top right: t = 25. Lower panels: t = 50
(left), and corresponding level curve diagram (right). Clicking on the top left or bottom right panels will show
movies of the development of the solution from different viewpoints.

plausible explanation based on the following calculation: First, we let the initial condition for
a solution of (3.17) consist of the function which is equal to γ3 until its first negative-going zero
crossing and which is zero otherwise. (This initial condition is shown dashed in Figure 3.9.)
Next, we solved (3.17) with this initial condition and found that the solution quickly shrank
in amplitude and evolved into γ1 (shown in Figure 3.3), which corresponds to the point P1

in Figure 3.4. Since we know that Γ1 breaks into a 3-peak structure under the dynamics
of (3.16), we expect the “shrunken” inner ring to begin breaking into a 3-peak structure as t
increases further. Figure 3.8 shows that this is indeed what happens.

3.4.3. The formation of a 7-bump solution. For our third example, we consider the
class of circularly symmetric solutions consisting of a central peak surrounded by one or more

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_04.mpg
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Figure 3.9. The dashed curve shows the initial condition for (3.17) (its construction is given in the text),
and the solid line shows the stable stationary state, u(r, 100). The line u = th is also shown.
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Figure 3.10. Left: Stable solution of (3.17) (solid, defined as γ4 in the text) corresponding to the point Q1

in Figure 3.11, and the eigenfunction (dashed) corresponding to m = 6. Right: λ as a function of m for the
solution in the left panel. Parameters are th = 0.25, M = 1, A = 0.4, B = 0.1, r = 0.1.

annular rings. To find one such solution we again set th = 0.25 and solved (3.17). The
resulting curve is shown (solid line) in Figure 3.10 (left). We denote it by γ4 and denote by
Γ4 the surface produced by rotating γ4 through a full circle about the line r = 0 (Figure 3.12,
upper left). The initial condition was chosen so that the system (3.17) approached a solution
with u(0) > 0, in contrast with the solutions previously studied in this section.

The solution γ4 satisfies the ODE (3.18) with initial conditions of the form

u(0) > 0, u′(0) = 0, u′′(0) < 0, u′′′(0) = 0.(3.22)

As in the previous examples, we use AUTO97 to continue the solutions of (3.18) as the
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Figure 3.11. Bifurcation diagram for solutions of (3.18) satisfying u(0) > 0 and u′′(0) < 0. The solution at
Q1 is shown in Figure 3.10 (left). The “+” signs indicate that a particular branch is a stable solution of (3.17).
The “ ∗” signs indicate stable solutions of (3.16), i.e., λ < 0 for all m. At the critical value th ≈ 0.05, there is
a change in stability. See text.

parameter th varies. Figure 3.11 gives the resultant bifurcation curve. Again, the curve has
multiple folds, and solutions gain more bumps as umax increases (compare with Figure 3.4).
The point Q1 in Figure 3.11 represents γ4. We numerically solve (3.20) with ũ = γ4 to
determine its stability. The corresponding plot of λ as a function of m is shown in Figure 3.10
(right). We see that γ4 is a stable solution of (3.17) since λ < 0 whenm = 0. However, Γ4 is an
unstable solution of (3.16) since λ > 0 for some m > 0. (m = 6 is the integer with the largest
positive λ.) The eigenfunction corresponding to m = 6 is shown dashed in Figure 3.10 (left).
Its largest component is concentrated near the second positive bump of γ4, corresponding to
the innermost annular ring of Γ4. Thus, if the initial condition of (3.16) is a small random
perturbation of Γ4, we expect the innermost annular ring of the solution to break into six
bumps, which will surround the central peak, resulting in a total of seven bumps. Figure 3.12
shows that this is indeed what happens.

3.4.4. Discussion. In this section, we have investigated the formation of three particular
multibump patterns. These are not the only three, as there are many more solutions of (3.18),
with more superthreshold oscillations before their decay to zero at r = ∞. These can presum-
ably be analyzed in the same way as we have done here and will all lead to different patterns
being formed.

We have presented one particular way of forming multibumps here, namely, finding cir-
cularly symmetric solutions that are unstable with respect to perturbations that break the
circular symmetry and using small perturbations of these circularly symmetric solution as
initial conditions for fixed parameter values. Another, perhaps more realistic, way of causing
these patterns to form is to find circularly symmetric solutions of (3.16) that are stable with
respect to perturbations that break the circular symmetry (i.e., have λ < 0 for all m) and
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Figure 3.12. The 7-peak solution resulting from the instability of the circularly symmetric solution whose
radial profile is given by the solid curve in Figure 3.10 (left), the axially symmetric solution at Q1. Top left:
Initial condition (a small random perturbation of Γ4). Top right: t = 28. Lower panels: t = 35 (left), and
corresponding level curve diagram (right). Clicking on the top left or bottom right panels will show movies of
the development of the solution from different viewpoints.

then vary the parameters in such a way as to make the solution unstable with respect to
these perturbations. This can be thought of as mimicking the change in the bulk properties
of the neural tissue that would result from, for example, the action of neuromodulators (see,
for example, [32].)

As an example, in Figure 3.13 we show a solution of (3.17) with th = 0.08 corresponding
to the lowest branch in Figure 3.11. The corresponding plot of λ as a function of m is shown
in Figure 3.14 (squares). We see that λ < 0 for all m, and thus the circularly symmetric
solution formed by rotating the curve in Figure 3.13 through a full circle about the line r = 0
is a stable solution of (3.16). We now decrease th. The solution shown in Figure 3.13 changes
very little, but its stability changes markedly. In Figure 3.14, we show plots of λ as a function

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_06.mpg
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Figure 3.13. A stable solution of (3.17). Parameter values are A = 0.4, B = 0.1, M = 1, r = 0.1, th = 0.08.

of m for th = 0.0536 and th = 0.046. As th is decreased, the solution becomes unstable at
th ≈ 0.05 (see Figure 3.11), with m = 6 being the integer with the most positive value of λ.
The eigenfunction corresponding to m = 6 has its largest peak near the bump of the solution
in Figure 3.13 between r = 5 and r = 10 (not shown).

Thus we expect that if the initial condition of (3.16) is a small perturbation of the circularly
symmetric surface with radial profile given by the solution in Figure 3.13 and at some point
in the simulation th is reduced sufficiently from th = 0.08, we should see a breakup of the
solution in a way similar to that shown in Figure 3.7. This is indeed what is seen (not shown).

3.5. General couplings. In this paper we have investigated one particular family of cou-
pling functions, defined through their Fourier transform (3.14). However, a number of other
types of coupling functions have been studied in the past, notably “Mexican hat”–type cou-
pling [26, 31, 50]. (Examples are a difference of Gaussians [40, 55] and a difference of exponen-
tials [6, 16, 33, 42].) Gaussian functions have also been used [35, 53, 54, 64] as have sinusoidal
functions on a periodic domain [37, 41] and general nonnegative even functions [5, 7, 8, 27].
Specific nonneural applications whose models involve these types of coupling function include
martinsitic phase transitions in steel, the behavior of diblock copolymers, and population
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Figure 3.14. λ as a function of m for three different values of th.

dynamics. We now show that our technique of approximating the Fourier transform of the
coupling function so that a PDE can be derived can also be applied to these types of coupling.

First consider a two-dimensional coupling function whose radial dependence is Gaussian.
Since the two-dimensional Fourier transform of such a function is also circularly symmetric
with a Gaussian dependence on distance in Fourier space, the problem reduces to approxi-
mating a one-dimensional Gaussian in η by a rational function of η2. For concreteness, choose
F (η) = exp (−η2). Figure 3.15 shows the Gaussian for 0 < η < 4 and two approximations
to it. One approximation is a Padé approximant, a generalization of a Taylor series that
matches F and as many derivatives at η = 0 as possible. This approximant is of degree (0, 4),
as the numerator is a polynomial of degree 0 and the denominator is of degree 4. (Note that
due to the evenness of the Gaussian, only even powers of η will appear in the approximant,
automatically satisfying the general condition that only even powers appear in the approxi-
mation of the Fourier transform of the coupling function.) The other function shown is the
least squares fit of a function of the form a1/(a2 + a3η

2 + a4η
4) to 100 evenly spaced points

on the Gaussian curve. Note that these coefficients will change if the domain over which the
Gaussian is considered is changed. Both of the approximations presented here are good and
can be used to derive a fourth order PDE. Since both approximations have numerators of or-
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Figure 3.15. Dotted: The Gaussian exp (−η2). Solid: The Padé approximant 1/(1 + η2 + η4/2). Dashed:
The least squares approximation 2.7287/(2.7758 + 1.7504η2 + 3.3574η4).

der zero, the right-hand side of the corresponding equation of the form (3.16) will not contain
spatial derivatives. Clearly, as either the degree of the Padé approximant or the degree of the
rational function that is fit to the Fourier transform of the coupling function is increased, the
approximation will become better and the order of the resulting PDE will rise.

Since taking the Fourier transform is a linear operation, coupling functions formed from
the difference of Gaussians can be dealt with using the ideas just presented.

As a second example, we consider a difference of exponentials of the same form as (3.4).
We need to find the two-dimensional Fourier transform of the function

w(r) = Ke−kr −Me−mr,(3.23)

where M < K, m < k, and r is the radius. From the result in Appendix A, we have

F (w)(η) =

∫ ∞

0

[
Ke−kr −Me−mr

]
J0(rη)r dr,(3.24)

where J0 is the Bessel function of first kind of order 0. Using the results of Appendix B, we
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Figure 3.16. Left: The coupling function (3.23) (dotted), and the inverse Fourier transform of the function
shown solid in the right panel (solid). Right: The exact Fourier transform of w, given by (3.25) (dotted), and
its approximation (3.26) (solid).

have

F (w)(η) =
Kk

(k2 + η2)3/2
− Mm

(m2 + η2)3/2
.(3.25)

We setK = 3.5,M = 2.8, k = 1.8, andm = 1.52, the values used in section 3.1. In Figure 3.16
(left, dotted) we show the coupling function w(r), and in the right panel (dotted) we show
its exact Fourier transform (3.25). We have approximated (3.25) by an appropriate rational
function of η, minimizing the least squares error for the data shown in Figure 3.16, right. The
result is

G(η) =
1.2636η2 − 1

7.7592 + 4.1991η2 + 3.3163η4
.(3.26)

This function is shown with a solid curve in Figure 3.16, right. In the left panel of Figure 3.16,
we show the coupling function resulting from taking the inverse Fourier transform of G(η),
given by (3.15) (solid line). We chose a rational function of the form (3.26) as it gave a good
approximation. Using higher order polynomials (with even powers of η) in the numerator
and denominator of the approximation would result in a better approximation of w by ŵ but
would also result in higher order PDEs. Clearly, the coupling in (3.26) can be used to derive
a fourth order PDE for u, and the dynamics of this equation will be equivalent to the integral
equation (3.1) for the coupling shown with the solid curve in Figure 3.16 (left).

4. Summary. In this paper we have studied a class of PIDEs which have been used
extensively in neuronal modeling. Our goal throughout has been to develop methods which
help us understand the dynamics of multibump formation in two space dimensions.

Section 2 summarizes results for the model in one space dimension. These include the
existence, multiplicity, and stability of N -bump solutions. In section 3, we focus on the
two-dimensional model. This part of our investigation has led to the following results:
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(i) the development of a method to approximate a PIDE with a PDE;
(ii) a description of the important properties of circularly symmetric solutions of the PDE;
(iii) the development of a method to analyze the PDE and determine the stability of

circularly symmetric solutions. For unstable solutions, our methods predict the exact
number of bumps that form as the unstable solution evolves.

We then applied these techniques to a specific equation and illustrated the dynamic formation
of multibump solutions in three different scenarios. Finally, in section 3.5, we discuss the
feasibility, both numerical and theoretical, of extending our methods to models with other
couplings.

Similar results regarding the breakup of annular rings include [20], in which the stability
of higher-bound states in self-focusing optical media is studied, and [46], in which the breakup
of concentric rings in a reaction-diffusion system is studied. Both of these examples involve
PDEs, and our results appear to be the first for integro-differential equations.

A first step in making our methods mathematically rigorous is to prove the existence of
the fundamentally important solutions of the ODE problem (3.18). These describe circu-
larly symmetric solutions of the PDE. This problem is especially challenging since (3.18) is
nonautonomous and is neither reversible nor Hamiltonian. One approach is to cast (3.18)
as a two-dimensional shooting problem. Here the two free parameters are the values of u(0)
and u′′(0). Note that while the relationship between homoclinic orbits and spatially localized
patterns in one dimension is well known [14, 38, 43], we use such orbits here to find patterns
in two spatial dimensions.

Another issue to be addressed is the correspondence between solutions of the PDE (3.16)
and the integral equation (3.1), when the coupling function is given by (3.15). Formally, the
equations are equivalent, but it remains to be proven that solutions of one are also solutions
of the other, and if so, whether stability of a solution of one equation implies stability of that
solution from the point of view of the other equation. We have not attempted to numerically
solve the integral equation (3.1).

There are several ways to extend the techniques developed in this paper. A more general
extension could involve combining the methods introduced here with the ideas of Bressloff [10]
regarding pattern formation on inhomogeneous domains. It would also be interesting to
see if the results found here could be extended to a two layer system using one population
of excitatory neurons and one of inhibitory neurons with appropriate nonnegative coupling
weights [25, 35, 54].

We have concentrated only on the instability of circularly symmetric bumps with respect to
perturbations that break that symmetry. There are many other pattern-forming mechanisms
that can potentially be studied using the ideas presented here. One example is spiral wave
formation [4, 50], a phenomenon that cannot occur in one-dimensional domains. We have
observed these patterns in a system of the form (3.1) with purely positive (excitatory) coupling
and a simple form of adaptation like that used in [41] to prevent the whole domain from
becoming active (not shown).

Another extension would be to use the ideas presented here to study a network of spiking
neurons to see whether the appearance of the sorts of patterns investigated here could be
predicted in such a network. The firing rate function f would have to be the appropriate
function for the neurons used, but provided the neurons do not synchronize, the profiles of
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firing frequency as a function of space should be the same for the rate and spiking models [40],
and the techniques presented here should be applicable.

In conclusion, the main result presented here is the link between PIDEs and PDEs. The
techniques introduced here enable one to apply the results for pattern formation in PDEs (of
which there are many [15, 21, 23, 24, 36, 48, 49, 51]) to systems involving spatial integrals
[5, 6, 7, 8, 10, 12, 13, 16, 27, 28, 47, 53, 54, 55] for which there are far fewer results, but which
are of great interest.

Appendix A. Symmetry properties of the two-dimensional Fourier transform. We define
the two-dimensional Fourier transform of a function g(x, y) to be

F (g) ≡ 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−i(αx+βy)g(x, y)dx dy.(A.1)

Move to polar coordinates with x = r cos θ, y = r sin θ, α = η cosψ, and β = η sinψ, and
assume that g is a function of r only. Then (A.1) becomes

F (g) =
1

2π

∫ ∞

0
g(r)r

[∫ 2π

0
e−irη cos (θ−ψ)dθ

]
dr.(A.2)

It is clear that the inner integral (and therefore F (g)) is independent of ψ, so we set ψ = π/2,
and the inner integral in (A.2) becomes

∫ 2π

0
e−irη sin θdθ.(A.3)

Letting z = eiθ and moving to the complex plane, we have

∫ 2π

0
e−irη sin θdθ =

∫
C

e−rη(z−1/z)/2

iz
dz,(A.4)

where C is the unit circle in the complex plane. In [56, p. 161], it is shown that

eτ(z−1/z)/2 =

∞∑
N=−∞

JN (τ)z
N ,(A.5)

where JN (·) is the Bessel function of the first kind of order N . Thus, setting τ = −rη, we
have

∫ 2π

0
e−irη sin θdθ =

∞∑
N=−∞

J0(−rη)
∫
C

zN−1

i
dz = 2πJ0(−rη),(A.6)

and using the evenness of J0, (A.2) becomes

F (g) =

∫ ∞

0
g(r)J0(rη)r dr.(A.7)
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This is clearly a function of η (=
√
α2 + β2) only.

Appendix B. A particular Fourier transform. We now show that

I ≡
∫ ∞

0
e−krJ0(rη)r dr =

k

(k2 + η2)3/2
,(B.1)

which, in combination with (A.7), gives (3.25). We start with the series expansion of the
Bessel function

J0(x) =

∞∑
n=0

(−1)nx2n

22n(n!)2
.(B.2)

Using this,

I =

∞∑
n=0

(−1)nη2n
22n(n!)2

∫ ∞

0
e−krr2n+1dr =

∞∑
n=0

(−1)nη2n(2n+ 1)!

22n(n!)2k2n+2
,(B.3)

where the integral has been evaluated using the Gamma function. Now, using the notation
(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) and the identity (2n+ 1)! = 22nn!(3/2)n, we have

I =

∞∑
n=0

(−1)nη2n(3/2)n
n! k2n+2

=
1

k2

∞∑
n=0

(3/2)n
n!

(−η2
k2

)n
=

(1 + η2/k2)−3/2

k2
=

k

(k2 + η2)3/2
(B.4)

as was claimed in (B.1).

REFERENCES

[1] S. Amari, Homogeneous nets of neuron-like elements, Biol. Cybernet., 17 (1975), pp. 211–220.
[2] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet., 27

(1977), pp. 77–87.
[3] S. Amari, Mathematical Theory of Neural Networks, Sangyo-Tosho Publishers, Tokyo, 1978.
[4] D. Barkley, Euclidian symmetry and the dynamics of rotating spiral waves, Phys. Rev. Lett., 72 (1994),

pp. 164–167.
[5] P. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for non–local

Allen–Cahn equation, J. Math. Anal. Appl., 273 (2002), pp. 45–57.
[6] P. Bates, X. Chen, and A. Chmaj, Traveling Waves for Bistable Equations with Nonlocalities, preprint,

2002.
[7] P. Bates, P. Fife, X. Ren, and X. Wang, Travelling waves in a convolution model for phase transitions,

Arch. Ration. Mech. Anal., 138 (1997), pp. 105–136.
[8] P. Bates and X. Ren, Heteroclinic orbits for a higher order phase transition problem, European J. Appl.

Math., 8 (1997), pp. 149–163.
[9] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, Orientation selectivity and the ar-

rangement of horizontal connections in tree shrew striate cortex, J. Neurosci., 17 (1997), pp. 2112–
2127.

[10] P. C. Bressloff, Traveling fronts and wave propagation failure in an inhomogeneous neural network,
Phys. D, 155 (2001), pp. 83–100.

[11] P. C. Bressloff, Bloch waves, periodic feature maps, and cortical pattern formation, Phys. Rev. Lett.,
89 (2002), 088101.

[12] P. C. Bressloff and J. D. Cowan, The visual cortex as a crystal, Phys. D, 173 (2002), pp. 226–258.



514 CARLO R. LAING AND WILLIAM C. TROY

[13] P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. Wiener, Geometric visual
hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Phil. Trans. Roy.
Soc. B, 40 (2001), pp. 299–330.

[14] A. R. Champneys, Homoclinic orbits in reversible systems and their applications in mechanics, fluids
and optics, Phys. D, 112 (1998), pp. 158–186.

[15] X. Chen and M. Kowalczyk, Dynamics of an interior spike in the Gierer–Meinhardt system, SIAM J.
Math. Anal., 33 (2001), pp. 172–193.

[16] A. J. J. Chmaj and X. Ren, Pattern formation in the nonlocal bistable equation, Methods Appl. Anal.,
8 (2001), pp. 369–386.

[17] C. L. Colby, J. R. Duhamel, and M. E. Goldberg, Oculocentric spatial representation in parietal
cortex, Cereb. Cortex, 5 (1995), pp. 470–481.

[18] A. Compte, N. Brunel, P. Goldman-Rakic, and X.-J. Wang, Synaptic mechanisms and network
dynamics underlying spatial working memory in a cortical network model, Cereb. Cortex, 10 (2000),
pp. 910–923.

[19] S. Coombes, G. Lord, and M. Owen, Waves and bumps in neuronal networks with axo-dendritic
synaptic interactions, Phys. D, 178 (2003), pp. 219–241.

[20] J. M. Soto-Crespo, D. R. Heatley, E. M. Wright, and N. N. Akhmediev, Stability of higher-bound
states in a saturable self-focusing medium, Phys. Rev. A, 44 (1991), pp. 636–644.

[21] J. Dockery and R. J. Field, Numerical evidence of stationary and breathing concentration patterns in
the Oregonator with equal diffusivities, Phys. Rev. E, 58 (1998), pp. 823–832.

[22] E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kutznetsov, B. Sandstede, and X.
Wang, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with
HOMCONT), Tech. report, Concordia University, Montreal, Canada, 1997.

[23] A. Doelman, T. Kaper, and P. Zegeling, Pattern formation in the one-dimensional Gray-Scott model,
Nonlinearity, 10 (1997), pp. 523–563.

[24] A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 1 (2002),
pp. 65–104.

[25] M. Enculescu and M. Bestehorn, Activity dynamics in nonlocal interacting neural fields, Phys. Rev.
E, 67 (2003), 041904.

[26] G. B. Ermentrout, Neural networks as spatio-temporal pattern forming systems, Rep. Progr. Phys., 61
(1998), pp. 353–430.

[27] P. Fife, Clines and material interfaces with nonlocal interaction, in Nonlinear Problems in Applied Math-
ematics, T. S. Angell, L. P. Cook, R. E. Kleinman, and W. E. Olmstead, eds., SIAM, Philadelphia,
1996, pp. 134–149.

[28] P. C. Fife, Pattern formation in gradient systems, in Handbook for Dynamical Systems, Vol. 2, Appli-
cations, B. Fiedler, ed., North–Holland, Amsterdam, 2002, pp. 677–722.

[29] S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex, J. Neurophysiol., 61 (1989), pp. 331–349.

[30] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of elliptic equations in RN, in
Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7a, Academic Press,
New York, 1981, pp. 369–402.

[31] M. A. Giese, Dynamic Neural Field Theory for Motion Perception, Kluwer Academic Publishers, Boston,
1998.

[32] D. Golomb and Y. Amitai, Propagating neuronal discharges in neocortical slices: Computational and
experimental study, J. Neurophysiol., 78 (1997), pp. 1199–1211.

[33] Y. Guo, Existence and Stability of Standing Pulses in Neural Networks, Ph.D. thesis, University of
Pittsburgh, Pittsburgh, PA, 2003.

[34] B. Gutkin, G. B. Ermentrout, and J. O’Sullivan, Layer 3 patchy recurrent connections may de-
termine the spatial organization of sustained activity in the primate frontal cortex, Neurocomputing,
32–33 (2000), pp. 391–400.

[35] B. S. Gutkin, C. R. Laing, C. C. Chow, G. B. Ermentrout, and C. L. Colby, Turning on and
off with excitation: The role of spike–timing asynchrony and synchrony in sustained neural activity,
J. Comput. Neurosci., 11 (2001), pp. 121–134.



PDE METHODS FOR NONLOCAL MODELS 515

[36] J. K. Hale, L. A. Peletier, and W. C. Troy, Exact homoclinic and heteroclinic solutions of the
Gray–Scott model for autocatalysis, SIAM J. Appl. Math., 61 (2000), pp. 102–130.

[37] D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in Methods in
Neuronal Modeling, 2nd ed., C. Koch and I. Segev, eds., MIT Press, Cambridge, MA, 1998.

[38] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmer Wadee, C. J. Budd,
and G. L. Lord, Cellular buckling in long structures, Nonlinear Dynam., 21 (2000), pp. 3–29.

[39] K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous fields, J. Math.
Biol., 7 (1979), pp. 303–318.

[40] C. R. Laing and C. C. Chow, Stationary bumps in networks of spiking neurons, Neural Comp., 13
(2001), pp. 1473–1494.

[41] C. R. Laing and A. Longtin, Noise–induced stabilization of bumps in systems with long–range spatial
coupling, Phys. D, 160 (2001), pp. 149–172.

[42] C. R. Laing and W. C. Troy, Two bump solutions of Amari–type models of working memory, Phys.
D, 178 (2003), pp. 190–218.

[43] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout, Multiple bumps in a neuronal model
of working memory, SIAM J. Appl. Math., 63 (2002), pp. 62–97.

[44] J. B. Levitt, D. A. Lewis, T. Yoshioka, and J. S. Lund, Topography of pyramidal neuron intrinsic
connections in Macaque monkey prefrontal cortex (areas 9 and 46), J. Comp. Neurol., 338 (1993), pp.
360–376.

[45] E. K. Miller, C. A. Erickson, and R. Desimone, Neural mechanisms of visual working memory in
prefrontal cortex of the Macaque, J. Neurosci., 16 (1996), pp. 5154–5167.

[46] D. Morgan and T. Kaper, Axisymmetric ring solutions of the 2-D Gray Scott model and their desta-
bilization into spots, Phys. D, submitted.

[47] C. B. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb type,
Phys. Rev. E, 66 (2002), 066108.

[48] C. B. Muratov and V. V. Osipov, General theory of instabilities for patterns with sharp interfaces in
reaction-diffusion systems, Phys. Rev. E, 53 (1996), pp. 3101–3116.

[49] C. B. Muratov and V. V. Osipov, Stability of the static spike autosolitons in the Gray–Scott model,
SIAM J. Appl. Math., 62 (2002), pp. 1463–1487.

[50] J. D. Murray, Mathematical Biology, 2nd ed., Springer–Verlag, Berlin, 1993.
[51] Y. Nishiura and D. Ueyama, A skeleton structure for self-replicating patterns, Phys. D, 130 (1999), pp.

73–104.
[52] L. A. Peletier and W. C. Troy, Patterns: Higher Order Models in Physics and Chemistry, Birkhäuser

Boston, Boston, 2001.
[53] D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal

networks: I. Traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), pp. 206–225.
[54] D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal

networks: II. Lateral inhibition and standing pulses, SIAM J. Appl. Math., 62 (2001), pp. 226–243.
[55] S. Ruuth, B. Merriman, and S. Osher, Convolution generated motion as a link between cellular

automata and continuum pattern dynamics, J. Comput. Phys., 151 (1999), pp. 836–861.
[56] M. R. Spiegel, Complex Variables with an Introduction to Conformal Mapping, Schaum’s Outline Series,

McGraw-Hill, New York, 1998.
[57] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), pp. 304–318.
[58] S. M. Stringer, T. P. Trappenberg, E. T. Rolls, and I. E. T. de Araujo, Self-organizing con-

tinuous attractor networks and path integration: One-dimensional models of head direction cells,
Network-Comp. Neural, 13 (2002), pp. 217–242.

[59] J. G. Taylor, Neural “bubble” dynamics in two dimensions: Foundations, Biol. Cybernet., 80 (1999),
pp. 393–409.

[60] E. Thelen, G. Schoner, C. Scheier, and L. Smith, The dynamics of embodiment: A field theory of
infant perseverative reaching, Behavioral and Brain Sciences, 24 (2001), pp. 1–34.

[61] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.
[62] M. Usher, M. Stemmler, and Z. Olami, Dynamic pattern formation leads to 1/f noise in neural

populations, Phys. Rev. Lett., 74 (1995), pp. 326–329.



516 CARLO R. LAING AND WILLIAM C. TROY

[63] X. J. Wang, Synaptic reverberation underlying mnemonic persistent activity, Trends Neurosci., 24 (2001),
pp. 455–463.

[64] T. Wennekers, Dynamic approximation of spatio–temporal receptive fields in nonlinear neural field mod-
els, Neural Computation, 14 (2002), pp. 1801–1825.

[65] H. Werner and T. Richter, Circular stationary solutions in two-dimensional neural fields, Biol. Cy-
bernet., 85 (2001), pp. 211–217.

[66] H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and
thalamic nervous tissue, Kybernetic, 13 (1973) pp. 55–80.

[67] K. Zhang, Representation of spatial orientation by the intrinsic dynamics of the head–direction cell
ensemble: A theory, J. Neurosci., 16 (1996), pp. 2112–2126.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2003 Society for Industrial and Applied Mathematics
Vol. 2, No. 4, pp. 517–545

Numerical Analysis of the Novikov Problem of a
Normal Metal in a Strong Magnetic Field∗

Roberto De Leo†

Abstract. We present the results of our numerical exploration of the fractal structure found by S.P. Novikov
in an elementary multivalued Poisson dynamical system on the 3-torus coming from the problem of
the dependence of magnetoresistance on the direction of the magnetic field in a normal metal.

Key words. low-dimension topology, Poisson geometry, multivalued functions, magnetoresistance in normal
metals

AMS subject classifications. 57M50, 53D17, 37E35, 65D18, 82D35

DOI. 10.1137/S1111111102406646

1. Introduction. It is somewhat surprising that, in spite of the huge amount of literature
covering symplectic and Poissonian geometry, until recent years very little effort has been
made to study Hamiltonian dynamical systems with multivalued first integrals.

While no such systems arise from classical mechanics, the main source of inspiration
for symplectic and Poissonian geometry, they do arise from quantum mechanical models of
very concrete physical phenomena, making their study much more than some “abstract”
mathematical generalization.

After extending Morse theory to multivalued functions [Nov82], Novikov became interested
in such systems and rediscovered a very promising multivalued Hamiltonian dynamical system
coming from solid state physics, whose geometrical study had been started almost half a
century ago by a group of theoretical physicists led by Lifshitz [LAK57] and had been popular
for about ten years. This study was eventually abandoned before any appropriate tool able
to unveil the beautiful geometrical structure that lies within it was found.

Indeed, the topological structure of this dynamical system turned out to be much more
complex than was foreseeable, and it ultimately led to the construction of a fractal on the
projective plane for a class of triply periodic functions on R

3.
In this paper, we describe the algorithm we constructed to numerically generate a picture

of these fractals, and we show the results we obtained in the simplest nontrivial case, i.e.,
when the level surface of the Hamiltonian has genus equal to 3. An evaluation of the fractal
dimension of the pictures we build allows us a rough check of the not yet proven Novikov
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conjecture claiming that such a dimension is strictly between 1 and 2 (and, in particular, that
the Lebesgue measure of the fractal is 0).

2. A short introduction to the model. It is a very basic fact of the quantum theory of
solids that, in the semiclassical approximation, valence electrons can be considered as classi-
cal particles with a “periodic” momentum, called a “quasi momentum,” and the interaction
between these electrons and the underlying lattice of ions is totally encoded in a Hamiltonian
H, called the “Fermi function,” that depends only on quasi momenta [AM76].

In other words, in this model, an electron is a point (q, p) of the symplectic phase space
R

3 × T
3, and its dynamic is determined by a Hamiltonian H = H(p) so that its equations of

motion are the standard
q̇ = ∂H/∂p , ṗ = 0 .

As often happens, topology comes into play as soon as a magnetic field is applied; in fact, in
this case, setting as usual −e = c = � = 1 in the equations yields the canonical

q̇ = ∂H/∂p , ṗ = ∂H/∂p×B(q) = {p,H}B .

The case we are interested in, widely used in the experiments of solid state physics, is the
case when B is constant, in which case the second equation decouples from the first so that
the system reduces to the easier equation ṗ = {p,H}B in the “reduced” phase space T

3.
This new phase space is not symplectic, because its dimension is odd, but it has the

structure of a Poisson space with Poisson bracket {pa, pb}B = εabcB
c, called the “magnetic

bracket.” This bracket is degenerate, because we are in odd dimension, and so it must have
a Casimir, i.e., a first integral of algebraic nature, that is in fact the function I(p) = paB

a.
It is in the compactness of the phase space that topology makes its appearance; in fact, the

coordinates pa are angle coordinates and in particular are not globally well-defined functions
on T

3, but they are well-defined multivalued functions. Hence the function I is not really a
function on T

3 but just a multivalued function, and it is a globally well-defined function only
on the universal covering R

3.
So finally we have all the ingredients of our dynamical system: its phase space is the

“magnetic torus” (T3, {, }B ), and its first integrals are the (single-valued) Hamiltonian H and
the multivalued Casimir I. Two integrals of motion on a three-dimensional space are enough
to allow us to get the orbits by algebraic means as intersections of their level sets, so from the
analytical point of view the system is trivial.

Despite the extreme simplicity of the system, no one studied even such elementary mul-
tivalued analogues of Poisson and symplectic dynamics until Novikov noticed them in 1982.
And although the problem may seem trivial as the analogous single-valued system actually is,
it turned out to be extremely rich and highly nontrivial from the topological point of view.

In fact, if I were single-valued, then all of its level sets would be compact, as happens
with H, and so in turn all orbits would be compact. No interesting topology shows up under
those conditions. When I is multivalued, however, its level sets can be open, and therefore
open orbits can exist. In particular, I depends linearly on pa, and therefore it defines a (flat)
foliation of T

3 for every nonzero magnetic field.
Let us point out that the foliation of the level sets of I is of course generated also by its

differential dI = B, taking B as a constant 1-form, so that another way of thinking about
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Figure 1. These pictures, from [LP59] and [Cha60], testify to early attempts to understand the behavior of
asymptotic direction of orbits as a function of the magnetic field direction in the simpler nontrivial case, i.e.,
the 3-dimensional “prison bars” that we study numerically in this work. In both of those papers, analytical-
geometrical rather than topological methods are used. The picture on the left was reprinted with permission from
the Journal of Experimental and Theoretical Physics. The picture on the right was reprinted with permission
from General Electric.

the system is as the problem of understanding the topology of foliations of surfaces embedded
in T

3 induced on them by the class of 1-forms that we get through the pull-back of constant
1-forms in T

3.

The topological property of orbits, i.e., whether they are homotopic to 0 in T
3 (or, equiv-

alently, whether they are closed in R
3), has strong consequences on the physical quantities

in play. As shown by Lifshitz, Azbel, and Kaganov [LAK57], the magnetoresistance behavior
depends on the topology of the quasi momenta orbits; if all orbits are closed, then the mag-
netoresistance tensor on the plane perpendicular to the magnetic field tends to zero as the
magnetic field intensity grow, while if there are open orbits with an asymptotic direction d,
then it tends to a constant tensor of rank 1 whose eigendirection corresponding to the nonzero
eigenvalue is exactly the direction d.

After a subtle topological analysis of the system behavior for magnetic fields close to
rational [Zor84] and in “generic position” [Dyn93a, Dyn97], the following picture has been
extracted by S. P. Novikov (see [NM98] for a thorough review and extra bibliography): once a
Fermi function, i.e., a Hamiltonian, has been fixed on the space of directions of the magnetic
field (i.e., the projective plane RP2), it defines a fractal consisting of smooth polygons whose
union contains all rational directions (i.e., the directions parallel to a direction with three
integer entries), and that therefore are dense on the plane. These polygons generically have
a finite number of points in common, and every one of them is labeled by an integer plane l
(i.e., equivalently, a Miller index in the language of solid state physics or an integer 2-cycle in
a more topological language). Moreover, to every point of the plane are associated two values
of the energy e1,2.

The meaning of these data is the following: let H and EF be the Fermi function and
Fermi energy of a metal, and suppose that we want to know the asymptotic behavior of
trajectories of quasi momenta for some magnetic field B lying within a polygon labeled by
l = (i, j, k) ∈ H2(T

3,Z). If e1 and e2 are two energies associated to B, the answer is that if
e1 ≤ EF ≤ e2, there are open orbits, and they are a finite deformation of the straight line of



520 ROBERTO DE LEO

Critical points open orbits

B

Boundary  of  piece
(singular  closed  orbits)

Piece  consisting  of
open  orbits

Figure 2. A genus-2 component filled with open orbits (“warped plane”), from [NM98]. This figure was
reprinted with permission from Uspekhi Fizicheskikh Nauk.

direction d = B × l, while if EF < e1 or e2 < EF , all orbits are closed. If B does not belong
to any polygon, the picture is completely different: in this case, e1 = e2 = e so if EF �= e, all
orbits are closed, and if EF = e, then open orbits exist but have no asymptotic directions.

The fact that the polygons are dense on RP2 and that all orbits are closed for all but one
value of the energy shows that this last case is nongeneric. It is known that at fixed energy
the set of directions that gives rise to such behavior for orbits is of measure zero [DL99], but it
is still unknown whether the union of these sets over all possible values of the energies is still
a measure zero set. Novikov conjectured that the measure of this set is always zero and that
its fractal dimension is between 1 and 2, and in this paper we give a numerical confirmation
of this fact for the two Hamiltonians we explore.

Let us point out that when we write about the “generic” case we mean generic inside the
class of those particular kinds of systems and not among the class of all dynamical systems.
Indeed, if we look at this system from the point of view of dynamical systems on surfaces, the
system we are studying appears highly nongeneric; every open orbit of a generic dynamical
system on a surface is ergodic and therefore dense on it, while in our case the fact that open
orbits are strongly asymptotic to a straight line means that their closure fills only a genus-2
component of the surface (see Figure 2) no matter how large its genus is!

Curiously enough, loosely speaking, in our particular dynamical system class we meet the
“truly generic” behavior exactly in the nongeneric case, i.e., when B is such that EF = e1 = e2.
Indeed, for those directions no label is defined in general, unless they belong to the boundary
of some stability zone, and open trajectories fill components of higher genus, up to the whole
surface.

From these facts it is clear that knowing the geometry of the zones, their labels, and the
functions e1 and e2 gives us a complete knowledge of the asymptotic behavior of trajectories
and provides information about the fractal measure of its complement, the set of “ergodic-
like” directions. Even in the most elementary cases, though it is impossible to get analytical
expression for functions ei and l, a numerical analysis of the problem is necessary.
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It is important here to point out that without this picture in mind the task of describing
the behavior of open orbits as a function of the magnetic field direction seems hopeless, mainly
because there is no simple way to get the asymptotic direction from the analytical expression
of the orbit and numerical calculations become highly unreliable after the simpler cases.

The discovery of this underlying beautiful topological structure has made it possible to
write down an algorithm for the numerical exploration of the system. Indeed, from the analysis
of Zorich and Dynnikov, it turns out that to study the behavior of open orbits relative to 2-
and 3-irrational directions, it is enough to study it for close enough 1-rational directions,
because those directions belong to the same polygon and therefore correspond to the same
label, whose knowledge is enough to describe the asymptotic behavior of open orbits coming
from directions belonging to the same polygon. This is a huge improvement because open
orbits coming from 1-rational directions are periodic and therefore compact in T

3; i.e., it is
possible to numerically build the whole orbit.

Moreover, because the 2-cycle has only integer coordinates, an approximate computation,
if performed with an error smaller than .5, can lead to an exact result.

Our numerical study aims mainly at finding the first numerical evidence of the existence
of this fractal structure and evaluating its Minkowski fractal dimension [Fal97] in the simplest
smooth nontrivial case, namely, the function

f(x) = cos(x) + cos(y) + cos(z) .

We also repeat the calculations for a piecewise polynomial function with the same symmetries,
which allows us to go further from the analytical point of view.

3. The algorithm. Our ingredients are a triply periodic function H (Fermi function),
smooth or piecewise smooth, a noncritical value of it c (Fermi energy), the corresponding
smooth level surface M2

c = H−1(c) ∈ T
3 that we will always assume connected and of nonzero

genus in the following to avoid trivial cases, and a rational direction B ∈ RP2 (magnetic
field). We disregard any effect concerning magnetic breakdown and assume that our magnetic
field is strong enough to give rise to the phenomenon; i.e., it is at least of the order of ∼ 104

Gauss, but not strong enough to deform the Fermi surface, so the only free parameter left is
its direction.

The goal is to get the Miller index associated with B, i.e., the homology class of the 2-tori
(if they exist) on which lie the open orbits generated by B (see [NM98] for details). In other
words, we must find the three integer numbers h = (l,m, n) ∈ H2(T

3,Z) that represent the
integer irreducible homology class of the 2-torus embedded in T

3 on which the open orbits lie.
Let us remind the reader that all rational directions are “generic,” i.e., they belong to some

polygon, so that in our setting if there are open orbits, they must lie on a genus-2 component
of M2

c . In other words, we know a priori that in all cases we are going to explore numerically
we will never meet any “ergodic-like” behavior.

The topological picture that corresponds to the case of open orbits for rational B (see
[Dyn99] for a more thorough discussion with proofs) goes as follows. Let us consider the system
from the point of view of foliations: as the system is conservative, the 1-form ω ∈ Ω1(M2

c )
induced by B can have only two kinds of critical points—saddles (that are always of “figure
eight” type because all leaves are compact in T

3) and foci. Moreover, it is easy to imagine
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Figure 3. An example of the splitting in 2-tori and cylinders of a surface of genus 7 under the action of a
constant magnetic field.

how every focus is associated to a saddle in such a way that one of the two singular loops of
the saddle (or their union) is homotopic to zero through the very same foliation in circles that
surround the focus. As we are interested only in open orbits, we can totally disregard these
pairs that in some sense “cancel” each other so that at the end we are left finally only with
saddles.

The saddles left can be of three kinds, depending on the number of singular loops that
are closed: if both are closed, then the saddle is internal to the set of closed loops and can
be disregarded; if one is open and the other is closed, then it is clear that this saddle lies at
the boundary between a cylinder of closed orbits and a genus-2 component of open orbits; if
both are open, then their union must be closed and again it lies at the boundary as before.
We point out that we totally disregard the case of saddle connections in part because it is
very difficult to find them numerically and in part because they are not generic anyway and
disregarding them should not result in a big loss.

In the nicest situation, in which all saddles left are half-open, the situation will be similar
to the one shown in Figure 3: if g is the genus of M2

c , then elementary topology tells us that
the number of these saddles is 2g − 2, and therefore we will have exactly g − 1 cylinders that
in turn can separate at most the same of number of genus-2 components if g − 1 is even or
one less otherwise.

Let us describe the idea of the algorithm in this setting: every 2-cycle in H2(T
3,Z) is

essentially an (oriented) integer plane, i.e., a plane orthogonal to an integer direction, so the
2-cycle homology class h of the “warped planes” is clearly in one-to-one correspondence with
the sublattice Λ ⊂ H1(T

3,Z) that it contains, and therefore to find h it is enough to evaluate
the homology class of any two nontrivial independent loops lying on the warped plane. To
spot the homology class of such loops, it is enough to look for those 1-cycles of M2

c that have
zero intersection number with the ones foliating the cylinders and finally send them in T

3

with i∗.
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So these are the tasks the we must perform: spot all critical points, find those such that at
least one of their singular loops is open, get the homology class (in M2

c ) of the corresponding
cylinders, find the symplectic orthogonal to this (i.e., the set of classes with zero intersection
with those), and send them in T

3 with i∗. The result of all this will be a pair of independent
irreducible loops in T

3 that span a two-dimensional lattice contained in a unique (modulo
sign) 2-cycle h ∈ H2(T

3,Z) that is the result we look for.

4. The NTC library. After the previous discussion, it is clear which capabilities we expect
from the software we are going to use to perform the numerical analysis. It must be able to
deal with the topology of a surface, i.e., it must have the possibility of dealing with simplexes
of dimension 0, 1, 2, and 3, and it must be able to perform topological operations like getting
a simplicial decomposition of the level set of a function of three variables (to get the Fermi
surface M2

c ), intersecting two simplicial complexes (to get the one-dimensional leaves on M2
c ),

identifying closed curves in T
3 (i.e., it must be able to deal with the periodic boundary

conditions that identify [0, 1]3 with T
3), evaluating intersection numbers between 2-cycles on

a surface, and finding the homology class of loops in T
3.

When we started this project, after a thorough search on the Internet we found several
C++ libraries able to deal with the topology of three- and lower-dimensional objects through
simplicial decompositions. None of them directly implements the specific functions we needed,
so we decided to write a C++ library on top of one of the preexisting ones to implement the
complex topological functions we needed and tried to make the code as reusable as possible
as it seems that such a library could be useful in the future for different numerical topological
problems. We called our library the Novikov torus conjecture (NTC) library.

After an accurate examination of all libraries available, we chose to use the library Visu-
alization ToolKit (VTK) [SML98] (http://www.vtk.org/). The main reasons for our choice,
apart from the fact that it is free of charge and open source, are the fast rate at which it is
developing and the existence of a very active mailing list about VTK-related problems and
relative solutions. Moreover, as VTK was intended primarily as a visualization tool based on
the standard C library OpenGL by SGI (http://www.opengl.org/, http://www.mesa3d.org/),
it easily allows us to visualize our surfaces and cycles, making the debugging process much
easier.

VTK already contains all functions needed to generate isolines, isosurfaces, and intersec-
tions between them, so we just had to add two kinds of functionality for dealing with T

3

topology and with singular slices.

The first method we implemented to deal with T
3 is purely two-dimensional. After nor-

malizing the period of the Hamiltonian to 1 in the three coordinate directions, to get the full
picture of the intersection we restrict our sampling to an opportunely chosen parallelogram
spanned by a Z

2 basis of the two-dimensional lattice given by the intersection of Z
3 with

the plane perpendicular to B, so that we get a picture that glues nicely on the boundary as
shown in Figure 4 (left). This procedure unfortunately tends to need too much RAM when
the components of B get big, say, around 400, because of the increase of the area of the basic
parallelogram.

Therefore, we implemented a second way that uses only the simplicial decomposition of
the Fermi surface in the cube [0, 1]3. The critical leaf now is obtained by starting on the plane

http://www.vtk.org/
http://www.opengl.org/
http://www.mesa3d.org/
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Figure 4. There are two ways to find orbits: (left) cutting the 3D triangulation of the Fermi surface
with periodic boundary conditions (only the closed loop of a saddle is shown); (right) restricting the plane
perpendicular to B to a basic cell and evaluating there the isolines of the Hamiltonian restricted to the plane
(here we show the complete leaf).

passing through the critical point and then following the loop. When the trajectory reaches
the boundary of the cube, the coordinates of the equivalent point are evaluated, and a new
plane is taken passing through that point, as shown in Figure 4 (right). The process stops
when the loop comes back for the second time to the critical point (as there are two critical
loops for every critical point). Analogously, methods have developed for the leaves to be able
to travel along it following the trajectory even through the points that touch the boundaries
of the cube.

The singular points, on the other hand, are a problem because the numerical approxima-
tions make it impossible to cut exactly through the right point, and the section will be always
either slightly above or slightly below the critical level. On the other side it seems very de-
sirable to retrieve the singular leaf with the right topology, because to evaluate the homology
class of the singular loops we need to walk over the loop starting from and ending with the
singular point, so we implemented a function that for every saddle looks at a neighborhood
of the singular point and performs within it a surgery to glue back the singular point to the
two critical loops.

Once the critical leaf has been found, then its homology class in the Fermi surface is
evaluated by counting (with the right signs) its intersections with planes that cut on the
surface the loops chosen to be the basis loops for H1(M

2
c ,Z). After all homology classes are

evaluated, simple algebraic steps retrieve the homology class corresponding to B. The present
implementation of the NTC library allows calculations only for surfaces of genus 3 and 4. We
hope to improve the library to make it able to deal with a surface of any genus. The complete
documentation for the NTC library together with the source code is available at the Internet
address http://ntc.sourceforge.net/.

5. Study of the trigonometric function. The function

f(x, y, z) = cos(2πx) + cos(2πy) + cos(2πz)

is the simplest trigonometric function that gives rise to a nontrivial (i.e., rank 3) embedding
of a surface in T

3 and the only one that had been studied so far.
The only critical values of f are ±3 and ±1, so all level sets ME = f−1(E) are homeo-

morphic to spheres for E ∈ (−3,−1) ∪ (1, 3). The level set M0 shown in Figure 5 shows that

http://ntc.sourceforge.net/
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Figure 5. The surface cos(2πx) + cos(2πy) + cos(2πz) = 0 restricted to the unit cube.

for E ∈ (−1, 1) all level sets are genus-3 surfaces embedded with rank 3 in T
3.

In particular, this means that every generic foliation of ME induced by a magnetic field B
will have at least four saddle points and that all saddles but four will be associated to some
center and hence will be homotopic to 0 in the surface. These critical points, which we call
“topological” as their origin is due to the topology of the surface and not to the particular
embedding, are at the bases of two cylinders that separate two genus-2 components of open
leaves.

Each level surface of this function is invariant under the symmetry group of the cube; this
action in turn induces an action on RP2 under which the fractal picture is invariant, so it is
enough for us to analyze its structure in one of the 48 domains in which the action subdivides
RP2.

In the projective chart of RP2 corresponding to the plane z = 1, one of these domains is
the triangle x ≤ y ⊂ [0, 1]2, so we will refer just to the square [0, 1]2 as our “phase space”
from now on. On this square the picture of stability zones will be symmetric with respect to
the diagonal, a fact that will be used to check the consistency of our algorithm.

Another symmetry, due to the fact that the cosine is an even function, implies that all
level sets are symmetric with respect to the origin. It follows that the four topological saddles
are divided into two symmetrical pairs that define one cylinder each. In fact, we can assign to
every closed (in R

3) orbit a plus or minus sign, according to whether it bounds a region where
f assumes, respectively, values smaller or bigger than the one assumed on the loop. (These
two different kinds of loops are called “electrons” and “holes” in physics literature.)

This sign is invariant by homotopy, so the same sign is associated to the whole cylinder
and is shared by the two critical loops at the two bases. As the symmetries with respect to the
center do not switch their sign, it is clear that every pair of symmetric critical points defines
one of the two cylinders.

Finally, the identity cos(2πx) = − cos[2π(1/2− x)] induces a symmetry between different
level surfaces; namely, the surface Mc is obtained from M−c through a translation and a
reflection with respect to the origin. As the foliation paB

a = const is invariant by these two
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operations, it is clear that the existence of open orbits at energy c implies the existence of
open orbits at energy −c so that the interval for which any direction gives rise to open orbits
(that is closed, connected, and nonempty by [Dyn97]) has the form [−E,E].

The surface M0 hence plays a very special role, as at energy c = 0 every direction gives rise
to open orbits and so every “stability zone” reaches here its biggest size. This means that to
study the fractal on RP2 corresponding to this function it is enough to study the level c = 0,
while in general it would be needed to check several different energies for every direction of B
to find which homology class, if any, is associated to it.

Moreover, this means that at every energy different from 0 there is no common point
between boundaries of different zones, as every zone gets strictly smaller at every change of
energy. In the limit for the energy that goes to −1 or 1, all zones tend to disappear as above
1 or below −1 the level surface of f is a sphere.

Let us now examine in more detail the case of 0 energy. It is easy to verify that this
surface has curvature everywhere negative except in the eight points (±.5,±.5,±.5) in which
it is 0. This means that for every direction different from (±1,±1,±1) we will have exactly
four critical points, all of saddle type because of the topological constraints.

The analytical expression of the critical points for a generic E ∈ (−1, 1) is very compli-
cated, but it gets much simpler in the most interesting case, namely, E = 0. Their expression
in Cartesian coordinates (a, b) ∈ [0, 1]2 is

x1(a, b) =
1

2π
sin−1(aα(a, b)) ,

y1(a, b) =
1

2π
sin−1(bα(a, b)) ,

z1(a, b) =




1

2
− 1

2π
sin−1(α(a, b)) , a ≤ b ,

1

2π
sin−1(α(a, b)) , a ≥ b ,

(x2, y2, z2) =

(
1

2
,
1

2
,
1

2

)
− (x1, y1, z1) ,

(x3, y3, z3) =

(
1

2
,
1

2
,
1

2

)
+ (x1, y1, z1) ,

(x4, y4, z4) = (1, 1, 1) − (x1, y1, z1) ,

α(a, b) =

√
2
√
a4 + b4 + 1 − a2b2 − a2 − b2 − (a2 + b2 + 1)

a4 + b4 + 1 − 2a2b2 − 2a2 − 2b2
.

It is easy to realize that the averaged Euler characteristic χB (c) = 〈B, γ(c)〉, where γ(c) =∑
wixi(c) is the sum over all critical points weighted by the Dynnikov index wi equal to the

“Hamiltonian” index of the critical point (as 0 of the 1-form—see [Dyn97]) times 〈∇xi
f,B〉,

is identically 0 for c = 0.
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Figure 6. The disappearance of a cylinder at the boundary of the stability zone (0,0,1): On the left the
cylinder has nonzero height, in the central picture the two bases collapse one over the other, and in the third
one the cylinder has disappeared, substituted by a new one relative to the stability zone (1,2,4).

This fact is also clear from the relation χB (c) =
∑

h+ −∑
h−; i.e., the averaged Euler

characteristic is equal to the sum of the height of cylinders of “positive” closed leaves (the
ones on which the gradient points to the exterior of the loop) minus the height of cylinders of
“negative loops.”

By the symmetry at c = 0 that exchanges “electrons” with “holes,” i.e., positive cylinders
with negative ones, it is clear that the sum is zero, while it is negative for c > 0 and positive
for c < 0. This corresponds to the fact that all “ergodic” or “nongeneric” directions appear
just at energy 0, as the nullity of the averaged Euler characteristic is a necessary condition
for the appearance of these directions.

That there could be no “ergodic regime” for energies different from 0 was also clear from
the fact that all energy intervals [e1(B), e2(B)] for which open orbits exist are of the form
[−e, e]; “ergodic” directions correspond to the case of length 0 of this interval, which in this
case implies e1 = e2 = 0.

Now let us see what is possible to do “by hand” about stability zones at energy 0. As
we have the explicit analytical expression for all critical points, we can use the following
procedure: first, we make sure that a direction (a, b) is “generic,” i.e., that it is inside some
stability zone, for example, by looking at the plane section generated by the NTC library or
by any computer algebra program like Mathematica and verifying that just one of the loops
is homotopic to 0. (At energy 0 it is enough to examine just one of the critical points because
of the symmetry.)

Then we choose one critical point, say, p1 = (x1, y1, z1), inside the cube [0, 1]3 and follow
“vertically” the cylinder of closed orbits until we reach the second base point, as shown in
Figure 6. As we observed before, the second base point p must be symmetrical with respect
to the origin, namely, the one we called p4, so in the covering its coordinates will be of the
form p4 + (l,m, n). Equivalently, going from p1 to p4 inside the cylinder and coming back to
p1 through the segment that joins them inside the cube will produce a loop of homology class
(l,m, n) in T

3. As at the boundary of a zone both cylinders have height 0, i.e., the two bases
belong to the same leaf, it follows that the boundary of any zone is a subset of the curves
{〈B, p1 − p4 − (l,m, n)〉 = 0}(l,m,n)∈Z3 .

By the topological stability of curves homotopic to 0, this triple of integers depends con-
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Figure 7. A change of cylinder inside a stability zone. On the left is shown a critical leaf at the base of a
cylinder; the critical point is p1 � (0.035, 0.463, 0.25). At the opposite base lies the critical point p = p4+(0, 0, 1).
The middle picture shows what happens at the boundary between the two stability zones of cylinders; namely,
the point p1 has a saddle connection with p2. The picture on the right shows the base of the new cylinder. At
one base still lies the point p1, but at the opposite one now lies p4 + (1, 1, 0).

tinuously on the magnetic field, so it is locally constant. The number of different triples inside
a single stability zone determines the number of sides of the zone as shown in Figure 8.

The cylinder identified by p1 and p4 will disappear either when its height goes to 0 or when
it gets substituted by a new one; in the first case it means that we reached the boundary of
the stability zone.

In the second case it happens that either two different cylinders collide and mutually
exchange one of their bases or a single cylinder collides with itself and the base point is
exchanged with one equivalent to it but in a different position (see Figure 7 and Tables 1(1)–
1(9)).

In Figure 8 we show what happens in the case of the zone (2, 4, 5). There are three
different kinds of cylinder, labeled by (−3, 3,−2), (0, 0, 1), and (−4, 2,−1), so the zone is a
triangle divided inside in three subzones. At the boundary between the first and the second
subzone, the change is determined by the appearance of a saddle connection between p1 and
p2 + (−1, 2,−1). At the boundary between the first and the third, we have an analogous
situation between p1 and p2 + (−3, 3,−1), and at the boundary between second and third we
have instead the appearance of saddle connection of p1 with itself, precisely with p1+(2,−1, 0).

In Table 3 and also in the other pictures with smaller resolution, it is possible to recognize
in many stability zones the boundaries between subzones in which p1 has a saddle connection
with itself, as in these points the 2-tori filled by open orbits have rank 1 and so these points
are not included in the data and the stability zone is cut by a segment of straight line. It is
easy to check that the same straight line, whose equation is la + mb + n = 0 for p1 having a
saddle connection with p1 + (l,m, n), cuts several (possibly infinite) zones.

These rank-1 genus-2 components survive energy changes longer than the rank-2 ones;
i.e., we still find them when the rest of the zone has disappeared, but they disappear for any
generic perturbation of B. A further confirmation of the accuracy of our algorithm is given by
the perfect agreement between the segment found analytically for zone (2, 4, 5) shown above
and the one that is possible to see in Table 3.

All techniques described above allow us in principle to find analytically all boundaries of
stability zones and the boundaries of their subzones, even though they do nothing to help
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Table 1
To illustrate the phenomenon of the change of cylinder type inside a stability zone, we show what happens

in case of the zone (2, 4, 5) shown in Figure 8. 1–3: In the first row we move the direction of B from subzone I
to subzone III. In the central picture we reach the boundary between the subzones, at which point p1 has a saddle
connection with point p2 +(−3, 3,−2). 4–6: In the second row we move B from subzone III to subzone II. This
time on the boundary p1 has a saddle connection with a copy of itself separated by a 1-rational vector (2,−1, 0).
7–9: In the last row we move B from subzone I to subzone II. At the boundary, p1 has a saddle connection
with p2 + (1,−2, 1).
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Figure 8. The “cylinder” structure of the zone (2, 4, 5). Keeping fixed the critical point of one of the bases
of the cylinder, say, p1, in subzone I in the second base we find the critical point p4 + (−3, 3,−2), in subzone
II the critical point p4 + (0, 0,−1), and in subzone III the critical point p4 + (−4, 2,−1). All three cylinders
are formed by closed loops that have the same homology class in M0, namely, (2, 4, 5) (using coordinates with
respect to the natural base in ker i∗). In Tables 1(1)–1(9) are shown the three kinds of cylinder corresponding
to the three internal subzones and the way they transform when the magnetic field direction crosses the internal
boundaries.

us determine which homology class is associated with them; this quantity is easily obtained
through our library. The main problem is that we did not find any way to put these procedures
in a simple algorithm for letting a computer do the job, so it has to be done “by hand.”

Anyway, to be able to get this analytical expression does not seem to be crucial in itself.
With our NTC library we can obtain a good approximation of the interior of any stability
zone by sampling the square [0, 1]2 with step 1/N in both directions. In that way we will get
for every point (m/N,n/N), 0 < m,n ≤ N , the homology class of the stability zone it belongs
to (if any). It is good though to have such analytical expressions as they provide a way to
double check the accuracy of our algorithm by comparing the interior of the zone found with
the NTC library with its analytical boundary.

We initially ran our program with resolution N = 100 for energies E = 0,−.1,−.2,−.3,
−.5,−.7,−.9 and found the pictures we show in Tables 5–10. In Table 4 are shown the
labels associated to the biggest zones together with their boundaries found analytically. The
boundaries are also drawn in Table 5 to show the very good agreement with them of numerical
data found using the NTC library. After trying several different machines with different
operating systems, it turned out that the fastest machines available to us were Pentium II
Linux machines, so we ran all our simulations on them. Every sampling with N = 100
resolution takes around 12 hours of CPU time.
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Table 2
The fractal picture in the whole projective space RP2 obtained at a resolution N = 103. Of the ∼ 3 · 104

zones found, just the ones with at least 10 points (∼ 1000) are shown. The square has been obtained by just
symmetrizing the triangular picture obtained. To get this picture, we used five Linux machines with Pentium II
CPUs for ∼ three weeks. It is possible to get the homology class corresponding to the biggest zones comparing
this picture with Table 4. From these data has been extrapolated a fractal dimension of d � 1.77 for the set of
“ergodic” directions.

In Table 3 are shown the data found with the NTC library at resolution N = 1000. The
calculation explored just the upper triangle b ≥ a ⊂ [0, 1]2; it ran ∼ 3 weeks on 5 Linux
machines with Pentium II CPUs and found ∼ 3 · 104 distinct stability zones. In Table 3 we
show just the 1066 zones containing at least 10 points and then we extend the picture by
symmetry to the whole square. In Table 2, we extended the picture to the upper half of the
sphere by symmetry to show the global pattern of the fractal.

5.1. Evaluation of the fractal dimension. One of the most standard procedures to get
the fractal dimension of a set is to evaluate its “box counting” dimension [ASY96, Fal97]. To
double check our results we used two different methods to get this estimate.

The first method comes directly from the definition; namely, we divide the square into
22n squares of area 1/22n and count how many of them we need to cover the fractal (i.e., the
white spots in Table 3). In Figure 10 we show the data for n = 1, . . . , 10.

After we discard the last two terms, which we probably cannot evaluate well enough
because of the finiteness of our resolution, we find that the slope that minimizes the rms in
a linear fitting of the above plot is d � 1.78.

The other method we used is the following: after having fixed a number r > 1, we count for
every n how many zones have area between r−n and r−n−1. Let us call this number Nn. Then
as n → ∞, the ratio between logr(Nn) and n converges for fractals for which that dimension
is well defined to the box counting dimension divided by the dimension of the ambient space
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Table 3
The fractal picture in the square [0, 1]2 obtained at a resolution N = 103. Of the ∼ 3 · 104 zones found,

just the ones with at least 10 points (∼ 1000) are shown. The square has been obtained by just symmetrizing
the triangular picture obtained. To get this picture, we used five Linux machines with Pentium II CPUs for
∼ three weeks. It is possible to get the homology class corresponding to the biggest zones comparing this picture
with Table 4. From these data has been extrapolated a fractal dimension of d � 1.77 for the set of “ergodic”
directions.

[Fal97]. The plot in case r = 2 is shown in Figure 11.

In this case, the global behavior is much less linear, but it is clear that the first points
have no real meaning because there the scale is still too big, and it is safe also to discard the
last ones as there we are probably at a scale too small for the resolution of our picture. After
discarding these boundary points, we are left with a plot which can be well approximated by
a linear function with slope α � .91.

This suggests that d � 1.82, which is in very good agreement with the previous estimate
for the fractal box counting dimension of the set of “ergodic” directions.

6. Study of the piecewise quadratic function. Using degree-2 polynomials, we can build
a function that has the same properties of the previous one but is much easier to deal with
analytically. The function will not be any more globally smooth as the second derivatives will
not glue smoothly, but it still will be globally C1 and piecewise quadratic.

In particular, it is possible to build a piecewise polynomial function of degree 2 that allows
us to evaluate the expression of all critical points at every energy so that we will be able in
principle to verify the agreement of our algorithm with every zone at energies different from
zero and to find analytical expressions for topological quantities that depend on them like the
averaged Euler characteristic.
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Table 4
Boundaries of a few stability zones together with their homology class. All these boundaries have been

obtained with the technique explained in section 5, while the associated homology class has been obtained nu-
merically, except in the trivial case of (0,0,1). Below are listed the zones with biggest sizes, and their area
forms the data found at N = 1000.
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The function we used is the following:

f(x, y, z) = F (x) + F (y) + F (z) , F (x) =

{
8(2[x] − 1)[x] , [x] ∈ [0, .5] ,

−8(2[x] − 1)([x] − 1) , [x] ∈ [.5, 1] ,

where [x] is the fractional part of x for x ≥ 0 and F is extended to (−∞, 0) by F (−x) = −F (x).

Its level sets are very similar to the ones of the previous function. Figure 9 is a picture
of the level N0 = f−1(0), which has the same peculiarity of the level set M0 studied in the
previous section.

As before, this function in the range of energies (−1, 1) gives rise to genus-3 surfaces
embedded in T

3 with rank 3, so just four saddles of the foliation contribute to the topology of
our system. All other saddles (if any) will be linked to a center and hence will be homotopic
to 0 in the surface and easily eliminated from the surface through a homotopy naturally
generated by the center itself.
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Table 5
Map of the stability zones at energy 0 in the square [0, 1]2 sampled at a resolution N = 100. Nearly 700

zones are found at this resolution; in this picture we show just the 74 that contain at least 5 points. The
boundary found analytically is also shown for a few zones to show the perfect agreement with the numerical
results.
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Table 6
Map of the stability zones at energy E = −.1 in the square [0, 1]2 sampled at a resolution N = 100. Just

48 zones remain at this energy, and here we plotted just the 34 with more than 1 point.
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Table 7
Map of the stability zones at energy E = −.2 in the square [0, 1]2 sampled at a resolution N = 100. Just

12 zones remain, and we show all of them in this picture.
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Table 8
Map of the stability zones at energy E = −.3 in the square [0, 1]2 sampled at a resolution N = 100. All 8

zones found are shown.
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Table 9
Map of the stability zones at energy E = −.5 in the square [0, 1]2 sampled at a resolution N = 100. At

this energy just the four zones shown remain.
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Table 10
Map of the stability zones at energy E = −.9 in the square [0, 1]2 sampled at a resolution N = 100. Just

the two biggest zones are now visible.
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Table 11
Picture analogous to the one in Table 4 in the case of the piecewise quadratic function.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(0,0,1)

(1,1,1)

(1,2,2)

(2,1,2)

(0,1,2)

(1,0,2)

(1,3,3)

(3,1,3)

(3,2,4)

(2,3,4)

(1,4,6)

(1,3,5)

(3,1,5)

(4,1,6)

(0,2,3)

(2,0,3)

(1,4,4)

(2,4,5)

(4,2,5)

(4,1,4)

(1,5,5)

(5,1,5)

(1,2,4)

(2,1,4)

Table 12
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = 0 with

resolution N = 100. Of the 708 zones found, just the 74 with more than 5 points are shown. The boundary
found analytically as explained in section 5 is also shown for a few zones to show the perfect agreement with
the numerical results. They are very close to the boundaries of trigonometric function shown in Table 4, and
the homology zones that label them are exactly the same as in the trigonometric case.
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Table 13
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.1

with resolution N = 100. We show here all 42 zones found together with the boundaries of the biggest ones.
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Table 14
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.2

with resolution N = 100. All 14 zones found are shown together with boundaries of the biggest ones.
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The analytical expression for the critical points for E ∈ [−1, 0] are the following:

x1(a, b, E) =




a
√

(1+E)

4
√

1−a2+b2
, b2 − a2 ≥ E ,

a
√

(1−E)

4
√

1+a2−b2
, b2 − a2 ≤ E ,

x4 = 1 − x1 ,

y1(a, b, E) =




1
2 − b

√
(1+E)

4
√

1−a2+b2
, b2 − a2 ≥ E ,

1
2 − b

√
(1−E)

4
√

1+a2−b2
, b2 − a2 ≤ E ,

y4 = 1 − y1 ,

z1(a, b, E) =




1
2 −

√
(1+E)

4
√

1−a2+b2
, b2 − a2 ≥ E ,

1
2 −

√
(1−E)

4
√

1+a2−b2
, a2 − b2 ≤ E ,

z4 = 1 − z1 ,

x2(a, b, E) =




1
2 − a

√
(1−E)

4
√

1−a2+b2
, a2 − b2 ≤ E ,

1
2 − a

√
(1+E)

4
√

1+a2−b2
, a2 − b2 ≥ E ,

x3 = 1 − x2 ,

y2(a, b, E) =




b
√

(1−E)

4
√

1−a2+b2
, a2 − b2 ≤ E ,

b
√

(1+E)

4
√

1+a2−b2
, a2 − b2 ≥ E ,

y3 = 1 − y2 ,

z2(a, b, E) =




√
(1−E)

4
√

1−a2+b2
, a2 − b2 ≤ E ,

1
2 −

√
(1+E)

4
√

1+a2−b2
, a2 − b2 ≥ E ,

z3 = 1 − z2 .

The expression of boundaries of all zones in this case is very simple. For example, the
boundary of the zone labeled by (0, 0, 1) at energy E is the union of the segments of the
ellipse (1 + E)a2 + (3 − E)b2 = 1 + E for b ≥ a and (1 + E)b2 + (3 − E)a2 = 1 + E for
b ≤ a, and the boundary of the zone corresponding to (1, 1, 1) is the union of the segments
8a− (3−E)a2 − (1+E)b2 = 3−E for b ≥ a and 8b− (3−E)b2 − (1+E)a2 = 3−E for b ≤ a.

Using the same triples of integers used for boundaries in Table 4, we have been able to
find with a few modifications the corresponding zones for this function. As shown in Table 11,
to these zones correspond exactly the same homology classes of the previous picture, as we
expected given the similarity between the two functions.

We analyzed numerically the stability zones in the square [0, 1]2 for the same energies,
finding the data reported in Tables 12–18. At every energy we included in the picture also
the boundary of a few zones to show the very good agreement of numerical data with the
analytical results.
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Table 15
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.3

with resolution N = 100. All 10 zones found are shown together with boundaries of the biggest ones.
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Table 16
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.5

with resolution N = 100. All 4 zones found are shown together with their boundaries.
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Table 17
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.7

with resolution N = 100. Just the two main zones survive at this energy.
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Table 18
Map of the stability zones for the piecewise quadratic function in the square [0, 1]2 sampled at E = −.9

with resolution N = 100. Just the two main zones survive at this energy.
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Table 19
The fractal picture for the piecewise quadratic function in the square [0, 1]2 obtained at a resolution N =

103. Of the ∼ 3 · 104 zones found, just the ones with at least 10 points (∼ 1000) are shown. The square has
been obtained by just symmetrizing the triangular picture obtained.

Using the data found at resolution 1000 (Table 19) we evaluated again the fractal dimen-
sion of the set of ergodic directions with the two methods used for the trigonometric case,
finding very similar results: the box counting method gives us an estimate of d � 1.77, and
from the growth rate of the sizes of the stability zones we get d/2 � .9. Therefore, the two
different estimates are in very good agreement also in this case and suggest a fractal dimension
around d = 1.8.

7. Conclusions. We produced a C++ library that implements all functions needed to
numerically analyze the topological behavior of orbits of the Poissonian multivalued dynamical
system coming from the motion of quasi electrons in a normal metal under a strong magnetic
field.

We checked our code on two “toy functions” that produce genus-3 surfaces embedded in T
3

with rank 3 and verified its correctness by comparing numerical data with the analytical data
that it was possible to get for the two simple functions chosen, finding a very good agreement
between the two.

Finally, we used the library to find a picture of the two fractals corresponding to each func-
tion and evaluated numerically their fractal dimension to verify that, according to Novikov’s
conjecture, its value lies strictly between 1 and 2.
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Figure 9. The surface N0 = f−1(0) in T
3 � [0, 1]3/ ∼. Two copies of three basic cycles nonhomotopic to

0 in T
3 are shown, obtained through intersection with planes passing through the center of the unit cube.
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Figure 10. Plot of the log in base 2 of number of squares needed to cover the fractal with squares of size
22n versus the size scale n.
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Figure 11. Plot of the log in base 2 of number of zones of area between 2−n and 2−n−1 versus the size
scale n.
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Figure 12. Plot of the log in base 2 of number of squares needed to cover the fractal with squares of size
22n versus the size scale n.
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Figure 13. Plot of the log in base 2 of number of zones of area between 2−n and 2−n−1 versus the size
scale n.
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Abstract. Many applications give rise to dynamical systems in the form of a vector field with a phase space
of moderate dimension. Examples are the Lorenz equations, mechanical and other oscillators, and
models of spiking neurons. The global dynamics of such a system is organized by the stable and
unstable manifolds of the saddle points, of the saddle periodic orbits, and, more generally, of all
compact invariant manifolds of saddle type. Except in very special circumstances the (un)stable
manifolds are global objects that cannot be found analytically but need to be computed numerically.
This is a nontrivial task when the dimension of the manifold is larger than one.

In this paper we present an algorithm to compute the k-dimensional unstable manifold of an
equilibrium or periodic orbit (or a more general normally hyperbolic invariant manifold) of a vector
field with an n-dimensional phase space, where 1 < k < n. Stable manifolds are computed by
considering the flow for negative time. The key idea is to view the unstable manifold as a purely
geometric object, hence disregarding the dynamics on the manifold, and compute it as a list of
approximate geodesic level sets, which are (topological) (k − 1)-spheres. Starting from a (k − 1)-
sphere in the linear eigenspace of the equilibrium or periodic orbit, the next geodesic level set is
found in a local (and changing) coordinate system given by hyperplanes perpendicular to the last
geodesic level set. In this setup the mesh points defining the approximation of the next geodesic
level set can be found by solving boundary value problems. By appropriately adding or removing
mesh points it is ensured that the mesh that represents the computed manifold is of a prescribed
quality.

The algorithm is presently implemented to compute two-dimensional manifolds in a phase space
of arbitrary dimension. In this case the geodesic level sets are topological circles and the manifold
is represented as a list of bands between consecutive level sets. We use color to distinguish between
consecutive bands or to indicate geodesic distance from the equilibrium or periodic orbit, and we also
show how geodesic level sets change with increasing geodesic distance. This is very helpful when one
wants to understand the often very complicated embeddings of two-dimensional (un)stable manifolds
in phase space.

The properties and performance of our method are illustrated with several examples, including
the stable manifold of the origin of the Lorenz system, a two-dimensional stable manifold in a four-
dimensional phase space arising in a problem in optimal control, and a stable manifold of a periodic
orbit that is a Möbius strip. Each illustration is accompanied by an animation (supplied with this
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circuit, and any number of periodically forced systems; see, for example, the text books
[8, 24, 30], further references therein, and also the examples in section 4. In order to understand
the global dynamics of such a system it is necessary to compute its equilibria, periodic orbits,
and possibly other normally hyperbolic invariant sets, such as invariant tori. If these objects
are of saddle type, then their stable and unstable manifolds are also important. These global
manifolds organize the dynamics: stable manifolds (of codimension one) may form boundaries
of basins of attraction, and intersections of stable and unstable manifolds are responsible for
complicated dynamics and chaos. For example, the sensitivity of the system to perturbations
depends largely on the size of the basins of attraction. Hence, the knowledge of how the global
stable manifolds that are basin boundaries are embedded in phase space provides information
that cannot be obtained from local inspection alone. These global objects can generally be
found by numerical methods only.

To fix notation we consider a vector field in its general form

dx

dt
= f(x),(1.1)

where x is from an n-dimensional phase space, which we take to be R
n for simplicity, and

f : R
n �→ R

n is sufficiently smooth. This means in particular that a stable manifold of (1.1)
can be computed as an unstable manifold by reversing time. Note that we consider all possible
parameters of the vector field to be constant. In order to see what happens to the manifolds
under variation of parameters, one will have to compute them for individual fixed values of
the parameters.

To keep this introduction simple, we explain the basic idea with the example of an unstable
manifold of a saddle point x0 ∈ R

n. Suppose that the Jacobian Df(x0) of (1.1) has 1 < k < n
eigenvalues with positive real parts and (n− k) eigenvalues with negative real parts (counted
with multiplicity). The unstable invariant manifold theorem (see, for example, [24, 27]) guar-
antees that in a neighborhood of x0 there exists the local unstable manifold W u

loc(x0), which
is tangent to the unstable (generalized) eigenspace Eu(x0) of Df(x0) at x0. Furthermore,
W u

loc(x0) is as smooth as f . The local unstable manifold W
u
loc(x0) can be globalized by apply-

ing the flow φt of (1.1) to obtain the k-dimensional (immersed) unstable manifold

W u(x0) = {x ∈ R
n | lim

t→−∞φt(x) = x0}
= lim

t→∞φt(W u
loc(x0)).

This automatically implies that W u(x0) is also as smooth as f .
It is a natural idea to start close to x0 with a small topological (k − 1)-sphere Sδ (a

topological circle for k = 2) approximately in W u
loc(x0) at distance δ from x0 and then “grow”

this sphere to obtain W u(x0) further away from x0. In practice, we take Sδ ⊂ Eu(x0), but
one could also start with a higher-order approximation of W u(x0) close to x0.

In the special case k = 1 of computing a one-dimensional manifold, the initial (k − 1)-
sphere Sδ consists of two points (approximately) on W u

loc(x0) at distance δ from x0, one on
each side of W s

loc(x0). These two points can be grown efficiently by integration, that is, by
evolving them with the flow φt of (1.1). In other words, computing one-dimensional unstable
manifolds simply amounts to integrating from two suitable initial conditions.
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The situation becomes much more complicated for k ≥ 2. One may be tempted to simply
evolve Sδ under the flow φt of (1.1) also in this case. The idea behind this is thatW u(x0) can be
represented as the family {φt(Sδ)}t∈R of all t-images of Sδ, parametrized by the (integration)
time t. However, Sδ deforms very rapidly under the flow φt due to the dynamics on W u(x0).
For example, it stretches out along the strong unstable direction (if present) and develops very
large aspect ratios. Even when all eigenvalues have about the same strength, the initial circle
Sδ generally gets distorted a lot further away from x0 due to nonlinear effects; see the example
in section 4.4. As a consequence, any initial mesh representing Sδ generally deteriorates so
rapidly that simply evolving it under the flow does not result in a good mesh representation
of W u(x0).

Computing higher-dimensional stable and unstable manifolds of vector fields is quite chal-
lenging and an active field of research. A number of algorithms have been devised for this
task [4, 5, 7, 9, 10, 12, 16, 17, 20, 22, 25, 26]. The method in [4, 5] is special as it computes
a box covering of W u(x0); it has been implemented for arbitrary n and is independent of
k. All other algorithms are implemented specifically for the case of two-dimensional mani-
folds and produce a triangulation of the manifold that is built up by starting near the saddle
point. These methods differ in the way they deal with the problem of mesh deterioration; see
section 2 for a more detailed review.

In this paper we present an algorithm for computing a k-dimensional unstable manifold of
a vector field with an n-dimensional phase space. Its formulation in terms of geodesic level sets
further develops previous work in [22] for the specific case when k = 2 and n = 3. The method
is now implemented for the case k = 2 and any n. This includes the case of two-dimensional
stable and unstable manifolds of periodic orbits.

The key idea is to step completely away from evolving an existing mesh under the flow.
To this end we consider W u(x0) purely as a geometric object, namely, as a family {Sη}η∈R+

of geodesic level sets parametrized by their geodesic distance η along the manifold from x0;
see section 2 for the precise definition. The manifold is grown by computing more and more
(approximate) geodesic level sets on it. We prove in section 5 for the first time that this leads
to a mesh whose quality can be guaranteed irrespective of the dynamics on the manifold.

Another goal of this paper is to illustrate and discuss the performance of our algorithm with
several examples and to highlight its usefulness for the study of systems arising in applications.
The interested reader is encouraged to look ahead to section 4 where we show

1. the two-dimensional stable manifold of the origin of the Lorenz system with parameters
chosen such that the attractor is a figure-eight shaped periodic orbit,

2. the two-dimensional stable manifold in a four-dimensional phase space arising in an
optimal control problem,

3. the two-dimensional stable manifold, in fact a Möbius strip, of a periodic orbit in the
ζ3-model,

4. a new concocted example that illustrates a possible geometric limitation of our method,
and

5. the two-dimensional stable manifold of the origin of the Lorenz system for the standard
choice of parameters, where we show how the information of the geodesic distance
can be used to understand how the manifold interacts with the well-known Lorenz
attractor.
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All examples are accompanied by animations.

2. Background and concepts. As was already mentioned in the introduction, there are
several possibilities for parametrizing a k-dimensional unstable manifold W u(x0) of a saddle
point x0. By definition, W

u(x0) consists of orbits that can be parametrized by their intersec-
tion points with a suitable small (k − 1)-sphere Sδ in W u

loc(x0). The dual parametrization is
given by the t-images of Sδ, that is,

W u(x0) = {φt(Sδ)}t∈R,(2.1)

which has the advantage that its parameter space is one-dimensional. Because it is given
by the dynamics, this parametrization has a number of nice properties. All elements of this
parametrization are smooth topological (k − 1)-spheres, just as Sδ. This property holds no
matter what the manifold looks like or whether it converges to an attractor or not. (In the
special case k = 2 this means that the two-dimensional manifold W u(x0) is a one-parameter
family of smooth simple closed curves.) However, as discussed in the introduction, the problem
is that the smooth topological (k−1)-spheres of this parametrization generally deform rapidly
under the dynamics when t is increased. This is why simply computing (approximations to)
φt(Sδ) for a discrete set of integration times is completely impractical as a means of obtaining
a mesh approximation of W u(x0). Indeed, a strategy is needed to counteract this problem
when a topological (k − 1)-sphere is evolved under the flow.

Appropriate methods have been designed by Guckenheimer and Worfolk [10], Worfolk [34],
and Johnson, Jolly, and Kevrekidis [16] and implemented for the case when k = 2 and n = 3
of growing topological circles to cover a two-dimensional manifold, starting with Sδ. Guck-
enheimer and Worfolk [10] and Worfolk [34] rescale the vector field so that the tangential
component to the last circle is practically zero and the circle is grown in the radial direction
by integration. The idea is to move from one approximate geodesic level set to the next with
the help of the flow. This requires that the rescaled vector field points radially outward ev-
erywhere along the last circle, which is why this approach has difficulties when Df(x0) has
complex conjugate eigenvalues. Also, the first circle must be chosen such that this condition
is satisfied, which means that one may need to start with an ellipse rather than Sδ. Johnson,
Jolly, and Kevrekidis [16] use a parametrization by arclength of the trajectories in the product
of time and phase space. At each step of their computation the mesh points on the furthest
circle are integrated up to a specified arclength, leading to a new circle, on which a uniform
mesh is selected by interpolation between the integration points. The lack of control on the
interpolation error makes it difficult to assess the accuracy of the computation, a problem
that may be even more pronounced for k ≥ 3.

A different approach is to view the manifold as a family of orbits. Doedel [7] computes two-
dimensional manifolds by following orbits of, for example, prescribed arclength by continuation
with the package AUTO [6]. The angle of the orbit with a reference direction near the
equilibrium is free in the continuation process. The initial condition of each orbit lies again on
a small circle Sδ ⊂ Eu(x0). His method is very accurate and is particularly suited for the case
k = 2, where the manifold can be represented as a one-parameter family of orbits. However,
it does seem to be more difficult to generalize this to k ≥ 3. The method leads to an uneven
distribution of mesh points on the manifold, because many mesh points may be needed near
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the equilibrium to maintain the accuracy of the computation.

The method of Henderson [12] is similar in spirit but tries to better control the mesh by
using only the local information of the orbits. His method starts with integrating a particular
orbit together with higher-order manifold information. This results in a string of polyhedral
patches along the orbit, called a fattened trajectory. Then the new boundary of the computed
part of the manifold is found and the next fattened trajectory is added by starting from a
suitable point along this boundary. The computation stops when all fattened trajectories have
been computed up to a specified arclength from Sδ.

In the method by Guckenheimer and Vladimirsky [9] the unstable manifold is grown by
adding new mesh points locally. Their method is fast by keeping the integration of the vector
field to a minimum. It is implemented for the case k = 2 and adds a simplex locally to
the manifold at each step. All but one point of the simplex are known mesh points, and
the position of the new point is found by solving a PDE in an Eulerian framework, which
formalizes the invariance condition, with an upwind method. Where the next triangle is
added is determined in a clever way by the upwinding (essentially by the local direction of the
vector field). This allows one to compute the manifold, for example, up to a predetermined
arclength of the orbits on the manifold (which are approximated by the mesh structure).
Due to the upwinding, the algorithm does not produce fattened trajectories but tends to add
triangles in a way similar to a growth method.

A complementary approach is given by Dellnitz and Hohmann [4, 5]. Rather than growing
the manifold, they compute an outer approximation of the manifold inside a specified compact
region A. This method does not use any specific form of parametrization. They consider the
time-τ map of the flow of (1.1) for some fixed τ > 0 and first coverW u

loc(x0) with n-dimensional
boxes. This local box covering is then evolved in A to obtain a box covering of the connected
piece of W u(x0) in A that contains x0. This covering method is nonuniform and depends
on the dynamics on the manifold. The implementation is independent of the dimension k
of the manifold. The practical implementation of reliably detecting when the image of one
box intersects another box (for example, by using test points) remains a challenge already for
n = 3. If a priori bounds on the local growth rate of the vector field are available, a rigorous
(slightly larger) covering can be computed [18].

All above algorithms (and this includes our own) can, in principle, be used for higher-
dimensional manifold computations but present their own specific challenges of increased
computational complexity for k ≥ 3. Furthermore, visualizing higher-dimensional manifolds
is a problem, and no images of three-dimensional (un)stable manifolds have been published.

The conceptual idea behind the algorithm presented here is to use the parametrization
that is ideal from the geometrical point of view, irrespective of the dynamics given by the
flow on W u(x0). By this we mean the one-parameter parametrization whose elements are
“the best possible topological (k − 1)-spheres.” These are given by the spheres that consist
of points with constant geodesic distance dg inside W

u(x0) from x0. The geodesic distance
dg(x, y) is the arclength of the shortest path in W u(x0), called a geodesic, connecting x and
y, that is,

dg(x, y) := min
γ

{∫
γ
ds

∣∣∣∣ γ ⊂ W u(x0) is a path connecting x with y

}
.(2.2)
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This gives rise to the geodesic parametrization

{Sη}η>0, where Sη := {x ∈ W u(x0) | dg(x, x0) = η}(2.3)

mentioned before. This parametrization does not depend on the dynamics on W u(x0) but
only on its geometry.

Since W u(x0) is a smooth manifold tangent to E
u(x0) at x0, there exists 0 < ηmax ≤ ∞

such that Sη is a single smooth topological (k − 1)-sphere without self-intersections for all
0 < η < ηmax [32]. Our method (see section 3) can compute W

u(x0) up to ηmax.
It is possible that ηmax is finite. A trivial case is that the manifold converges to a regular

attractor, such as an equilibrium or periodic orbit. Our implementation deals with this case
by growing the manifold with different speeds in different directions, as is explained in [22].

More interesting is the situation when ηmax < ∞ even when the manifold does not converge
to an attractor. In the case k = 2 this occurs when for some ηc the circle Sηc self-intersects,
and Sη for η > ηc consists of two disjoint smooth closed curves. This means that there is a
point y ∈ W u(x0) with two different geodesics along which the geodesic distance ηc is realized.
We do not know of any model exhibiting this phenomenon, so we constructed an example of
a manifold with ηmax < ∞. Indeed, our algorithm stops when ηmax is reached; see section 4.4
and Figure 6. However, this geometric obstruction does not occur in nonconcocted problems
we examined. Moreover, it should be possible to restart the computation from the two disjoint
circles; see again section 4.4.

In fact, all methods that try to grow the manifold from an initial (k − 1)-sphere outward
in (approximately) constant steps, including those in [10, 16, 34], encounter this geometric
obstruction. It is the price for abandoning the parametrization {φt(Sδ)}t∈R, whose elements
are smooth topological (k − 1)-spheres in W u(x0), in favor of the geodesic parametrization
{Sη}η>0, whose elements naturally induce a regular discretization of W

u(x0) with a well-
controlled error. We make use of this property of the geodesic parametrization in section 5.

3. The general algorithm. The setup of the algorithm in [22] for the special case when
k = 2 and n = 3 generalizes to arbitrary k and n. In particular, as we will explain now, it is
still possible to find a new mesh point by continuation of a one-parameter family of well-posed
boundary value problems.

As before, we start from an initial level set Sδ in Eu(x0) at some prescribed distance δ
from x0 and then approximate a sequence of level sets {Sηi}0≤i≤l until a prespecified fixed
geodesic distance D from x0 is reached. In other words, η0 = δ and ηl ≥ D. Each level set Sηi
is approximated by a mesh Mi from which we form the simplicial complex Ci, which consists
of (k − 1)-simplices [29] (lines for a 1-sphere, triangles for a 2-sphere, etc.). Hence, Ci is a
piecewise linear continuous approximation of the (k − 1)-sphere Sηi at step i. A first piece of
the manifold W u(x0) (up to a prescribed geodesic distance D ≤ ηl) is approximated by the
k-dimensional simplicial complex C that is formed from the total meshM = ∪0≤i≤lMi in such
a way that the (k − 1)-simplices in Ci appear as faces of the k-simplices of C.

As start data M0 and C0 we choose a mesh representation of Sδ. The algorithm now
proceeds by adding new (k − 1)-spheres in steps. Suppose that we have computed Mi and
Ci so that we are at step i, where we want to find Mi+1 and Ci+1 that represent Sηi+1 with
ηi+1 = ηi +∆i.
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3.1. Finding a new point in Mi+1. For every point r ∈ Mi we define an (n − k + 1)-
dimensional hyperplane Fr with the property that it is “most perpendicular” to Ci at r. By
this we mean that the vectors normal to Fr can be expressed as averages of the vectors between
r and its direct neighbors in Mi. Independent of the dimension k of W

u(x0), the intersection
of W u(x0) with Fr locally near r is a well-defined one-dimensional curve. (Globally, this
intersection may be a set of disjoint one-dimensional curves.)

Consider now the following one-parameter family, parametrized by the integration time τ ,
of two-point boundary value problems of finding the orbits {φt(qr(τ)) | t ∈ [0, τ ]} satisfying

φ0(qr(τ)) = qr(τ) ∈ Ci,(3.1)

φτ (qr(τ)) = br(τ) ∈ Fr.(3.2)

We denote the initial condition in Ci by qr(τ) and the final point in Fr by br(τ). Then the
intersection curve W u(x0) ∩ Fr can be represented in good approximation (and locally near
r) as the one-parameter family br(τ), where br(0) = r.

What we need to find is the point br = br(τr) defined uniquely by the property that τr
is the smallest integration time τ for which || br(τ) − r ||= ∆i; that is, br is the first point on
W u(x0) ∩ Fr that lies at distance ∆i from r. To find br we start from the trivial solution
qr(0) = br(0) = r for τ = 0, which clearly satisfies the boundary conditions (3.1) and (3.2).
We then continue this solution in the continuation parameter τ while monitoring the test
function

∆i− ||br(τ)− r || .(3.3)

When we find the first zero of (3.3) for some τ = τr, the continuation stops and we set
br = br(τr).

3.2. Checking the guess for ∆i. In order to decide whether ∆i was appropriate, we
consider for each r ∈ Mi the curvature of the one-dimensional curve through r and the
corresponding points br ∈ Mi+1 and pr ∈ Mi−1. Here, pr is the mesh point that was used
to find r, that is, r ∈ Fpr . This is motivated by what is done for one-dimensional manifolds
in [21] and goes back to an idea of Hobson [13]. Let αr denote the angle between the line
through pr and r and the line through r and br. The step ∆i was acceptable if both

αr < αmax,(3.4)

∆i · αr < (∆α)max(3.5)

hold for all r ∈ Mi. In this case we accept Mi+1 and form the simplicial complex Ci+1 as the
next (k− 1)-sphere. On the other hand, if there is some r ∈ Mi such that either (3.4) or (3.5)
is not satisfied, then ∆i was too big. We discard Mi+1, decrease ∆i (in practice we halve it),
and compute a new Mi+1 at this smaller distance from Mi. The algorithm accepts Mi+1 after
all (with a warning message) when ∆i has already been decreased to a prespecified minimal
value ∆min.

If ∆i was acceptable, we usually set ∆i+1 = ∆i. However, if for every r ∈ Mi both αr
and ∆ · αr are well below the respective upper bounds in (3.4) or (3.5), say, less than αmin

and (∆α)min, respectively, then we try a larger ∆i+1 in the next step (in practice we set
∆i+1 = 2∆i). The parameters αmin, αmax, (∆α)min, and (∆α)max need to be specified before
a computation.
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3.3. Adding and removing mesh points. It is very important to maintain an accurate
approximation of Sηi+1 by the simplicial complex Ci+1, because this allows us to control
the interpolation error; see section 5. With our method for controlling the growth step size
∆i we ensure that the distance between Ci and Ci+1 is within the accuracy bounds of the
computation. However, we also need to make sure that, when neighboring points of Mi+1 are
too far away from each other inside this level set, a new point is added between them. To do
this we choose a suitable point in Ci between the two respective points inMi and then use the
method in section 3.1 to find a new point in Ci+1. In this way, we ensure that no interpolation
is performed between points that are further away from each other than a maximally allowed
and prespecified distance ∆F .

Similarily, when two points in Mi+1 come within a prespecified distance δF , we remove
one of them to ensure proper order relations between directly neighboring points.

3.4. Implementation details for k = 2. When the manifold W u(x0) is two-dimensional
it is parametrized by a family of (topological) circles Sη. The 1-simplices that form the
continuous objects Ci are line segments between neighboring points in Mi. The algorithm
grows W u(x0) by adding a new circle Ci+1 at each step, which means that a new band of
width ∆i of triangles is added to C. The simplicial complex C representing W u(x0) consists
of triangles that constitute the bands between consecutive circles Ci−1 and Ci.

The initial circle M0 is chosen in Eu(x0) at distance δ. As was explained in section 3.2,
the width of each band depends on the curvature of the manifold locally near the band, and
it is governed by αmin, αmax, (∆α)min, and (∆α)max. Extra points are added to Mi when
neighboring mesh points are further apart than ∆F and removed if they are closer than δF .
The implementation of this is quite straightforward for k = 2 because of the order structure
of the meshes Mi.

The boundary value problem (3.1)–(3.2) is presently solved with a shooting approach, for
which we use a fourth-order fixed time-step Runge–Kutta integration routine.

4. Examples. We now present a number of examples to discuss the properties of our
algorithm. In particular, we explain how the parametrization of the manifolds by geodesic
level sets can be used to gain insight into their often quite complicated geometry. All figures
have been rendered with the program Geomview [28], and each figure is accompanied by an
animation that is supplied with this paper.

4.1. The Lorenz system with an attracting orbit. We consider the well-known Lorenz
system [19]




ẋ = σ(y − x),
ẏ = !x− y − xz,
ż = xy − βz

(4.1)

for σ = 10, ! = 28, and the nonstandard value β = 0.4, for which there is an attracting
periodic orbit that encircles two saddle points. Figure 1 (a) shows the two-dimensional stable
manifold W s(0) of the origin.

The manifold W s(0) was computed with the following accuracy. The computation started
with 20 points on a circle in Es(0) of radius δ = 1.0 around the origin. Then new circles
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(a)

(b)

(c)

(d)

Figure 1. The stable manifold W s(0) of the Lorenz system for σ = 10, � = 28, and β = 0.4, computed up
to geodesic distance 66.28 (a). Close-ups near the attracting periodic orbit show the growth process: 24 bands
or geodesic distance 40.25 (b), 34 bands or geodesic distance 46.25 (c), and 49 bands or geodesic distance 54.75
(d).

were added at distances ∆i controlled by αmin = 0.3, αmax = 0.4, (∆α)min = 0.1, and
(∆α)max = 1.0; see sections 3.1 and 3.2. (For practical reasons a new circle was always
accepted if ∆i ≤ 0.01.) The mesh points on a circle are never more than ∆F = 1.0 or
less than δF = 0.25 apart. In total 75 circles were computed on W s(0); the last circle is
approximately at geodesic distance 66.28 from the origin, and it consists of 1522 mesh points.
How W s(0) is grown during the computation is shown in Figure 1 (b)–(d) with three close-up
views near the attracting periodic orbit; see also the accompanying movie. We remark that
the manifold in Figure 1 (a) is featured on the advertising poster for SIADS.

The color changes in Figure 1 indicate the positions of the bands that are added during
the course of the computation. They illustrate the geodesic level sets on W u(0) that were
computed. To highlight this, Figure 2 shows individual small segments of bands at different

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_01.gif
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(a) (b)

(c) (d)

Figure 2. Growing bands are approximations of the level sets Sη of the stable manifold of the Lorenz system
in Figure 1. From (a) to (d) are shown band 14 with η ∈ [30.25, 32.25], bands 23–25 with η ∈ [38.25, 41.25],
bands 33–35 with η ∈ [44.75, 47.25], and bands 68–71 with η ∈ [63.75, 65.75], respectively.

(approximately) constant geodesic distance from the origin. Each boundary consists of two
topological circles that are both indeed smooth, simple, and closed. Notice that the circles
have quite complicated embeddings in the phase space due to the overall shape of the manifold
but are nevertheless topologically trivial, that is, contractible to the fixed point from which
they were grown. For an animation illustrating the change in shape of the bands and circles
during the growth process, see the accompanying movie.

4.2. An optimal control system. The following example from optimal control theory
is taken from [11, 15] and demonstrates that our implementation for k = 2 can indeed be
used in ambient spaces of arbitrary dimension. Furthermore, it is an illustration of how
invariant manifold computations can be used to understand the dynamics of systems arising
in applications.

Consider an inverted planar pendulum balancing on a cart. The cart moves in the plane

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_02.gif
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of the pendulum with an applied horizontal force u constituting a control. The mass of the
cart is M , the mass of the pendulum is m, and its center of mass is at distance l from the
pivot. Disregarding the model equations associated with the cart gives the two-dimensional
vector field 



ẋ1 = x2,
ẋ2 = f(x1, x2) + c(x1, x2)u

:=
g
l sin(x1)− 1

2mrx
2
2 sin(2x1)− mr

ml cos(x1)u
4
3 −mr cos2(x1)

.

(4.2)

Here x1 ∈ R is the angle measured from the upright position (not taken modulo 2π), mr =
m/(m+M) is the mass ratio, and g is the gravitational constant. The origin is an unstable
equilibrium corresponding to the upright position.

We wish to find an optimal control u as a function of x1 and x2 that drives the system to
the origin, while minimizing the cost function

Q(x1, x2, u) = µ1x
2
1 + µ2x

2
2 + µ3u

2(4.3)

for positive parameters µ1, µ2, and µ3. (It is because of this nonperiodic cost function that
x1 is not taken modulo 2π.) Pontryagin’s maximum principle [33] ensures that an optimal
solution exists and is represented by special solutions of the four-dimensional Hamiltonian
system given by the Hamiltonian

H(x1, x2, p1, p2) = Q(x1, x2, u
∗(x1, x2, p1, p2)) + p1x2

+ p2 f(x1, x2) + p2 c(x1, x2)u
∗(x1, x2, p1, p2),(4.4)

where u∗(x1, x2, p1, p2) = − 1
2µ3

c(x1, x2)p2. Namely, the optimal solution to reach the origin
from an initial condition (x1(0), x2(0)) is found by lifting (x1(0), x2(0)) to a point (x1(0), x2(0),
p1(0), p2(0)) ∈ R

4 that lies on the two-dimensional stable manifold W s(0) of the origin of the
system described by the Hamiltonian (4.4). The trajectory (x1(t), x2(t), p1(t), p2(t)) through
this point directly corresponds to a (locally) optimal trajectory (x1(t), x2(t)) of (4.2) by using
the optimal controller u(t) = u∗(x1(t), x2(t), p1(t), p2(t)). If there is more than one point on
W s(0) for given (x1(0), x2(0)), then there exists more than one choice for u

∗. This means that
either the solution is only locally optimal or the globally optimal cost can be achieved using
two different control actions.

We computed W s(0) for the parameter values as in [11, 15], namely, m = 2kg, M = 8kg,
l = 0.5m, g = 9.8m/s2, µ1 = 0.1, µ2 = 0.05, and µ3 = 0.01. We used the following accuracy
parameters for the computation. The starting data was a set of 20 points on a circle in Es(0)
of radius δ = 1.0 around the origin. The distances ∆i at which new circles were added were
controlled by αmin = 0.3, αmax = 0.4, (∆α)min = 0.05, (∆α)max = 0.2, where we always
accepted the circle if ∆i ≤ 0.05; see sections 3.1 and 3.2. The distances between mesh points
on a circle were always between δF = 0.125 and ∆F = 0.5.

The result is shown in Figure 3, where W s(0) was computed up to a geodesic distance of
approximately 26.25, corresponding to 111 circles. The last circle has 1229 mesh points. Since
the ambient space is four-dimensional it is difficult to view the result. Therefore, Figure 3
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(a) (b)

(c) (d)

Figure 3. Four views of the two-dimensional stable manifold W s(0) up to geodesic distance 26.25 of the
Hamiltonian system (4.4) projected onto three-dimensional spaces, namely onto {p2 = 0} (a), onto {p1 = 0}
(b), onto {x2 = 0} (c), and onto {x1 = 0} (d). All self-intersections are due to projection.

shows four views in four different three-dimensional projections. The growth process of the
manifold is shown in the same projections in the accompanying animation. Note that the
optimal control u∗(x1, x2, p1, p2) = − 1

2µu
c(x1, x2) p2 does not depend on p1. Therefore, the

folds shown in the projection onto {p1 = 0} in Figure 3 (b) indicate that indeed more than
one optimal control exists for several choices of the initial condition (x1(0), x2(0)).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_03.gif
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(a) (b)

Figure 4. Two views of the two-dimensional stable manifold up to geodesic distance 3.1 of the periodic
orbit of the ζ3-model (4.5) for α = 3.2 and β = 2. The manifold is in fact a Möbius strip; to show this, its
edge is highlighted.

4.3. A Möbius strip in the ζ3-model. To illustrate that the algorithm is able to compute
stable or unstable manifolds of periodic orbits of saddle type, we consider the vector field




ẋ = y,
ẏ = z,
ż = α x− x2 − β y − z.

(4.5)

It is known as the ζ3-model [2], and it arises as the asymptotic normal form of a system near
the simultaneous onset of up to three instabilities; see also [16, 17, 22]. For α = 3.2 and
β = 2 the system has a saddle periodic orbit Γ with Floquet multipliers 1, −0.022, and −1.15,
approximately. This means that both the stable and unstable manifolds are nonorientable.

We computed W s(Γ), where the accuracy parameters were ∆F = 0.1, δF = 0.025, ∆min =
0.01, 0.2 < α < 0.3, and 0.001 < ∆α < 0.1. We took 100 mesh points on Γ, and the initial
circle in the linear unstable eigenspace N s(Γ) of Γ was a double cover with 200 points at
distance δ = 0.1 from Γ. More specific details on how to compute nonorientable manifolds
can be found in [25]. The result is shown in Figure 4 for a total computed geodesic distance
of 3.1, corresponding to 100 circles. To help with depth perception we colored the last circle
differently. It forms the boundary of the computed piece of the manifold, which is indeed a
Möbius strip; see also the accompanying animation of the growth process. A more in-depth
discussion on when and why the stable manifold of the ζ3-model is nonorientable is presented
in [26].

4.4. A manifold with ηmax < ∞. As was mentioned in section 2, an unstable manifold
W u(x0) = {Sη)}η>0 may be such that ηmax < ∞, even though the manifold does not converge
to an attractor. This means that Sηmax is the first element of the parametrization that ceases

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_04.gif
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(a) (b)

Figure 5. The computed unstable manifold of the origin of the concocted vector field of section 4.4 for a = 5.
Panel (a) shows a typical orbit on it (in green); panel (b) shows the mesh resulting from the computation.

to be a smooth topological (k− 1)-sphere without self-intersections. We are not aware of any
example of this phenomenon in a dynamical system, and so we constructed an example of this
situation for k = 2 as follows. Consider the vector field


(

u̇
v̇

)
= A

(
u
v

)
,

ẇ = −w + u2 + v2,

(4.6)

where

A =

(
α ω
−ω α

)
.

For α > 0 the origin of this vector field has a parabola-shaped unstable manifold tangent
to the (x, y)-plane. The dynamics on this unstable manifold is simply given by the constant
rotation ω > 0.

We now apply the coordinate transformation




x = u− w,
y = v/3,
z = w + a (u− w)2

(4.7)

to (4.6), where a > 0 is a parameter. It deforms the parabola-shaped unstable manifold of
(4.6) first in the x-direction so that only a finite piece of it lies to the right of the (y, z)-plane.
Furthermore, for sufficiently large a a “bump” is created on the manifold in the region of
positive x. The shape of the manifold is independent of ω, the amount of spiraling on it. We
took ω = 0.2 in the computations of W u(x0).

Figure 5 shows the resulting manifolds for fixed α = 0.1 and a = 5. For sufficiently large
ω one can get a good impression of the shape of the manifold simply by plotting a single orbit

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_05.gif
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(a) (b)

Figure 6. The computed unstable manifold of the origin of the concocted vector field of section 4.4 for a = 10.
Panel (a) shows a typical orbit on it (in green); panel (b) shows the mesh resulting from the computation. The
algorithm stops when a geodesic level set self-intersects.

on W u(0); this is illustrated in Figure 5 (a) for an initial condition (0.005, 0, 0) in Eu(x0) with
ω = 10. Our algorithm is able to compute W u(0) for a = 5, but it makes quite small ∆i steps
near and just after the emerging bump. Notice that quite a number of mesh points need to be
removed before the mesh is restored such that the manifold can be grown further with larger
steps, as is further illustrated in the accompanying animation.

On the other hand, for a = 10 the bump is fully developed. The trajectory in Figure 6 (a)
was computed for a = 10 with ω = 10 and the same initial condition as for a = 5. There exists
a point at the bottom of the “valley” between the infinite part and the bump on the manifold
that has two geodesics. This valley point has geodesic distance ηmax as defined above. In
other words, it is a singularity of the geodesic level set on which it lies, which forms a figure
eight. Level sets for geodesic distance larger than ηmax consist of two disjoint circles, one
around the bump and one around the “neck” of the manifold. Indeed, the algorithm stops
when the valley floor is reached; see also the accompanying animation.

In both computations the starting data was a circle in Eu(0) of radius δ = 0.01 around
the origin. Furthermore, we set αmin = 0.3, αmax = 0.4, (∆α)min = 0.002, (∆α)max = 0.015,
∆min = 0.001, δF = 0.005, and ∆F = 0.04.

We remark that a finite ηmax is a problem for all algorithms that use the approach of
calculating approximate geodesic level sets, that is, also for the algorithms in [10, 16, 34].
Actually, this geometric obstruction to growing W u(0) is, in a sense, an artificial problem. It
can be overcome by changing to a different metric; in this specific example one can rescale y
to ensure that the geodesic distance in the valley is realized by the path exactly over the top.
However, changing the metric as one encounters this obstruction during a computation is not
practical. Instead one could split up the figure-eight level set into two separate circles and
start two individual computations. Since we did not encounter this geometric obstruction in
any other example, this has not been implemented.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_06.gif
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4.5. The Lorenz system with a strange attractor. To demonstrate how one can make
use of the parametrization by geodesic distance to understand complicated manifolds, we
consider again the Lorenz system (4.1), but now for the standard values of the parameters
σ = 10, ! = 28, and β = 8/3, which gives the well-known Lorenz attractor. This example has
emerged as a test case for the computation of two-dimensional global manifolds, and the task
is to compute the stable manifold of the origin as it interacts with the chaotic attractor. How
exactly does this happen and what does the manifold look like? A first attempt at visualizing
this manifold was a series of three sketches in [1]. Computed images of differing sophistication
can be found in [9, 10, 12, 20, 22] and in [23], which features a direct comparison with the
sketches in [1].

The manifold W s(0) in Figure 7 (a) was computed with the accuracy parameters in sec-
tion 4.1. In total 72 circles were computed on W s(0); the last circle is approximately at
geodesic distance 151.75 from the origin, and it consists of 2300 mesh points.

How W s(0) is grown during the computation is shown in Figure 7 (b)–(d) with three
close-ups showing how a helix develops about the positive z-axis; see also the accompanying
movie. The coloring indicates geodesic distance from the origin, as given by the color bar.
Also shown is the one-dimensional unstable manifold of the origin in red, whose closure forms
the well-known Lorenz attractor, an orbit which is shown in yellow.

The geometry of the manifold is illustrated in Figure 8 and the accompanying movie by
following the development of a small set of bands as they grow. This gives an idea of how
W s(0) is parametrized by geodesic level sets. In spite of the complicated geometry, each of the
level sets is still an unknotted smooth topological circle, even though it is not very “round”
and certainly not planar. The later bands nicely show how the manifold has to cross over and
back between the two scrolls of the chaotic attractor. Clearly visible in Figure 8 (e) and (f)
is the development of two further helixes of W s(0) near the z-axis.

5. Convergence of the algorithm. Suppose that we computed an approximation of the
manifoldW u(x0) up to a prescribed and fixed geodesic distanceD. Hence, we have a simplicial
complex C(δ,∆) with the mesh points M(D, δ,∆) = ∪li=0Mi approximating the compact
manifold SD = {Sη}0≤η≤D ⊂ W u(x0). In the discussion of the convergence of the algorithm
we assume that D < ηmax. The dependence on δ and ∆ indicates that the approximation was
computed with these prespecified accuracy parameters, where for simplicity we chose ∆F = ∆
and ∆i = ∆ constant so that ∆ specifies the overall mesh quality.

We want to show that C(δ,∆) converges to SD as the initial step δ from x0 and the mesh
quality parameter ∆ go to zero. The fundamental difficulty with any such proof is that when
δ and ∆ are changed, the entire approximation needs to be recomputed, meaning that the
refined set of mesh points M(δ̃, ∆̃) generally does not have any mesh points in common with
M(δ,∆). This is why one cannot use strategies of proof as they are used when proving the
correctness of computations of implicitly defined manifolds (given as the zero set of a function)
where it is possible to refine and improve the mesh locally; see, for example, [29]. In fact,
the problem here is quite similar to proving the convergence of numerical approximations of
attractors to the actual attractor of the underlying continuous dynamical system; see [31].

The key problem is to control the total (interpolation) error between mesh points uniformly
over the mesh. We use here the approach in [20] for two-dimensional unstable manifolds of
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Figure 7. The stable manifold W s(0) of the Lorenz system for σ = 10, � = 28, and β = 8/3, computed
up to geodesic distance 151.75 (a). Close-ups near the z-axis show the growth process: 25 bands or geodesic
distance 62.75 (b), 40 bands or geodesic distance 92.75 (c), and 55 bands or geodesic distance 122.75 (d). Color
indicates geodesic distance from the origin as given by the color bar.

maps.
Our goal is to prove that for any given ε > 0 the approximation C(δ,∆) is in an ε-

neighborhood of W u(x0), provided δ and ∆ are chosen small enough. This is known as upper
semicontinuity. Our proof essentially tracks how different errors grow along the manifold,
which is described by certain Lipschitz bounds on the local growth rate of the vector field. In
many situations it is not possible to determine these Lipschitz bounds, so that a priori error
bounds for the computation of global invariant manifolds are not available. The only practical
way of checking a computation is to repeat it with increased accuracy and compare the results.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_07.gif
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Growing bands are approximations of the level sets Sη of the stable manifold of the Lorenz
system in Figure 7. From (a) to (f) are shown bands 24–25 with η ∈ [58.75, 62.75], bands 30–31 with η ∈
[70.75, 74.75], bands 52–54 with η ∈ [114.75, 120.75], bands 56–58 with η ∈ [122.75, 128.75], bands 60–62 with
η ∈ [130.75, 136.75], and bands 67–71 with η ∈ [144.75, 151.75], respectively.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60018_08.gif


564 B. KRAUSKOPF AND H. M. OSINGA

5.1. Upper semicontinuity. Recall (see, for example, [14]) that the semidistance between
two sets A,B ⊂ R

n is

d(A,B) = sup
x∈A

{d(x,B)}, where d(x,B) = inf
y∈B

{||x− y ||}.

We use the notation Nε(X) for the ε-neighborhood of a set X ⊂ R
n.

Theorem 1 (upper semicontinuity). Let D > 0 be given and fixed, and let C(δ,∆) denote the
simplicial complex approximation of SD = {Sη}0≤η≤D. Then for any ε > 0

C(δ,∆) ⊂ Nε(W
u(x0))

for all sufficiently small δ and ∆.
Proof. In order to show that C(δ,∆) ⊂ Nε(W

u(x0)), we will show that C(δ,∆) ⊂ Nε(SD̃)
for some D̃ > D. Since SD̃ ⊂ W u(x0), this will automatically imply that C(δ,∆) ⊂
Nε(W

u(x0)). The reason for using SD̃ instead of W u(x0) is that SD̃ is compact; this will
be used to get Lipschitz bounds.

The total error εC is defined as

εC = d(C(δ,∆),SD̃).(5.1)

This means that C(δ,∆) is contained in Nε(SD̃) for any ε > εC . We obtain upper semiconti-
nuity by showing that εC → 0 as δ,∆→ 0.

There are two contributions to the error εC . First, the mesh points in M(δ,∆) do not lie
exactly on SD̃, which gives rise to the mesh error

εM = d(M(δ,∆),SD̃).

Second, there is the global interpolation error εI(∆) due to the fact that points in C(δ,∆) \
M(δ,∆) are interpolated linearly between the mesh points. Consequently, we have for the
total error

εC ≤ εM + εI(∆).(5.2)

Note that, unlike in the error analysis of the approximation of an implicitly defined invariant
manifold [29], these two errors are not independent. The interpolation error at step i enters
into the mesh error at step i+ 1.

Since the manifold is C2 and interpolation is always done between points that are at most
∆ apart, the interpolation error εI(∆) is O(∆

2). Hence, in light of (5.2), it suffices to show
that εM goes to zero with ∆ and δ. To this end, we define the mesh error at step i

εM(i) = d(M(δ,∆)i,SD̃).

The inital mesh error εM(0) is due to the fact that M(δ,∆)0 is chosen in the linear subspace
Eu(x0) at distance δ from x0 instead of on W u(x0). By taking δ small, εM(0) can be made
arbitrarily small. Under the assumption that W u(x0) is C

2, the initial error εM(0) is of order
O(δ2).
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The mesh error εM(i + 1) at step i + 1 can be estimated in terms of εM(i) as follows.
Points in M(δ,∆)i+1 are found by continuing the boundary value problem (3.1)–(3.2). Since
the accuracy of the boundary value solver is independent of the other computational errors,
we assume that solving the boundary value problem does not introduce an extra error. (In
practice, it is sufficient to ensure that the boundary value solver has an error of order less
than that of the interpolation error.) Recall that, for any r ∈ M(δ,∆)i, the starting condition
(3.1) of the boundary value problem leads to points qr(τr) ∈ C(δ,∆)i and the end condition
(3.2) to points br(τr) ∈ Fr, where τr is the integration time such that || br(τr) − r ||= ∆. The
error at C(δ,∆)i+1 comes from the fact that C(δ,∆)i is only approximately on SD̃, so that
we are solving the “wrong” boundary value problem. Therefore,

εM(i+ 1) = max
r∈M(δ,∆)i

d(br(τr),SD̃)
= max

r∈M(δ,∆)i
d(φτr(qr(τr)),SD̃).(5.3)

Since SD̃ is compact and the vector field is C2, a Lipschitz constant κU > 0 and a neighborhood
U of SD̃ exist such that

d(φt(p),SD̃) ≤ eκU t d(p,SD̃),(5.4)

provided the orbit of p up to φt(p) is in U ; see also [31]. Combining this with (5.3) and
defining τi such that e

κU τi = maxr∈M(δ,∆)i (e
κU τr), we get

εM(i+ 1) ≤ max
r∈M(δ,∆)i

eκU τrd(qr(τr),SD̃) ≤ eκU τi (εM(i) + εI(∆)).(5.5)

In total, there are l = �D−δ
∆ � steps so that

εM = max
0≤i≤l

{εM(i)} ≤ eκU τ(δ,∆) (εM(0) + l εI(∆)),

where τ(δ,∆) =
∑l

i=0 τi. One should think of τ(δ,∆) as the maximal integration time needed
to reach C(δ,∆)l starting from a point in C(δ,∆)0. Note that l εI(∆) is O(∆) becauseW

u(x0)
is C2. To deal with the fact that τ(δ,∆)→ ∞ as δ → 0, we use the fact that the local manifold
is always an attractor [27]. This means that there exists a fixed neighborhood V ⊂ U of x0

on which we find a negative Lipschitz constant −κV < 0. In other words, the error decreases
from one step to the next as long as one remains in V . Suppose that Sη ⊂ V for 0 ≤ η ≤ ηV
and δ < ηV . Let δ and ∆ be small enough so that there exists J = J(δ,∆) > 0 (ηJ ≈ ηV )
with C(δ,∆)i ⊂ V for 0 ≤ i ≤ J . Then for all 0 ≤ i < J

εM(i+ 1) ≤ e−κV τi (εM(i) + εI(∆))

≤ e−κV τV (δ,∆) (εM(0) + J εI(∆)) ≤ εM(0),(5.6)

provided ∆ is small enough. Here, τV (δ,∆) =
∑J

i=0 τi. The important point is that (5.6)
holds also in the limit δ → 0 as long as ∆→ 0 accordingly.
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One can now find a fixed upper bound τ̄ < ∞ on the total integration time that is needed
to cover U \ V , independent of δ and ∆, that is,

τ(δ,∆) ≤ τV (δ,∆) + τ̄ .

In other words, τ(δ,∆)→ ∞ as δ → 0 only because τV (δ,∆)→ ∞ with decreasing δ.

By combining (5.6) and (5.5), we get for all J ≤ i < l

εM(i) ≤ eκU τ̄ (εM(J) + (l − J) εI(∆))

≤ eκU τ̄ (εM(0) +O(∆)).(5.7)

Hence, using (5.6) and (5.7), we have

εM = max
0≤i≤l

{εM(i)} ≤ max{εM(0), eκU τ̄ (εM(0) +O(∆))}
= eκU τ̄ (εM(0) +O(∆)) = eκU τ̄ (O(δ2) +O(∆)).

It follows that εC → 0 as δ,∆→ 0, which concludes the proof.

Remark 2. The quantity τ̄ depends on the total geodesic distance D, which is fixed during
a computation. If one wishes to compute an approximation of W u(x0) for bigger D, while
maintaining the same global error, then δ and ∆ must be chosen smaller, because the global
error normally increases with D (except when U ⊂ V ).

Remark 3. In practice, we do vary ∆i during a computation. Since the variation of ∆i is
related to the local curvature along geodesics, the overall interpolation error does not increase;
see [13, 21]. Furthermore, we add and remove mesh points, but any required interpolation is
done between points at most ∆F apart; see section 3.3.

5.2. Lower semicontinuity. The main difficulty in proving that C(δ,∆) converges to SD
(in the Hausdorff metric) lies in showing that the last (k − 1)-sphere of C(δ,∆) actually
converges to the geodesic level set SD. The problem is that the entire mesh changes as δ or
∆ vary. Hence, it is not possible to consider the convergence of a specific mesh point and
its geodesic distance. However, we believe this to be a technical difficulty, and we have the
following.

Conjecture 4 (lower semicontinuity). For given fixed D > 0 let C(δ,∆) be the simplicial
complex approximation of SD. Then for any ε > 0

SD ⊂ Nε(C(δ,∆))

for all sufficiently small δ and ∆.

If we assume that the vector field, and hence W u(x0), is at least C
2, then we can conclude

that the algorithm does not bypass a part of SD. This is the case, because Theorem 1 ensures
that C(δ,∆) lies in an ε-neighborhood of the C2 manifold SD̃. For example, any bump is C2,
and C(δ,∆) must stay ε-close to the bump for δ and ∆ small enough.

From a practical point of view this is the important result: the approximation C(δ,∆) is
ε-close to W u(x0) and does not “jump over” parts of the manifold, provided the prespecified
accuracy parameters were chosen small enough.
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6. Conclusions. We described an algorithm for computing the global k-dimensional stable
or unstable manifold of an equilibrium in an n-dimensional vector field for any 1 < k < n.
This method can also be used to compute the stable or unstable manifold of an invariant m-
torus, provided this m-torus and an approximation of its linear stable and unstable directions
can be found; for a method to compute the latter we refer to [3] and also to [25, 26].

Our algorithm approximates a first piece of the unstable manifold up to a given geodesic
distance from the equilibrium (or invariant torus) by continuation of a family of appropriate
boundary value problems. The computational error goes to zero as the tolerance parameters
of the algorithm go to zero. Hence, the approximants are upper semicontinuous to W u(x0).
As a result of the smoothness of the manifold, the algorithm does not omit parts of W u(x0),
provided the tolerance parameters are sufficiently small.

The algorithm has been implemented for the case k = 2 and arbitrary n. At present,
we solve the boundary value problems by using a shooting approach for which one boundary
point lies on a piecewise linear curve. A genuine boundary value problem continuation will
have to deal with the absence of smoothness at the mesh points. We are currently working
on such an implementation by linking the code to AUTO [6].

While there are no theoretical obstructions to using the algorithm for k ≥ 3, its implemen-
tation would be a serious effort. For the next case k = 3 the unstable manifold is approximated
by a set of 2-spheres, which are represented by simplicial complexes consisting of triangles.
The shells between neighboring 2-spheres consist of tetrahedra. The practical implementation
of this data structure, including the operations of adding and removing mesh points, remains
a challenge. Moreover, one encounters the general problem of visualizing a three-dimensional
object. This makes it difficult to communicate the results, even though some packages, for
example, Geomview [28], allow for inspection of three-dimensional manifold data.

It seems a fair assessment that in the foreseeable future growth algorithms for global
manifolds will be restricted to the case k = 2 of two-dimensional manifolds. In fact, even
algorithms for k = 2 are largely still in development and have not been used widely. As
a consequence, we believe that computing two-dimensional manifolds in problems arising in
applications is still in its infancy, with a lot of interesting work to be done.
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Abstract. This is the second in a series of papers about the dynamics of the forced van der Pol oscillator
[J. Guckenheimer, K. Hoffman, and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 1–35].
The first paper described the reduced system, a two dimensional flow with jumps that reflect fast
trajectory segments in this vector field with two time scales. This paper extends the reduced system
to account for canards, trajectory segments that follow the unstable portion of the slow manifold
in the forced van der Pol oscillator. This extension of the reduced system serves as a template for
approximating the full nonwandering set of the forced van der Pol oscillator for large sets of parameter
values, including parameters for which the system is chaotic. We analyze some bifurcations in the
extension of the reduced system, building upon our previous work in [J. Guckenheimer, K. Hoffman,
and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 1–35]. We conclude with computations
of return maps and periodic orbits in the full three dimensional flow that are compared with the
computations and analysis of the reduced system. These comparisons demonstrate numerically the
validity of results we derive from the study of canards in the reduced system.
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1. Introduction. We study the forced van der Pol oscillator [24] in the form

εẋ = y + x− x3

3 ,
ẏ = −x+ a sin(2πθ),

θ̇ = ω,

(1.1)

where θ is a cyclic variable belonging to R/Z. The critical manifold of this system is the
surface C defined by ẋ = 0; i.e., y = x3/3 − x. We divide the critical manifold into Cs =
{(x, y, θ) ∈ C | |x| > 1}, Cu = {(x, y, θ) ∈ C | |x| < 1}, and the two fold curves S±1, where
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Sξ = {(x, y, θ) ∈ C |x = ξ}. The slow flow on the critical manifold solves the two dimensional
system of differential equations derived from (1.1) by setting ε = 0, differentiating y = x3/3−x
to obtain ẏ = (x2 − 1)ẋ on the critical manifold and rescaling time:

θ′ = ω(x2 − 1),
x′ = −x+ a sin(2πθ).

(1.2)

The reduced system is given by augmenting the slow flow with the rules that trajectories
jump from the fold curve S1 to S−2 and from the fold curve S−1 to S2, in each case preserving
the value of θ. The reduced system with its jumps is a hybrid dynamical system [2]. We
define a half return map H in terms of candidates [4, p. 68] and the symmetry operation
T (x, θ) = (−x, θ + 0.5) of the slow flow. Specifically, H : S2 → S2 is defined by following the
slow dynamics from S2 to S1, jumping with constant θ from S1 to S−2, and then applying
the symmetry T . Details of these constructions can be found in [14], together with extensive
analysis of properties of H. Additionally, in section 4, we formulate a half Poincaré map
of the full system and a singular half Poincaré map of the reduced sytem to further clarify
the relationship between solutions of the half return map and solutions of the full forced
van der Pol equation.

“Fenichel theory” [10] and a theorem of Levinson [17] imply that the reduced system gives
approximations to trajectories of (1.1) that have nondegenerate slow-fast decompositions [13].
These are trajectories that approach the fold curves S±1 at regular points of the slow flow.
When |a| < 1, all points on the fold curves S±1 are regular and H is a diffeomorphism of the
circle S2. When |a| > 1, there are four equilibria of the slow flow on the fold curves, called
folded equilibria. A symmetric pair of the folded equilibria are always saddles. The properties
of the system (1.1) are more complicated in the vicinity of the folded equilibria. Benôıt [4]
has studied the flow of slow-fast vector fields with two slow variables and one fast variable in
the vicinity of folded equilibria. We review his results for folded saddles in the next section;
they play an important role in our extension of the reduced system and its return map. The
analysis of folded nodes is incomplete, and this leads to a gap in our description of the reduced
system for small parameter ranges near a = 1 where folded nodes exist.

There are trajectories of the three dimensional system (1.1) that cross the fold curve
near the folded saddles and continue along the unstable portion of the slow manifold. The
trajectory segments that follow Cu are called canards. Canards may end at any place along
the unstable portion of the slow manifold, turning abruptly and jumping parallel to the fast
direction to one of the stable sheets of the slow manifold. If the trajectories return to the sheet
of the slow manifold from which the canard started, we call them jump back canards. If they
jump to the opposite sheet of the slow manifold from their origin, we call them jump away
canards. We call the trajectories that follow the unstable portion of the slow manifold to the
fold line without jumping maximal canards. As ε → 0, the initial points for a whole family of
canards approach the same point. To represent this behavior in the reduced system, we allow
the flow to have multiple trajectories emanating from the same point. Specifically, along a
canard orbit, there are three possibilities at each time: continuing to flow along the canard
or jumping to either side of the unstable sheet of the slow manifold. We describe in section 3
how the dynamics of the canard orbits can be incorporated into extensions of the half return
map. Formally, we extend the concept of a discrete dynamical system from maps of a space to
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relations for that space. Iterations of one dimensional mappings are sufficiently constrained
in their properties that we can still analyze the properties of the dynamical systems defined
by these relations. Intuitively, we regard the extensions as segments of the graph of H whose
domain has infinitesimal width and large slope.

The extended half return map is essentially a one dimensional discrete dynamical system.
The dynamics of one dimensional mappings can be analyzed in terms of symbolic dynamics
(or kneading theory) [20]. Briefly, the domain of a mapping is partitioned into intervals of
monotonicity. These are intervals on which the map is continuous and strictly increasing or
decreasing. A symbol is assigned to each interval, and trajectories are mapped to symbol
sequences that encode which intervals in the partition contain successive iterates of the initial
point. The extreme values of the intervals of monotonicity are called critical values and
their symbol sequences are called the kneading data of the mapping. The full set of symbol
sequences associated with trajectories of the mapping can be reconstructed from the kneading
data by simple rules. This allows one to almost fully characterize the nonwandering set of
mappings from the kneading data, a task that can be completed within certain classes of
mappings [12]. Bifurcations in a family of mappings occur when the kneading data change.
This happens in a fashion that is constrained by the one dimensionality of the dynamics,
and a great deal is known about “universal” patterns that occur in the bifurcations of one
dimensional maps [8]. Each extreme value can be regarded as an independent parameter
in determining the dynamics of maps with specified critical points and discontinuities. We
apply this theory to the extended half return map of the reduced mapping for the forced
van der Pol oscillator. Given the number of discontinuities of H, there are fewer types of
topological equivalence classes for the extended half return maps than one might expect from
the kneading theory. The half return maps may have several points of discontinuity, but
there are only two possible values for left and right limits of H as θ approaches a point of
discontinuity. Moreover, the endpoints of the canard extensions of the intervals are mapped
to the same point by H. Additionally, there is at most one interior local maximum and one
interior local minimum of H, so these are the only extreme points that are not points of
discontinuity. These points exist precisely when |a| > 2 and the points of tangency of the slow
flow with S±2 do not lie in the stable manifold of the folded saddle.

The existence of the chaotic invariant sets in the forced van der Pol system was discovered
by Cartwright and Littlewood [6, 7, 18, 19]—a seminal event in the history of dynamical sys-
tems. One of the objectives of this work is to develop a more comprehensive understanding
of the nonwandering sets of the forced van der Pol system and how these change with the
parameters (a, ω, ε). Vestiges of the chaotic invariant sets remain in the dynamics of the ex-
tended half return maps. Based upon analysis of H and its extensions, we give a conjectural
description of the complete nonwandering sets of the forced van der Pol oscillator for many
parameter values where there are chaotic invariant sets. When the trajectories of the critical
values of H approach stable periodic orbits and there are no neutrally stable periodic orbits,
we believe that the dynamics of the van der Pol system for nearby parameter values are struc-
turally stable. We identify simple examples where the analysis of the half return map indicates
that this behavior occurs and describe the topological equivalence classes of the nonwander-
ing sets of these examples as subshifts of finite type. We present a conjectural picture of the
relationship between the nonwandering sets of the extended H and the nonwandering sets of
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the system (1.1). Additional analysis is needed to prove these conjectures, but our description
gives a detailed geometric perspective on the classical studies of Cartwright and Littlewood
that is global in both the phase space and parameter space of the forced van der Pol oscillator.

2. Canards in the reduced system. The reduced system defined in [14] is a hybrid dy-
namical system given by the slow flow of system (1.2) in the regions of the (θ, x) cylinder with
|x| ≥ 1 together with discrete transition maps from the circles S±1 to the circles S∓2, since
y = x3/3 − x |x=±1 = ∓2/3 = x3/3 − x |x=∓2. When a > 1, there are equilibrium points of
the slow flow at the points (θ, x) = (± sin−1(1/a)/2π,±1) on the boundary of the region in
which the reduced system is defined. Two of these equilibrium points are saddles for the slow
flow. The other two equilibrium points are stable nodes if 1 < a <

√
1 + 1/(16πω)2 and stable

foci if a >
√
1 + 1/(16πω)2. These equilibria are called folded equilibria because they lie on

the fold curves of the critical manifold and do not correspond to equilibria of the van der Pol
system (1.1).

We examine the folded saddle p1s = (θ1s, 1) lying on x = 1 and call its stable and unstable
manifolds for the slow flow (1.2) Ws and Wu, respectively. We denote the first intersection of
Wu ∩Cs by p1u = (θ1u, 1) and the first intersection of Ws ∩Cu with one of the circles S±1 by
pm = (θ1m,±1). In the van der Pol system (1.1), some trajectories arriving in the vicinity of
p1s continue a slow motion nearWs∩Cu rather than jumping to the stable sheet of the critical
manifold near S−2. These trajectories are called canards. Benôıt [4] analyzed the dynamics of
folded saddles in slow-fast systems with two slow variables and one fast variable. His analysis
describes the limit properties of canard trajectories as ε → 0. (See also the discussions of
Mischenko et al. [21] and Szmolyan and Wechselberger [23].) We summarize here the results
that provide the foundation for our analysis of canards in the reduced system.

Fix a neighborhood of p1s that contains a ball B of radius O(1) centered at the folded
saddle. Benôıt proves that there is a constant c > 0 so that the sets of trajectories that
remain within distance O(ε) from C ∩ B form two bundles, each with a cross-section at the
folded saddle whose diameter is O(exp(−c/ε)). As ε → 0, one of these bundles of slow orbits
approaches Ws and the other approaches Wu. Note that the time rescaling used to obtain the
slow flow reverses time on Cu, so the trajectory in Ws ∩ Cu lies close to trajectories of the
van der Pol system flowing away from the folded saddle and not toward it. Benôıt further
proves that the strong stable manifold ofWs∩Cu and the strong unstable manifold ofWs∩Cu
meet transversally near the folded saddle. Denote by γu the segment of Ws ∩Cu between p1s

and p1m. Given a point p ∈ γu, Benôıt’s results imply that there are canards in the van der Pol
system that emanate from the folded saddle and then jump from γu in an O(ε) neighborhood
of Cu near p. Thus we model the limits of canards in the reduced system as the canard umbra
of γu. We define the umbra of γu to be a pair of curves on Cs swept out by the intersection
of lines parallel to the x axis through points of γu. If p = (x0, y, θ), the corresponding points
on the umbra have the form (x1, y, θ), where x3

1 − 3x1 = x3
0 − 3x0 or x2

1 + x0x1 + x2
0 − 3 = 0.

Figure 1 shows structures of the reduced system for parameter values (a, ω) = (1.1, 1.57).
Since trajectories make more than a single circuit in the θ direction, two fundamental domains
in θ are plotted, with repetitions of the folded equilibria drawn. The stable and unstable
manifolds of the folded saddle are drawn in black. The segment γu of Ws is drawn as a
heavy black line on one copy of Wu. The two umbra of γu are drawn as heavy magenta and
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Figure 1. The phase portrait of the reduced system for the parameter values (a, ω) = (1.1, 1.57). The stable
and unstable manifolds of the saddle are drawn in black. The segment γu is represented by the thick black line
and the two umbral curves are drawn in magenta and cyan. The blue and red lines represent the trajectories at
the ends of the cyan umbral curve and the green line is the trajectory of p1u.
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Figure 2. The phase portrait of the reduced system for the parameter values (a, ω) = (4, 1.51). Note that
the color coding is the same as represented in Figure 1.
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Figure 3. The phase portrait of the reduced system for the parameter values (a, ω) = (4, 0.5). Note that
the color coding is the same as represented in Figure 1.

cyan curves. The point p1u at the intersection of Wu with S1 is a green asterisk, and the
continuation of p1u in the reduced system is plotted in green to its intersection with S−1. The
trajectories starting at the ends of the umbra in the region x ≤ −1 are drawn in blue and red.
Figure 2 shows structures of the reduced system for parameter values (a, ω) = (4, 1.51). The
color coding of the structures is the same as in Figure 1. Finally, Figure 3 shows structures
of the reduced system for parameter values (a, ω) = (4, 0.5). Note that the maximal canard
point for these parameter values is on S−1 rather than on S1 as it is in Figures 1 and 2.

3. The extended half return map. This section defines a multivalued extension to the
half return map H whose new values reflect the limit properties of canards in the van der Pol
system (1.1). We assume that we are in the parameter region in which the maximal canard
point pm is on S1 rather than on S−1. The definition of the extension is not completely
straightforward because the canards with jumps that decrease the value of x yield trajectories
that hit the cross-section S−1 before they hit S1. Therefore, we introduce an artifice of flowing
backward along the slow flow from the canard umbra in x < −1 to the cross-section S−2, where
we can apply the symmetry to obtain a value for the extended half return map. We state and
prove a fundamental lemma before describing details of this construction.

Lemma 3.1. The slow flow vector field is transverse to the umbra of the canard curve
γu ⊂ Ws ∩ Cu.

Proof. Let (θ, x0) be a point on γu ⊂ Ws ∩ Cu. Then the corresponding points on the
umbra have the form (θ, x1) with x2

1 + x0x1 + x2
0 − 3 = 0. The slope of the vector field at

(θ, x1) is

σ1 =
−x1 + a sin(2πθ)

ω(x2
1 − 1)

,
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while the slope of the umbra is

τ1 =

(
dx1

dx0

)(−x0 + a sin(2πθ)

ω(x2
0 − 1)

)
=

(
x1 + 2x0

2x1 + x0

)(−x0 + a sin(2πθ)

ω(x2
0 − 1)

)
.

Simplifying σ1 − τ1 (with the help of the computer program Maple), we find that

σ1 − τ1 =
±3

ω
√
12− 3x2

0

= 0;

the sign depends upon which root x1 we take. Since the two slopes are different, the vector
field at (θ, x1) is transverse to the umbral curves.

This lemma implies that distinct points on each umbral curve lie on distinct trajectories.
To define the extension of the half return map H for the umbral curve that lies in the half
cylinder x ≥ 1, we follow the trajectories of the slow flow from a point (θ0, x0) on the umbral
curve to its intersection with S1 at the point (θ1, 1) and then defineH for this canard trajectory
to be θ1 + 0.5. This gives the same value of θ as jumping from (θ1, 1) to (θ1,−2) and then
applying the symmetry of the slow flow. The extension of H adds a vertical segment to its
graph, makingH multivalued. The transversality lemma above implies that each value θ1+0.5
on the extended graph of H corresponds to orbits containing a canard with a specific jump
point, namely, (θ0, x0). Thus we shall regard the extension of H as a monotone segment of
infinite slope when analyzing the symbolic dynamics of the extended H in the next section.
With this definition, we obtain a limit of trajectories in the van der Pol system consisting of
a canard that flows to a jump point along Ws, followed by a jump to (x0, x

3
0/3 − x0, θ0) on

the critical manifold, followed by a trajectory segment of the slow flow that reaches x = 1 at
(1,−2/3, θ1) and then jumps to x = −2.

Defining the extension of H for the umbral curve in the half cylinder x ≤ −1 is less
straightforward. When points jump from Ws to a point (θ0, x0) on the umbral curve in the
half cylinder x ≤ −1, the trajectory from (θ0, x0) has “skipped” an intersection with the circle
S−2. The definition of the half return map was based upon trajectories reaching the half
cylinder x ≤ −1 at x = −2 so that the symmetry could be used to map them back to S2. We
resolve this difficulty by following the trajectory from (θ0, x0) backward to its first intersection
with the circle S−2 at (θ1,−2). The extension of H is defined to give a value θ1 + 0.5 for
this point on the umbral curve. The qualitative properties of the backward flow from the
umbral curve to S−2 depend upon whether there are zero, one, or two tangencies of the slow
flow with S−2 in the interval (θ1s, θm) “covered” by the umbral curve. The tangencies occur
at values of θ = arcsin(−2/a). If there are no tangencies, then the set of values for θ1 + 0.5
is the entire interval (θ1s, θm). If there is a single point of tangency, then the slow flow has
x′(θm,−2) < 0, and the set of values for θ1+0.5 is a connected interval whose right endpoint
is the first intersection of the backward trajectory of the slow flow through (θm,−2) with
S−2. If there are two points of tangency, then the set of θ1 + 0.5 consists of two intervals
with a gap. The gap is an interval whose endpoints both lie on the slow flow trajectory
passing through the right-hand tangency point on S−2. In this case, note that the H image
of this pair of intervals is connected; the endpoints of the gap both have the same H value.
The transversality lemma again implies that each value θ1 + 0.5 on the extended graph of H



VAN DER POL CANARDS 577

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Extended Half Return Map (mod 1)

a =  1.1000000000

ω =  1.5700000000

θ

H
(θ

)

Figure 4. A plot of the extended half return map for the parameter values (a, ω) = (1.1, 1.57). The canard
extensions of H are drawn as vertical segments.

corresponds to orbits containing a canard with a specific jump point. The limit trajectory for
the van der Pol system consists of a canard that flows to a jump point along Ws, followed by
a jump to (x0, x

3
0/3 − x0, θ0) on the critical manifold, followed by a trajectory segment that

lies on the trajectory of the slow flow through (−1, 2/3, θ1), but with the initial point of the
segment being (x0, x

3
0/3− x0, θ0) and the final point of the segment being on S−1.

Figures 4, 5, and 6 show three examples of the extended half return map for parameter
values (a, ω) = (1.1, 1.57), (4, 1.51), and (1.02, 1.19), respectively. When 1 < a < 2, there
is a single point of discontinuity and no local maximum or minimum of H. Therefore, the
values of the maximal canards for the left and right extensions at the discontinuity point have
equal values. The canard extensions of H are drawn as (overlapping) red and green vertical
segments. When (a, ω) = (1.1, 1.57), H itself has two fixed points and there are two additional
fixed points on the canard extensions.

At parameter values (a, ω) = (4, 1.51), H has three points of discontinuity. It also has a
local maximum and local minimum that are not at points of discontinuity. In the flow of the
reduced system, x′ < 0 at some of the points on the umbra of the canards in x < −1. Therefore,
the values of the maximal canards on the extensions of H do not agree. However, note that
the images of the maximal canard values are the same—a point that lies on the branch of H
with a local minimum. Also, the canard extensions at each of the three discontinuity points
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Figure 5. A plot of the extended half return map for the parameter values (a, ω) = (4, 1.51). The canard
extensions of H are drawn as red and green vertical segments.

have the same length. Both the branch with a local minimum and the branch with a local
maximum have stable fixed points. In addition there are two fixed points on two of the canard
extensions.

At parameter values (a, ω) = (1.02, 1.19), H has no fixed points at all. However, the
second iterate of H, displayed in Figure 7, has features that resemble the half return map for
(a, ω) = (1.1, 1.57). There are four fixed points of H2 outside its canards, coming from two
periodic orbits of period 2. In addition, H2 has fixed points on each of its canard segments.

4. Poincaré maps. An alternative method for studying canard solutions of the forced
van der Pol equation is to use the idea of Poincaré maps. We define a half Poincaré map Φε
for (1.1) and a corresponding singular half Poincaré map Φ0 for the reduced system. Let Σ1

be the half cylinder {(x, y, θ) |x = −1, y < 2/3− δ} for some small δ > 0 (see Figure 8). The
system (1.1) is invariant under the symmetry transformation T (x, y, θ) = (−x,−y, θ + 1/2).
Let Σ2 = T (Σ1); that is, Σ2 = {(x, y, θ) |x = 1, y > −2/3 + δ}. As long as we consider
ε sufficiently small and parameter values (a, ω) in the interior of the region M1 (defined in
section 6), the flow map from Σ1 to Σ2 composed with the symmetry transformation is a
well-defined map Φε from Σ1 to itself. In particular, the trajectories with initial conditions on
Σ1 cross the cylinder x = 1 at points of Σ2; canards that jump away do so with y > −2/3+ δ.

The singular half Poincaré map Φ0 : Σ1 → Σ1 of the reduced system is composed of a
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Figure 6. A plot of the extended half return map for the parameter values (a, ω) = (1.02, 1.19). The canard
extensions of H are drawn as vertical segments.

projection along the x direction onto Cs, followed by the slow flow on Cs to the fold line S−1,
and a projection along the x direction from S−1 to Σ2. The symmetry transformation T maps
Σ2 back to Σ1. This map is singular; all points in Σ1 map to the line x = −1, y = −2/3 in Σ1.
This definition of Φ0 breaks down on the stable manifold of the folded saddle. These points
do not return, but they have canard extensions that do. So we extend the definition of Φ0 to
account for the canards. As explained above, canards form on trajectories sufficiently close
to the stable manifold of the saddle. In the van der Pol flow (1.1), let κε ⊂ Σ1 be the set of
points for which canards will form during the flow from Σ1 to Σ2. When these trajectories
finally cross Σ2, they have either jumped from a point near Cu to Σ2 without returning to a
neighborhood of Cs (the jump away canards), or they have jumped back to a neighborhood
of Cs and then jumped a second time, passing the fold S−1 between θ1u and θm (the jump
back canards). For 0 < ε � 1, κε is a thin strip. For the reduced system and ε = 0, we
define κ0 to be curve in Σ1 that projects onto the stable manifold of the saddle. To account
for canards in Φ0, we make Φ0 a multivalued relation. For any p ∈ κ0, we define Φ0(p) to
be the curve made up of the projections of γu onto Σ2 (representing jump away canards) and
the projection of the segment (θ1u, θm) on the fold line S−1 onto Σ2 (representing jump back
canards). In Figure 9, we give a qualitative sketch of such a Poincaré map. Figures 10 and
11 show the map for (a, ω) = (1.1, 1.57) and (a, ω) = (4.0, 1.51).



580 BOLD ET AL.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Second Iterate of the Extended Half Return Map (mod 1)

a =  1.0200000000

ω =  1.1900000000

θ

H
2 (θ

)

Figure 7. A plot of the second iterate of the extended half return map for the parameter values (a, ω) =
(1.02, 1.19).

In Figure 12, we show four examples of singular Poincaré maps where there are two canard
fixed points. These come from parameter values (a, ω) where we expect the van der Pol system
will have chaotic invariant sets for small ε > 0. The stable manifolds (red) and images of the
canards (cyan) give approximations to the expected directions of the stable and unstable
bundles in a hyperbolic structure for these invariant sets. In the next section, we use the
insight obtained from the singular half Poincaré map in numerical calculations with the three
dimensional system with small values of ε > 0.

5. Symbolic dynamics. The extensions to the half return map defined in the previous
section consist of two vertical segments that we add to the graph of H at each point of
discontinuity. Here we explain how to use symbolic dynamics of one dimensional maps to
analyze the extended half return map. The graph of the map is a multivalued function, or
relation, so we define trajectories for such objects. We identify sets of trajectories that can
be used to reconstruct trajectories with canards in the reduced system that we conjecture
are limits as ε → 0 of trajectories with canards in the forced van der Pol system (1.1).
We begin by recalling some of the topological theory of iterations of one dimensional maps,
following Milnor and Thurston [20]. We then describe how we extend this theory to account
for multivalued maps that have vertical “monotone” segments and discontinuities like those
of our extended half return map. We end the section with descriptions of the nonwandering
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Figure 8. The blue surface is the critical manifold C. The white lines and grey arrows in C are integral
curves and the vector field of the slow flow, respectively. The red curve is an unstable periodic orbit of (1.1),
computed by AUTO, for the parameter values ε = 0.0001, a = 1.0888485842, and ω = 1.55.
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Figure 9. A cartoon of the image of Σ1 under the Poincaré map Φε. The union of the dark blue and cyan
curves represents Φε(Σ1). The red line represents κε, the subset of Σ1 for which canards form during the flow
from Σ1 to Σ2, and the cyan segment represents Φε(κε). (The vertical separation between the cyan segment
labeled “Jump Back Canards” and the dark blue segment on the right is greatly exaggerated.)

sets of the examples displayed in the previous section.

Let H : I → I be a piecewise monotone map of the interval I. We also allow the possibility
that I is the circle S1. Here piecewise monotone means that there are points c0, . . . , cn such
that, on each element of the partition I = I1 ∪ I2 ∪ · · · ∪ In; Ij = [cj−1, cj ] (with c0 = cn
in case I is a circle), H has a continuous strictly monotone extension to each Ij . Note that
this definition allows H to be discontinuous at the cj . We assign symbol sequences, called
itineraries, to each x by A(x) = {ai} with ai = j when H i(x) ∈ Ij . The shift map σ on
sequences is defined by σ(ā) = b̄ when bi = ai+1. The best way to treat the mesh points cj of
the partition in this definition is problematic. Since we shall look at multivalued extensions of
the map that send endpoints to entire intervals, this issue is discussed at length below. Each
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Figure 10. The singular Poincaré map for (a, ω) = (1.1, 1.57). The red curve is κ0.
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Figure 11. The singular Poincaré map for (a, ω) = (4.0, 1.51). The red curve is κ0.
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Figure 12. Singular Poincaré maps that show the four cases where Φ0(κ0) intersects κ0 twice.
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interval Ij has a sign s(j) = ±1 defined by whether the map H is increasing or decreasing on
Ij . These signs are used to define an order on itineraries: {ai} < {bi} if the sequences differ
and for the first index k with ak = bk, s(a0) · · · s(ak−1)ak < s(b0) · · · s(bk−1)bk. Note that the
two signs in this inequality are the same since the sequences agree up to their kth terms. The
map Hk is increasing or decreasing on the interval

k−1⋂
i=0

H−i(IAi)

as s(a0) · · · s(ak−1) = ±1. This implies that the order of itineraries is consistent with the order
of points of the interval; if x < y, then A(x) ≤ A(y).

There is a complementary theorem to the result that the ordered itineraries are consistent
with the linear order of points on the interval. This theorem almost classifies the map H up
to topological equivalence. The points with the same itinerary are called monotone equiv-
alence classes. These classes are connected sets: either points or intervals. The itineraries
of the critical values H(ci) are called the kneading data for the map. The kneading data
constrains the itineraries of other trajectories. If a point H i(x) ∈ Ij , then s(j)A(H(cj−1)) ≤
s(j)A(H i+1(x)) ≤ s(j)A(H(cj)). The following theorem states that all sequences of addresses
that satisfy strong versions of these inequalities are itineraries.

Theorem 5.1 (see [20]). If a sequence of symbols ā satisfies the inequalities s(j)A(H(cj−1))
< s(j)σi+1(ā) < s(j)A(H(cj)) when ai = j, then there is a point x whose itinerary is ā.

Thus the kneading data essentially characterizes the monotone equivalence classes of H.
If we further know which monotone equivalence classes are intervals and which are points, this
determines the topological equivalence class of the mapping. Thus, in classifying piecewise
monotone one dimensional maps up to topological equivalence, the kneading data are the
essential invariants.

We want to apply the kneading theory described above to the multivalued extended half
return maps defined in the previous section. To accomplish this, we imagine that the exten-
sions of the map are made by inserting intervals of infinitesimal length at the discontinuities
of the map and think of the extensions as functions of positive or negative slope on these
infinitesimal intervals. Formally, we generalize the definition of a discrete dynamical system
to multivalued functions.

Given a set X, the graph of a function f : X → X is a subset G ⊂ X×X with the property
that for each x ∈ X, there is exactly one element of G whose first element is x. We relax
this requirement and define a discrete dynamical system for multivalued functions, defined as
relations G ⊂ X × X with the property that the projection of G onto its first component
is onto; i.e., every x ∈ X is the first element of at least one pair (x, y) ∈ G. We define the
trajectories of G to be sequences {xi} such that (xi, xi+1) ∈ G for all i ≥ 0. If G is the graph of
a function f : X → X, then each trajectory is the sequence of f iterates of its first element. In
our case, X and G must be chosen in a way that reflects that there are two overlapping vertical
segments added to the graph of H at each point of discontinuity. We do this by first setting
X to be the circle S1, but with each critical point p of H “split” into left-hand and right-hand
points pl and pr. This makes X a non-Hausdorff topological space. Next, the relation G is
defined by adding vertical segments (pl, ql) and (pr, qr) to the graph of H at each discontinuity
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point pl, pr. If the discontinuity point of H is not one of the two points arcsin(2/a), then
both of the branches of H at the discontinuity point are increasing or decreasing. (If there
is a point (arcsin(2/a), 2) that lies in Ws, then H has a continuous extension at this point.)
Where the branches of H are increasing, call pr the lower discontinuity point and pl the upper
discontinuity point. Where the branches of H are decreasing, call pl the lower discontinuity
point and pr the upper discontinuity point. The limit value of H at the lower discontinuity
points is θ1u, while the limit value of H at the upper discontinuity points is θ1s. At each
lower discontinuity point p∗, we add the vertical segment [θ1u, θ1m] to G. At each upper
discontinuity point we add the vertical segment [θ1s, θ2u], where θ2u depends on the sign of θ

′

at (−2, θm). If 2 + arcsin(2πθm) > 0, we set θ2u = θ1m, while if 2 + arcsin(2πθm) < 0, θ2u is
determined so that (−2, θ2u) is the first point on the backward trajectory of the slow flow (1.2)
with initial point (−2, θm). This almost completes the definition of the relation G. The one
remaining item in its definition is what happens at the inverse images of the critical points.
If an inverse image of a critical point p is a regular point q, we include both (q, pl) and (q, pr)
in G. If an inverse image of a critical point p is a critical point q, then we include only one of
(q, pl) and (q, pr) in G. If q is the left endpoint of an increasing branch or the right endpoint
of a decreasing branch, then we include (q, pl) in G; otherwise, we include (q, pr) in G.

We next define a (cyclic) order on the relation G. We begin by extending the order of the
circle to X so that pl < pr at each critical point. Next, we assign signs to the vertical segments
in G: upper discontinuity points of increasing branches and lower discontinuity points of
decreasing branches are assigned positive slope with sign s = +1, while the extensions of the
graph of H at upper discontinuity points of decreasing branches and lower discontinuity points
of increasing branches are assigned negative slope with sign s = −1. Given points (θ1, ψ1)
and (θ2, ψ2) in G, we say that (θ1, ψ1) < (θ2, ψ2) if either θ1 < θ2 or the points on the same
vertical segment with sign slope s and sψ1 < sψ2.

We now define a symbolic dynamics for the relationG. PartitionG into segments I1, . . . , In
at critical points. At each critical point, points (pl, q) and (pr, q) belong to adjacent elements
of the partition. Here a segment is defined relative to the order on G: a segment includes all
the pairs between any two pairs in the segment. The partition elements are closed curves in
the plane which are “disjoint” if one distinguishes pl and pr at each critical point. As for a
function, we define the itinerary ā = A(x̄) for a trajectory x̄ = {xi} to be the symbol sequence
with ai = j when xi ∈ Ij . With these definitions, the itineraries of trajectories for the relation
G are determined precisely by inequalities on symbol sequences.

Theorem 5.2. A sequence of symbols ā = {ai} is the itinerary of a trajectory of G if and
only if it satisfies the inequalities s(j)A(H(cj−1)) ≤ s(j)σi+1(ā) ≤ s(j)A(H(cj)) with ai = j.

The proof remains the same as the proof of the original theorem. The key point is the
observation that for any sequence satisfying the inequalities s(j)A(H(cj−1)) ≤ s(j)σi+1(ā) ≤
s(j)A(H(cj)), the sets

l⋂
i=1

H−i(Iai)

form a decreasing sequence of nonempty compact connected subsets of G. Their intersection
is a nonempty connected subset of the graph.
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If the critical points of a piecewise monotone map tend to stable periodic orbits and the
nonwandering set has a hyperbolic structure [8], then the map is structurally stable. A map is
structurally stable if perturbations of the map are all topologically equivalent; i.e., there are
homeomorphisms that map trajectories of one map to trajectories of another. We comment
here on the stability properties of G. If the trajectories of the critical points of G tend to stable
periodic orbits and the two points (arcsin(2/a), 2) do not lie in Ws, then perturbations of the
reduced system will have extensions with the same number of branches and the itineraries
of the critical points will be unchanged. If, further, the “map” is expanding on the set of
trajectories that do not tend to stable periodic orbits, then G will be structurally stable: its
nonwandering set will vary continuously with perturbation. The nonwandering set of a map
with hyperbolic nonwandering set is topologically equivalent to a disjoint union of a finite
number of stable periodic orbits and expanding subshifts of finite type. The nonwandering set
of a structurally stable G is similar, but with one difference that bears discussion. If there are
distinct (but possibly coincident) critical points p1 and p2 so that the canard pairs (p1, p1),
(p1, p2), (p2, p1), and (p2, p2) belong to G, then arbitrary sequences of p1 and p2 are trajectories
for G. This set of trajectories is topologically equivalent to a shift on two symbols. Still, the
only points of G visited by these trajectories are the canard pairs above. Thus, there may be
large sets of trajectories that visit the same points of G, but in a different temporal order.
When we examine the singular limit of the van der Pol system, these sets of trajectories are
limits of chaotic invariant sets of the return map for a cross-section of the van der Pol system.
Therefore, we still regard these sets of trajectories for G as chaotic invariant sets even though
they visit only a finite number of points of G.

We next describe the symbolic dynamics of the examples presented in the last section.
When (a, ω) = (1.1, 1.57), H has a single discontinuity θ2s and is strictly increasing. See
Figure 4. There are two fixed points of H, one stable, denoted vs, and one unstable, denoted
vu. The extensions to H consist of two vertical intervals at the discontinuity, both ending
at the maximal canard point, denoted θm. The interval (θ2s, θm) contains vu. The interval
(vu, θ2s) is forward invariant, all points iterating to vs. To obtain the symbolic description of
the nonwandering set of the extended H, we select four symbols {1, 2, 3, 4} that are assigned to
the left-hand “increasing” vertical segment of G, the right-hand “decreasing” vertical segment
of G, the interval [θ2s, θm], and the interval [vu, θ2s], respectively. The partition has the
properties that H(I4) ⊂ I4 and I1 ∪ I2 ∪ I3 is a subset of the “images” of Ij for j = 1, 2, 3.
It follows that there is an invariant set Λ in I1 ∪ I2 ∪ I3 that is topologically equivalent to
the full shift on three symbols. Note that H is expanding on I3. Points that do not remain
in I1 ∪ I2 ∪ I3 converge monotonically to vs once they map into I4. We conclude that the
nonwandering set of G consists of Λ and vs.

The second example that we consider has parameter values (a, ω) = (4, 1.51). Figure 5
shows the graph of H with its extensions for these parameter values. There are three points of
discontinuity for H, and H has a local minimum in one subinterval on which it is continuous
and a local maximum in another subinterval, and H is increasing on the third subinterval.
There are a pair of canard extensions at each point of discontinuity. We partition G into nine
subintervals I1, . . . , I9 with I1 the subinterval with a local maximum, I4 the subinterval with
a local minimum, and I7 the subinterval on which H is increasing. For j = 1, 4, 7, we set Ij+1

to be the canard segment at the right endpoint of Ij . We set I3 to be the canard segment at
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the left endpoint of I4, I6 to be the canard segment at the left endpoint of I7, and I9 to be
the canard segment at the left endpoint of I1.

There are two stable fixed points of this example, one in I1 and one in I4. All of the
points in I1 iterate to the fixed point in I1, and all of the points in I4 iterate to the fixed
point in I4. The canard extensions I2 and I6 contain fixed points. The images of the “lower”
canard segments I2, I5, and I8 contain the canard segments I2, I3, and points in I1 and I4

that iterate to the stable fixed points. The images of the “upper” canard segments I3, I6, and
I9 contain the canard segments I5, I6 and points in I4 and I7, including a preimage p of the
canard segments I2 and I3 that lies in I7. Points other than p in I7 have images in I1 or I4

and iterate to the fixed points. Looking at these images, we find that there is an invariant
set Λ topologically equivalent to a subshift with symbols 2, 3, 5, 6, 7 and that the transition
matrix1 for the subshift is




1 1 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 1 1
1 1 0 0 0




,

reflecting that the images of I2, I5, and p contain I2 ∪ I3 while the images of I3 and I6 contain
I5 ∪ I6 ∪ {p}. The nonwandering set of H consists of the two stable fixed points and Λ.

The third example of a structurally stable nonwandering set we display is for parameter
values (a, ω) = (1.02, 1.19). Figures 6 and 7 show the graphs of the first and second iterates
of the half return map H. There are no fixed points of H, but the graph of H2 resembles the
dynamics of H at the parameter values (a, ω) = (1.1, 1.57). There is a stable periodic orbit of
period 2 for H. There are also two regions containing canards in each of which the extension
of H2 has an invariant set that is topologically equivalent to a full shift on three symbols.
These two invariant sets of H2 are interchanged by H. Thus G has an invariant set that is
topologically equivalent to a subshift with six symbols whose transition matrix is

(
0 I
I 0

)
,

where 0 is the 3× 3 zero matrix and I is the 3× 3 matrix with all components 1.
6. Bifurcations. Bifurcations of the reduced system and its half return map H occur

where the system is not structurally stable. A long term goal is to classify the bifurcations
that occur as the parameters a and ω vary, but this paper concentrates on several bifurcations
that affect changes in the number of fixed points of H and bifurcations that bound a few
parameter regions of structurally stable systems with chaotic invariant sets.

Figure 13 reproduces the bifurcation diagram of fixed points of H without its exten-
sion [14]. Recall that in the region where there are folded foci, the bifurcations of fixed points

1Recall that a subshift of finite type [8] with symbols s1, . . . , sn and transition matrix T = (Tij) (an n× n
matrix with components 0 and 1) consists of all sequences {ai} with ai ∈ {s1, . . . , sn} and Taiai+1 = 1 for all
i. One-sided shifts are indexed by i ≥ 0 while two-sided shifts are indexed by i ∈ Z.
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Figure 13. The bifurcation diagram of fixed points of H. The green curves are saddle-node bifurcations,
the black curves are right homoclinic bifurcations, the blue curves are left homoclinic bifurcations, and the gray
curves are points where there is a point of Ws tangent to the circle S2.

of H that were found are two types of homoclinic orbits (black and blue in the diagram) and
saddle-node bifurcations (green). For each circuit number of the corresponding periodic orbits
in the reduced system, there is a curve of bifurcations of each of these three types. Disconti-
nuities of H occur at intersections of Ws, the stable manifold of the folded saddle, with the
circle x = 2 in the phase space, so the number of discontinuities of H changes at points where
Ws intersects the circle x = 2 tangentially. The locations of these parameter values are drawn
as gray curves in the bifurcation diagram. They play an even more important role in the
bifurcations of the extended half return map because each discontinuity gives rise to canards
and vertical segments in the graph of the extended H. We now turn to the extension of H
and its bifurcations.

In the parameter region a < 2, there are no tangencies of the vector field with the circle
x = 2, so H has no local maxima and minima and just a single discontinuity. In the extension
of H, the left and right values of the maximal canards are the same. To characterize the
dynamics of H, we are especially interested in the kneading data, i.e., the itineraries of the
critical values. There are two critical values, namely, θm, the value of the maximal canard,
and θr = θ1u+1/2, the right-hand limit of H at the discontinuity. The graphs of the extended
half return map are limits of piecewise smooth circle maps with two critical points. Such
maps can have quasi-periodic trajectories, but they always have periodic orbits as well [5].
The universal bifurcation diagram for smooth circle maps with two critical values is essentially
two dimensional. The properties of G, the relation associated with the extension of H, will
be similar to those of these circle maps in the parameter region 1 < a < 2 with folded foci.
We look for bifurcations of G at locations where the itineraries of the two critical values do
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Figure 14. A detail from the bifurcation diagram. The diamond is the point (a, ω) = (1.1, 1.57). In this
figure, we have added an additional bifurcation curve. The yellow curve is the set of parameter values where
H(θm) = θ2s.

not iterate to stable periodic orbits. We begin by looking at the boundary of the region of
structurally stable systems in parameter space around (a, ω) = (1.1, 1.57).

In the previous section, we showed that when (a, ω) = (1.1, 1.57), the nonwandering set
of G consists of a fixed point and an invariant set Λ topologically equivalent to a full shift on
three symbols. We discuss here the bifurcations that limit the parameter region in which G
has a nonwandering set topologically equivalent to this one. The following properties of H
and its extension imply that there is a hyperbolic invariant set Λ equivalent to the shift on
three symbols. We first summarize the relevant properties of H:

• H has a single jump discontinuity at θ = θ2s with θr < θ2s;
• H is continuous on S1 − {θ2s};
• H has only two fixed points vu and vs, with θ2s < vu < vs, where vu is unstable and

vs is stable;
• and θm ≥ vu.

As described in the previous section, the nonwandering set of the extension G of H consists
of just the stable fixed point and Λ.

Figure 14 displays the curve µ in cyan along which θm = vu. There is a sequence of
bifurcations that accumulate on µ from below (i.e., smaller ω). Below µ, the nonwandering
set of G no longer contains an invariant set equivalent to a shift on three symbols. If θ−2s and
θ+
2s denote the two adjacent points in X where the vertical segments are added, (θ−2s, θ

−
2s),

(θ−2s, θ
+
2s), (θ

+
2s, θ

−
2s), and (θ

+
2s, θ

+
2s) are all in G as long as θm > θ2s. As mentioned earlier, this

means that arbitrary sequences of θ−2s and θ+
2s are trajectories of G; this set of trajectories

is topologically equivalent to a shift on two symbols, so the nonwandering set of G (minus
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Figure 15. An example of Proposition 6.1 where c1 = θm.

the stable fixed point) contains a shift on two symbols and is properly contained in the
shift on three symbols. We give a more precise description of these nonwandering sets. Let
ck = H−k(θ2s). We observe that limk→∞ ck = vu.

Proposition 6.1. Let H, G, and {ck}∞k=1 be as defined above. Assume that none of the ck
are θm. Let {c1, c2, . . . , cn} be the set for which ck < θm. Then the nonwandering set of
G consists of the two fixed points of H and a hyperbolic invariant set Λ with n + 2 symbols
{θ−2s, θ+

2s, c1, c2, . . . , cn} and transition matrix




12×2
... 12×n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11×2
... 01×n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0(n−1)×2

... In−1
... 0(n−1)×1




,

where 1m×n is the m × n matrix of ones, 0m×n is the m × n matrix of zeros, and In is the
n× n identity matrix.

The proposition is proved by observing that the points (θ−2s, ck) and (θ
+
2s, ck) are in G

precisely when k ≤ n. From either of these points, the subsequent trajectory is ck, ck−1, . . . , c1.
By the construction of G, c1 can be followed by either θ−2s or θ+

2s. Note that if c1 > θm, then
Λ = {θ−2s, θ+

2s}, and on Λ, G is equivalent to a shift on two symbols; the unextended regions
do not play a role in the chaotic invariant sets.

The changes in the structure of the symbolic dynamics occur when ck = θm for some k;
at these points, the kneading data associated with θm change. For example, Figure 15 shows
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Figure 16. An example of Proposition 6.1 where c2 < θm but c3 > θm.

a case where c1 = θm. This is a point from the yellow curve in Figure 14. On one side of
this curve, the chaotic dynamics are equivalent to a shift on {θ−2s, θ+

2s}. On the other side, the
symbols are {θ−2s, θ+

2s, c1}, and the transition matrix is


1 1 1
1 1 1
1 1 0


 .

If we continue to change the parameters in this direction, more bifurcations will occur. For
example, Figure 16 shows a case where c2 < θm but c3 > θm. In this case Λ = {θ−2s, θ+

2s, c1, c2},
and the transition matrix is 


1 1 1 1
1 1 1 1
1 1 0 0
0 0 1 0


 .

Let U be the connected region in the (a, ω) plane containing (1.1, 1.57) where G has a
chaotic invariant set; see Figure 14. There are four curves bounding the region. On the left
(near a = 1), we have the curve that marks the transition from a folded node to a folded
focus (the black dotted line). The upper boundary is the curve of right homoclinic points
(the black solid line). At these points, θr = θ2s; i.e., the right side of the discontinuity is a
fixed point. Above this curve there is a thin sliver in which the right-hand vertical extension
no longer contains a fixed point, and there is a new stable fixed point just to the right of θ2s.
The upper boundary of the sliver is a min saddle-node curve (the upper green line), where the
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“new” stable fixed point coalesces with vu, leaving a single stable fixed point. When the new
stable fixed point exists, the preimage of θ2s is only a single point that lies in I2, the left-hand
canard segment of G. This fixed point in I2 is the only point that maps into the canards for G.
Consequently, the nonwandering set consists entirely of fixed points—two stable fixed points
and two unstable fixed points, one of which lies in I2. The two other curves that bound U
are the curve where θm = θ2s (the red curve) and the max saddle-node curve (the lower green
curve). After leaving U by crossing the red curve, θm < θ2s, and there are no fixed points in
the vertical extensions. The green curve is the saddle-node curve, and just below this curve,
H does not have any fixed points.

Two additional bifurcation curves in U that divide parameter regions with topologically
inequivalent nonwandering sets are plotted. The curve where c1 = θm is plotted in yellow,
and the curve where vu = θm is plotted in cyan. Thus the region bounded by the yellow,
lower green, red, and black dotted curves gives the set of parameters where c1 > θm. The
region bounded by the solid black, lower green, cyan, and black dotted lines gives the set of
parameters where vu < θm, so the dynamics on Λ can be described as a full shift on three
symbols. The infinite sequence of bifurcation curves discussed above lies between the yellow
and cyan lines. There is one curve for each equation cn = θm. They are not shown in Figure 14,
but they converge to the cyan line as n increases.

This example illustrates some of the new types of bifurcations arising from canards in the
extension G of the half return map H. In seeking to classify the different types of bifurcations,
we note that extended maps G which are not at bifurcation parameters have the property that
their critical values tend to stable periodic orbits. Limit sets for the critical values that are
not stable periodic orbits can be unstable periodic orbits, subsets of chaotic invariant sets, or
quasi-periodic trajectories. There are also parameters at which the number of discontinuities
change and where the maximal canards of the reduced system move from the section S1 to
the section S−1. This plethora of possibilities is sufficiently daunting that we do not attempt
to determine here the types or locations of more than a few bifurcations of G. We focus upon
those whose defining equations are expressed in terms of G itself rather than higher iterates.

One of the main qualitative differences in canards of the reduced systems is in the location
of maximal canards. When a is large enough and large enough relative to ω, oscillations of
the reduced system induced by the forcing are large enough that the saddle separatrix γu
intersects the circle S−1. The transition between parameter values for which γu intersects the
circle S−1 and those for which it does not occur when there are heteroclinic orbits that connect
the folded saddles on S1 and S−1. The parameter values with these heteroclinic orbits divide
the parameter space into two regions that we callM1 andM−1. M1 lies above the heteroclinic
curve in the (a, ω) plane and yields maximal canards on the circles S1. M−1 lies below the
heteroclinic curve in the (a, ω) plane and yields maximal canards on the circles S−1. In M1,
the maximal canard value associated with the jump back canards (i.e., those that jump to
x > 1) is θm. The maximal canard value associated with the jump away canards (i.e., those
that jump to x < −1) is either θm+0.5 (when x′(θm,−2) > 0) or θm2+0.5, where (θm2,−2) is
the previous point on the slow flow trajectory through (θm,−2) (when x′(θm,−2) < 0). Note
that H(θm) = H(θm2) in the second case. Though similar methods can be used to analyze
bifurcations in M−1, this paper considers only bifurcations of canards in the region M1.

Among the new bifurcation types that we expect from the extensions of H are parameters
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Figure 17. A plot of the extended half return map for parameter values (a, ω) = (3, 1.4).

where H(θm) is a critical point or unstable fixed point; specifically,

1. H(θm) is a discontinuity point, creating a “maximal canard fixed point,” or
2. H(θm) = q with q an unstable fixed point of H (not in a canard), or
3. H(θm) = arcsin(2/a), the local minimum or maximum of H.

If both maximal canard values are θm + 0.5, the first of these bifurcations is at the boundary
of existence of a chaotic invariant set of trajectories of G that is topologically equivalent to
the shift on two symbols. This type of bifurcation cannot occur in families of smooth maps of
the circle or interval. In smooth maps, shifts on two symbols are created from maps without
chaotic dynamics by an infinite set of bifurcations with intervening parameter intervals in
which the critical point tends to stable periodic orbits [11].

Where the maximal canard values differ, it is less apparent what changes in the nonwan-
dering set occur at a bifurcation with a maximal canard fixed point. Figures 17, 18, and 19
show graphs of the extended half return map for a = 3 and ω = 1.4, 1.409, 1.43, respectively.
The value ω = 1.409 is close to a maximal canard fixed point, but the most visible effect of
the bifurcation in the graph of H is to switch which canard branch of H contains the fixed
point. The constraint that H have the same image at both maximal canard values prevents
the simultaneous existence of two fixed points within canards near these parameter values.

We have seen in the examples with a = 1.1 that bifurcations in which a maximal canard
value maps into a fixed point can change the structure of chaotic invariant sets without
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Figure 18. A plot of the extended half return map for the parameter values (a, ω) = (3, 1.409).

changing the number of fixed points of G. The bifurcations in which maximal canard values
map into tangency points θ = arcsin(−2/a)/(2π) do not seem to affect the number of fixed
points ofH. Instead, these bifurcations are associated with changes in the qualitative structure
of the canard extensions of H; there is a transition from parameters at which the two maximal
canard values are equal to parameters at which these values differ. The transition occurs when
the maximal canard maps into the larger value of the tangency point θ = arcsin(−2/a)/(2π),
as described in section 3.

There are parameter regions where the nonwandering set of G contains an invariant set
on which G is equivalent to a subshift of finite type. We have already seen examples, in
particular, the region U in which Proposition 6.1 applies. Here we identify additional regions
where this is true, but we do not attempt to completely characterize the nonwandering set as
we did in Proposition 6.1. The regions that we consider are those where there are two fixed
points in the canard extensions. We have observed several qualitative cases where this occurs.

The example (a, ω) = (1.1, 1.57) shows a case where the left and right vertical extensions
are adjacent and have a fixed point. In this case, the nonwandering set has an invariant subset
{θ−2s, θ+

2s} on which trajectories are topologically equivalent to a shift on two symbols. The
parameter region where this condition holds is bounded above by the black curve of right
homoclinic points and bounded below by the red curve of maximal canard fixed points.

There is a region adjacent to the previous region, bounded by the red curve of maximal
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Figure 19. A plot of the extended half return map for the parameter values (a, ω) = (3, 1.43).

canard fixed points, the black curve of right homoclinics, and the gray curve where Ws is
tangent to S2, in which there are two different jump back canard extensions with fixed points.
This region is the roughly triangular-shaped region shown in the lower right inset in Figure 23.
An example is (a, ω) = (2.4, 1.3) (see Figure 20). Let d1, d2, and d3 be the θ coordinates of the
discontinuities, and let d−i and d+

i be the left and right adjacent points in X corresponding
to these discontinuities. Then there are trajectories made up of only {d+

1 , d−2 } for which G is
topologically equivalent to a shift on two symbols.

There is a region where a jump back canard extension and a jump away canard extension
have fixed points at different discontinuities. This occurs in the example (a, ω) = (4, 1.51); see
Figure 2. Define d±i as before. In this case, there are trajectories made up of {d−1 , d+

1 , d−2 , d+
2 }

for which G is topologically equivalent to a subshift with the transition matrix


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


 .

(Note that this transition matrix is a submatrix of the transition matrix derived in the example
where (a, ω) = (4, 1.51).) The region in the (a, ω) plane where this condition holds that also
contains (4, 1.51) is bounded below by the black right homoclinic curve and above by the blue
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Figure 20. An example where two different jump back canard extensions have fixed points; (a, ω) = (2.4, 1.3).

left homoclinic curve (see Figure 22 or Figure 23). This region appears to be unbounded as a
increases.

There are regions where two different jump away canard extensions have fixed points. An
example is (a, ω) = (6.5, 3.41); see Figure 21. As in the case where two different jump back
canards have fixed points, on the set {d−2 , d−3 }, G is topologically equivalent to a shift on two
symbols. The region where this occurs is bounded below by the red curve of maximal canard
fixed points and above by the blue curve of left homoclinic points. We have observed that
for circuit number 1, the curve of maximal canard fixed points does not intersect the curve of
left homoclinic points, so the case where two different jump away extensions have fixed points
occurs only in regions associated with circuit number 2 or higher.

Figure 22 is an augmented bifurcation diagram in which we have added bifurcation curves
for the three types of bifurcations involving maximal canard points discussed above. Curves
of parameters with maximal canard fixed points are drawn red, curves of parameters with
maximal canard points mapping to fixed points are drawn cyan, and curves of parameters
with maximal canard points mapping to points of tangency of the slow flow with S−2 are
drawn yellow. In addition, we draw the parameter curve on which there are heteroclinic
connections between the two folded saddles of the reduced system in magenta.

Thus far, we have investigated an extended half return map for the reduced system, seeking
to understand the role of canard solutions in the full solution set to the forced van der Pol
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Figure 21. An example where two different jump away canard extensions have fixed points; (a, ω) =
(6.5, 3.41).

equation. In particular, we have shown that the canard extensions to the reduced system
play an important role in the bifurcations that occur in that system. In the next section,
we explore the relationship between the reduced system with its canard extensions and the
full system using the half Poincaré map and the singular half Poincaré map. The concept
of candidates [4] is useful in formalizing this relationship. Candidates are continuous curves
consisting of the concatenation of trajectory segments, the slow flow on the stable sheets of
the critical manifold, trajectory segments of the slow flow on the unstable sheets of the critical
manifold (canards), and segments parallel to the θ axis with the orientation of the fast flow.
All of the possible candidates are represented by orbits of our singular half Poincaré map.
However, it is not evident that all the candidates are limits of trajectories in the full system
as ε → 0. Though we do not attempt to prove that all candidates are limits of trajectories in
the full system, we present numerical computations in the next section that provide evidence
that they are.

7. Comparisons of the reduced and full systems: Numerical calculations with ε > 0.
The reduced system is a means of understanding the full van der Pol system (1.1) with ε = 0.
In this section, we consider the relationship between the full system and the reduced system
by comparing computations of Smale horseshoes [22] and bifurcations in the reduced system
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Figure 22. The bifurcation diagram of fixed points of G, the canard extension of H. The red curves give
the location of maximal canard fixed points. The magenta curve shows the location of heteroclinic connections
between the two folded saddles of the reduced system. The cyan curves (better seen in Figure 23) show parameters
where maximal canard points map to fixed points and the yellow curves show parameters where maximal canard
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Figure 24. A Poincaré map that exhibits a horseshoe in (1.1). The parameter values are ε = 10−4, a = 1.1,
and ω = 1.55. The cyan curves are the images of the horizontal segments at the end of the region plotted in
red. Because of the strong contraction on the stable slow manifold, the two cyan curves are indistinguishable in
this plot. The ends of the cyan curves are marked with circles on the left and diamonds on the right.

to computations of the full system with similar parameter values. The results demonstrate
that our analysis of canards in the reduced system gives a reliable guide to dynamical behavior
associated with canards in the full system.

Numerical computation of trajectories with canards is difficult with initial value solvers
[15]. When ε > 0 is small, the exponential growth of deviations from an unstable sheet of the
slow manifold is sufficiently rapid that the round-off error in representing an initial point on
the slow manifold will give a trajectory that has a jump point close to the initial point. This
is an unescapable feature of slow-fast dynamical systems. The use of different initial value
solvers, even “stiff” solvers, does not resolve the difficulty. This does not make it hopeless
to compute approximations to trajectories with canards, however. Boundary value solvers
compute curves that approximately solve a system of differential equations with specified
boundary conditions. Their convergence properties are not directly related to the stiffness
of the system being solved. We used the program AUTO [9] as a boundary value solver to
explore the dynamics of the forced van der Pol system (1.1) for small ε > 0. Our goal was
to confirm predictions arising from our analysis of canards in the reduced system and its half
return map. This is done with two different types of AUTO computations.

The first AUTO computation seeks a Smale horseshoe in the return map Φε. The cyan
curves in Figure 24 are the images under the Poincaré map Φε of the short horizontal line
segments at the upper and lower ends of the red parallelogram. The red parallelogram was
chosen to include a piece of the strip κε. There are two cyan curves, but the strong contraction
on the stable slow manifold makes the resulting curves indistinguishable in this plot. More
examples are shown in Figure 25. These examples illustrate the extreme contraction that
is associated with the two time scales in the forced van der Pol system. The expansion
of horizontal segments within κε by a factor of approximately 50 along the images is also
evident in these figures. The combination of the contraction along the long direction of the
parallelogram, the expansion along the horizontal direction (resulting from the formation of
canards), and the fold that occurs at the maximal canard gives the cyan curves their shape.
When Φε(κε) intersects κε as in Figures 24 and 25, we see that Φε possesses all the ingredients
for the existence of a Horseshoe map with a hyperbolic invariant set.

Singular Poincaré maps for parameter values close to those in Figures 24 and 25 are shown
in Figure 26. In particular, Figure 26(b) shows the same values of a and ω as Figure 24, and
indeed, the pieces of the plot shown in Figure 24 appear to be well approximated by the
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Figure 25. Poincaré maps that exhibit a horseshoe in (1.1). The parameter values are ε = 10−3, a = 1.1,
and (a) ω = 1.46, (b) ω = 1.5. The cyan curves are the images of the horizontal red line segments under
the Poincaré map Φ. Because of the strong contraction on the stable slow manifold, the two cyan curves are
indistinguishable in this plot. The ends of the cyan curves are marked with circles on the left and diamonds on
the right. (Note that ε is ten times larger here than in Figure 24. In this case, ε is large enough that this map
was successfully computed with a standard initial value problem solver in MATLAB.)
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Figure 26. Singular Poincaré maps with a = 1.1 and several values of ω.

singular map shown in Figure 26. This is evidence of the validity of our representation of
canards in the reduced system.

We used the continuation capabilities of AUTO to track families of periodic orbits along
a line in the parameter space with ε = 10−4 and ω = 1.55 with varying a near 1.1. Our
goal is to compare the observed bifurcations of the periodic orbits to the bifurcation diagram
for the reduced system displayed in Figure 22. Some of the bifurcations of the van der Pol
system (1.1) have different types from the corresponding types in the reduced system due to
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Figure 27. A graph of x versus θ for a periodic orbit computed by AUTO. This solution is from the curve
labeled “12b:anbbanan” in Figure 30. The symbol sequence anbbanan describes the behavior of the periodic
orbit near the folded saddles. The parameter values are ε = 10−4, a = 1.1, and ω = 1.55.

the singular nature of the limit ε = 0. For example, homoclinic bifurcations or bifurcations
associated with maximal canards in the reduced system are limits of infinite sets of bifurcations
in (1.1) that collapse into one another as ε → 0. Asymptotic analysis that is not pursued in
this paper can be used to predict which bifurcations of periodic orbits of (1.1) will be found
close to the bifurcations of the reduced system. Here we present several numerical examples
that illustrate relationships between the bifurcations in (1.1) and the reduced system. The
data presented here can be compared directly with predictions from asymptotic analysis.

Figure 27 shows a plot of x versus t along a periodic orbit of period 12. (Throughout
the remainder of this section, the period of orbits is measured by θ rather than time. Thus
a periodic orbit of period k has winding number k in the phase space.) This periodic orbit
has five canards that can be identified as segments of the plot with x ∈ (−1, 1) and moderate
slope. There are also three jumps without canards where x crosses the entire interval (−1, 1)
with very large slope. The jump back canards occur when the graph enters the region |x| < 1
for a short distance but then has a short steep segment that leaves this region without crossing
it. This is followed by a jump across |x| < 1. In contrast, at the jump away canards, the
trajectory enters the region |x| < 1 along a segment with moderate slope and then crosses the
region along a segment of very steep slope. The order in which the jumps occur is anbbanan
where the symbol a labels a jump away canard, the symbol b labels a jump back canard, and
the symbol n labels a jump without canards.

Recall that the parameters (a, ω) = (1.1, 1.55) lie in the region where the reduced system
has a chaotic invariant set that is somewhere between a shift on two symbols and a shift on
three symbols. The symbols are directly related to the a, b,n we used to describe the jumps of
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Figure 28. Symmetric periodic orbits of period 3 computed by AUTO. In this example, ε = 10−4 and
ω = 1.55.

the periodic orbit in Figure 27. The subshift allows arbitrary sequences of these symbols with
the single restriction that there is a limit on the length of consecutive n’s. Thus the periodic
orbit is compatible with the structure predicted by analysis of the reduced system and can be
identified with a specific orbit in the nonwandering set of its extended half return map.

Figures 28, 29, and 30 show bifurcation diagrams for a few periodic orbits of periods 3,
6, and 12 (in θ) computed by AUTO for system (1.1) with ω = 1.55 and ε = 10−4. The
plots show the L2 norm of x along the orbit (normalized by its period) as a function of the
continuation parameter a in these calculations. The numbers in parentheses in Figures 28
and 29 are labels attached by AUTO to these solutions. We look at the dynamics of several
below. The labels of each solution branch in Figure 30 identify the period and the sequence
of jumps displayed by the orbits. In addition, the period 3 orbits are labeled with A for
antisymmetric and S for symmetric. The fixed points of the extended half return map G in
this region correspond to symmetric periodic orbits of period 3. Asymmetric periodic orbits
of period 3 correspond to periodic orbits of G with period 2.

We compare the data produced by these calculations with our analysis of bifurcations of G.
Consider the bifurcations of circuit number 3 fixed points encountered along the line ω = 1.55
in Figure 22. The right-hand boundary of the region with circuit number 3 fixed points is
a curve of homoclinic orbits. The point labeled (11) in Figure 28 occurs where there is an
apparent saddle-node bifurcation. This saddle-node bifurcation is related to the homoclinic
bifurcation of the reduced system. The most direct analogue of a homoclinic bifurcation of the
reduced system in the three dimensional flow consists of periodic orbits that have a tangency
with the surfaces x = ±1. (Since the orbits are symmetric, there will be tangencies with both
x = 1 and x = 1.) Figure 31 shows a plot of x versus t for the orbit labeled (11). This orbit
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Figure 29. A magnified view of the boxed region in Figure 28.
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Figure 30. A partial bifurcation diagram of periodic orbits computed by AUTO. In this example, ε = 10−4

and ω = 1.55.

appears to be very close to one with a tangency with the surfaces x = ±1. We conjecture
that the relationship between a homoclinic bifurcation of the reduced system and the presence
of saddle-node bifurcations in the “full” system is a general one [13]. We also note that the
apparent vertex of the bifurcation curve at the point labeled (11) seems to be a smooth fold
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Figure 31. The periodic orbit labeled (11) in Figure 28. A jump back canard has just begun to form.

in a blowup of the region near this turning point in Figure 28.

Decreasing a, the next bifurcation curve of fixed points with circuit number 3 that we
encounter is the red curve at which G has a maximal canard fixed point. This corresponds to
the point labeled (13) in Figure 28. The periodic orbit is plotted in Figure 32. In this figure,
observe that the periodic orbit crosses the surface x = −1 without jumping, returning to the
surface x = −1 before finally jumping. This portion of the periodic orbit is the maximal
canard. There is no bifurcation of the family of periodic orbits in this region, but the type of
canard contained in the orbit switches from a jump back canard to a jump across canard.

Further bifurcations of the symmetric periodic orbits are best viewed in Figures 14 and 29,
which show the regions with finer resolution. The next two bifurcations encountered in the
reduced system are very close together. Figure 14 shows that a saddle-node bifurcation curve
is crossed (with decreasing a) shortly before a homoclinic bifurcation curve is crossed. In
Figure 29, we see a fold at the point labeled (17) near a = 1.14 that occurs just before canards
begin to form. The homoclinic bifurcation is on the boundary of the region in which G has a
chaotic invariant set. For the first time, we find parameters at which there are two periodic
orbits with canards. Figure 33 shows an example of a periodic orbit with jump back canards
that appear as a is decreased further. There is no apparent bifurcation of the periodic orbits
themselves associated with this crossing of the homoclinic curve, but we see below that there
are bifurcations in this region giving rise to additional periodic orbits that presumably lie in
a chaotic invariant set.

There are two additional bifurcations that we see on the family of periodic orbits. The
first of these is another saddle-node bifurcation of a trajectory with no canards. The saddle-
node bifurcations of G are located along the green curve in Figure 14. The last bifurcation
of the family of periodic orbits occurs where there is a maximal canard. Figure 34 shows this
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Figure 32. The periodic orbit labeled (13) in Figure 28. There is a maximal canard in which the trajectory
crosses the surface x = −1 and then returns to this surface before jumping.

trajectory. The trajectory crosses the fold curve and continues along the slow manifold until
it returns to the fold. There it jumps. This bifurcation corresponds to the maximal canard
fixed point curve drawn in red in Figure 14. Here θm = θ2s is a fixed point for G. This is the
boundary of the region where G has a chaotic invariant set. For smaller values of a, G has no
canard fixed points.

Let us turn now to Figure 30. The dashed curve is an expanded view of the portion of the
curve of symmetric periodic orbits displayed in Figure 29 that contains jump back canards
and the point labeled (16). This is the region where we expect to see chaotic invariant sets,
including the additional periodic orbits displayed in Figure 30. In the region in which G has a
chaotic invariant topologically equivalent to a three shift, there are three fixed points. These
correspond to the symmetric periodic orbits in the diagram, with symbol sequences aa, bb,
and nn for the full return map. There are also three asymmetric periodic orbits with symbol
sequences ab, an, and bn corresponding to the three periodic orbits of period 2 in the shift on
three symbols. The diagram also shows a branch of period 6 and a branch of period 12 orbits,
each of which has two turning points.

It is notable that many turning points of the branches seem to occur at almost the same
value of the continuation parameter a. In generic dynamical systems, there is no reason
that several bifurcations should happen simultaneously. However, the very close proximity of
these bifurcations to one another is a consequence of the strong contraction and expansion
associated with the two time scales in the van der Pol system. The right-hand bifurcation of
these branches occurs very close to the homoclinic bifurcation curve that bounds the region
where G has a chaotic invariant set. In the van der Pol system, we expect a cascade of
bifurcations to occur in a small parameter interval whose length shrinks rapidly to 0 as ε → 0.
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Figure 33. The periodic orbit labeled (16) in Figure 28. A jump back canard has just begun to form.

This explains the location of the right-hand turning points for the asymmetric branches shown
in Figure 30. The left-hand turning points seem to occur together at a value of the parameter a
where there are no bifurcations of the symmetric period 3 orbits. However, note that all of the
branches that are displayed contain a jump without canards. This means that these periodic
orbits come from invariant sets that are larger than a two shift. In Figure 14, the yellow curve
displays bifurcations in which G2 maps the maximal canard point back to the discontinuity
of G. In section 5 we showed that, to the left of this curve, the chaotic invariant set of G is
topologically equivalent to a two shift and consists entirely of G trajectories within the canard
extensions of H. Thus we conclude that the left-hand turning points of the asymmetric orbits
in Figure 30 correspond to this bifurcation of G.

We make a final observation about Figure 30 that is not related to bifurcations. It appears
that all four branches of periodic orbits pass through the same point in the middle of the
diagram. In fact, the curves are only close to having a common intersection. The presence of
this close intersection is readily explained. The period 6 and period 12 orbits are formed from
segments that are almost concatenations of the symmetric and asymmetric period 3 orbits.
Therefore, where the two period 3 orbits have the same L2 norm, the period 6 and period 12
orbits have almost the same norm.

Through these examples, we have shown that there is a very close qualitative correspon-
dence between the bifurcations of the extended half return map G and the bifurcations of
periodic orbits in the van der Pol system for ε = 10−4. The location of bifurcation curves in
the (a, ω) plane has shifted slightly and there is a translation between some types of bifur-
cations, but the numerical results illustrate that analysis of the reduced system gives a good
strategy for the van der Pol system.
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Figure 34. The periodic orbit labeled (15) in Figure 28. There is a maximal canard that is much shorter
than the maximal canard shown in Figure 32.

8. Concluding remarks. The ultimate goal of this research is to describe the dynamics
and bifurcations of the forced van der Pol vector field (1.1). This paper is a step toward that
goal, but there is much that remains to be done. We have demonstrated how to extend the
half return map of the reduced system to approximate the location of trajectories with canards
in the van der Pol system. Furthermore, we have shown how symbolic dynamics can be used
to characterize the dynamics on chaotic invariant sets. Each point in the canard extensions
of H corresponds to a uniquely determined canard of the reduced system. The trajectories of
the reduced system are limits of trajectory families of the van der Pol system (1.1) as ε → 0.
This limit is highly singular, and the analysis here hardly touches upon the nature of this
approximation. Instead, we present numerical studies that illustrate the relationship between
the two systems.

We have also shown how methods used to analyze bifurcations of one dimensional maps can
be applied to the extended half return map G. We have computed curves in parameter space
of several types of bifurcations that involve canards. Bifurcations of the van der Pol system
(1.1) appear close to the bifurcations of the reduced system that we have identified, but some
have a different character. For example, at points where two coincident maximal canard points
are fixed, the van der Pol system will have behavior reminiscent of the bifurcations displayed
by the Henon mapping [3, 16, 25]. Instead of the immediate creation of a chaotic invariant set,
we believe that there is an “exponentially thin” region of trajectories that contains maximal
canards. “Normal forms” for maximal canards of a slow-fast system can be derived from the
analysis of Arnold et al. [1], but the role that these trajectories play in the global analysis of
relaxation oscillations has not been considered. We conjecture that the return map of slow-
fast systems near maximal canards have folds that are similar to the Henon mapping with
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small positive Jacobian. We hope that systematic investigation with asymptotic methods of
the codimension one degenerate slow-fast decompositions in the van der Pol vector field and
its reduced system will enable the relationship between these two systems to be made more
precise.
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system architecture leads naturally to synchrony. To do this, we must define carefully when
two cells or two couplings are “identical” or “equivalent.” Indeed, the main point of this
paper is to provide a general mathematical foundation for these ideas. This foundation uses
the algebraic structure of groupoids (see Brandt [1] and Higgins [10]) and greatly generalizes
the uses of symmetry in coupled cell systems that we have explored previously [7, 8].

Our conventions do not rule out “two-way” coupling, in which cells A and B both influence
each other. We represent such a state of affairs by having A coupled to B and B coupled to A.
We also do not rule out coupling where cells A and B both influence cell C. Here we consider
both A and B as being coupled to C. We do not assume the effects of A and B to be additive;
in fact, the time-evolution of cell C can in principle be any (smooth) function of the states of
C, A, and B.

In this paper we develop an abstract formalism for coupled cell systems, using simple
examples that have no particular role in applications, but it is worth noting that coupled cell
systems are used to model a variety of physically interesting systems. For examples, see [8]
and references therein. We intend to develop applications of the formalism derived here in
future work.

In this section we illustrate some central issues by discussing several examples.

Two-cell systems. We begin with the simplest system of two identical cells (with coordi-
nates x1 and x2 in Rk). Without making any specific assumption of the form of the “internal
dynamics” of each cell or the form of the “coupling between cells,” the differential equations
for the coupled system have the form

ẋ1 = f(x1, x2),
ẋ2 = f(x2, x1);

(1.1)

that is, the same function f governs the dynamics of both cells. There are three issues that
we discuss concerning system (1.1): the graph (diagram, network) associated to a coupled cell
system, symmetry, and synchrony.

Informally, the “network” of a coupled cell system is a finite directed graph whose nodes
represent cells and whose edges represent couplings. Nodes are labeled to indicate “equivalent”
cells, which have the same phase space and the same internal dynamic. Edges are labeled to
indicate “equivalent” couplings. The graph associated to system (1.1) is given in Figure 1. We
think of this graph as representing a pair of systems of differential equations in the following
way. The two cells are indicated by identical symbols—so they have the same state variables.
That is, the coordinates x1 of cell 1 and x2 of cell 2 lie in the same phase space Rk. Since we
can interchange cells 1 and 2 without changing the graph, we assume that the same is true
for the system of differential equations and that they must have the form (1.1). Note that for
this interchange to work, the arrow 1 → 2 must be the same as the arrow 2 → 1.

1 2

Figure 1. A two-cell network.
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The discussion in the previous paragraph can be summarized by the following: the per-
mutation σ(x1, x2) = (x2, x1) is a symmetry of the system (1.1). Indeed, more is true: every
system of differential equations on Rk×Rk that is equivariant with respect to σ has the form
(1.1). That is, abstractly the study of pairs of identical cells that are identically coupled is
the same as the study of σ-equivariant systems. Two consequences follow from this remark.
First, synchrony in two-cell systems (solutions such that x1(t) = x2(t) for all time t) is a
robust phenomenon and should not be viewed as surprising. Second, time-periodic solutions
can exhibit a kind of generalized synchrony in which the two cells oscillate a half-period out
of phase.

The first remark can be restated as follows: the diagonal subspace V = {x1 = x2} ⊂
Rk×Rk is flow-invariant for every system (1.1). This remark can be verified in two ways. By
inspection restrict (1.1) to V, obtaining

ẋ1 = f(x1, x1),
ẋ1 = f(x1, x1).

It follows that if the initial conditions for a solution satisfy x1(0) = x2(0), then x1(t) = x2(t)
for all time t, and V is flow-invariant. Alternately, we can observe that V is the fixed-point
subspace Fix(σ), and fixed-point subspaces are well known to be flow-invariant.

The second remark is related to general theorems about spatio-temporal symmetries of
time-periodic solutions to symmetric systems of ODEs. There are two types of theorems here:
existence theorems, asserting that certain spatio-temporal symmetries are possible, and bifur-
cation theorems, describing particular scenarios that can generate such solutions. The H/K
theorem [4, 7] is an existence theorem; indeed, it states necessary and sufficient conditions for
periodic solutions with a given spatio-temporal symmetry group to be possible. In particular,
it implies the existence of functions f having time-periodic solutions of period T satisfying

x2(t) = x1(t+ T/2)(1.2)

as long as the phase space of each cell has dimension k ≥ 2. So states with this type of
spatio-temporal pattern can exist. Indeed, they can exist robustly (that is, they can persist
when f is perturbed) and are therefore typical in the appropriate coupled cell systems. In
this case, we can say more: such solutions can arise through Hopf bifurcation. This is a
consequence of the general theory of symmetric Hopf bifurcation, [7, 8, 9]. (Note that when
k = 1, nonconstant periodic solutions satisfying (1.2) must intersect the diagonal V and hence
be in V for all time: this is a contradiction.)

A three-cell network. Consider the three-cell network illustrated in Figure 2. The systems
of differential equations corresponding to this network have the form

ẋ1 = f(x1, x2),
ẋ2 = g(x2, x1, x3),
ẋ3 = f(x3, x2),

(1.3)

where g(x2, x1, x3) = g(x2, x3, x1), x1, x3 ∈ Rk, and x2 ∈ R�. Note that all such systems are
equivariant with respect to the permutation τ(x1, x2, x3) = (x3, x2, x1) and that synchronous
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1 2 3

Figure 2. A three-cell network with transposition symmetry.

solutions (where x1(t) = x3(t) for all time t) occur robustly because the “polydiagonal”
subspace W = {x : x1 = x3} is flow-invariant for (1.3).

There are two differences between the three-cell network in Figure 2 and the two-cell
network in Figure 1. First, not all τ -equivariant systems on Rk × R� × Rk have the form
(1.3), since in the general τ -equivariant system f can depend nontrivially on both x1 and x3.
So there can be additional structure in coupled cell systems that does not correspond directly
to symmetry. Second, the half-period, out of phase, time-periodic solutions satisfy

x3(t) = x1(t+ T/2) and x2(t) = x2(t+ T/2).(1.4)

In particular, the oscillations in cell 2 are forced by symmetry to occur at twice the frequency
of those in cells 1 and 3. So multirhythms [7] can be forced by the architecture of coupled cell
networks.

Another three-cell network. We now show that robust synchrony is possible in networks
that have no symmetry. Consider the three-cell network in Figure 3. Here we have used two
distinct symbols (square and circle) for cells and three types of arrows for couplings. The
role of these symbols can be seen in the form of the ODE: identical symbols correspond to
identical functions in the appropriate variables.

1 2

3

Figure 3. A three-cell network without symmetry.

This network has no symmetry, but the network structure forces the “polydiagonal” sub-
space Y = {x : x1 = x2} to be flow-invariant. To verify this point observe that the coupled
cell systems associated with this network have the form

ẋ1 = f(x1, x2, x3),
ẋ2 = f(x2, x1, x3),
ẋ3 = g(x3, x1),

(1.5)

where x1, x2 ∈ Rk and x3 ∈ R�. Restricting the first two equations to Y yields

ẋ1 = f(x1, x1, x3),
ẋ2 = f(x1, x1, x3),
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implying that Y is a flow-invariant subspace.

There is a precise sense in which cells 1 and 2 are equivalent within this network, and it is
this observation that will enable us to prove the flow-invariance of subspaces like Y in a more
abstract (and general) setting. Define the “input set” of a cell j to be the cell j and all cells
i that connect to cell j. Also include the arrows from cells i to j. See Figure 4.

We can now explain why Y is flow-invariant, in terms of a permutation that acts on the
network. This permutation is not a symmetry of the whole network, but it preserves enough
structure to create a flow-invariant subspace. The key property is that the input sets of cells
1 and 2 are isomorphic via the permutation σ that maps (1 2 3) → (2 1 3).

If the system (1.5) were equivariant with respect to σ, then the fixed-point space of σ
would be flow-invariant by [9, 7]. Moreover, the fixed-point space of σ is Y . However, (1.5) is
not equivariant with respect to σ. Indeed, if we apply σ, then the equation transforms into

ẋ2 = f(x2, x1, x3),
ẋ1 = f(x1, x2, x3),
ẋ3 = g(x3, x2).

(1.6)

The first two equations are the same as in (1.5), but the third equation is not. However, the
third is the same on the space Y , where x2 = x1. So the restriction of the equations to Y is
σ-equivariant, and this is enough to make Y flow-invariant.

1 2

3

1 2

3

1

3

Figure 4. Input sets for three-cell network without symmetry.

Traveling waves in a seven-cell network. Consider the seven-cell linear network in Fig-
ure 5. The corresponding differential equations have the general form

ẋ1 = B(x1), ẋ2 = A(x2, x1), ẋ3 = A(x3, x2),
ẋ4 = A(x4, x3), ẋ5 = A(x5, x4), ẋ6 = A(x6, x5),

ẋ7 = A(x7, x6).
(1.7)

1 2 3 4 5 6 7

Figure 5. Seven-cell linear network.

It does not seem to be a simple matter to determine whether traveling waves are present
in this network. If the cell phase spaces are all one-dimensional, there are no nontrivial



614 I. STEWART, M. GOLUBITSKY, AND M. PIVATO

time-periodic states so no traveling waves. With higher-dimensional phase spaces, special
assumptions are needed to produce traveling waves. However, if we introduce back coupling
from cell 3 to cell 1, as shown in Figure 6, traveling waves can typically be expected, even
in the one-dimensional case, as explained below. This is curious, because informally Figure 6
would normally be considered as being less regular in form than Figure 5. So the issue of
“regular form” for a coupled cell network is fairly subtle. The key feature here is that all
input sets for cells in the network in Figure 6 are isomorphic, whereas this is not true for the
cells in Figure 5. It is this additional “symmetry” on the groupoid level that makes traveling
waves typical. Indeed, Figure 6 has many groupoid symmetries (42 in all).

1 2 3 4 5 6 7

Figure 6. Seven-cell linear network with back connection.

We discuss why traveling wave solutions arise in two ways. First, the assumption that all
of the cells and arrows in Figure 6 are identical implies that the first equation in (1.7) is now

ẋ1 = A(x1, x3).

If we set

x7 = x4 = x1 = y1,
x6 = x3 = y3,
x5 = x2 = y2,

(1.8)

then the system of seven equations reduces to a three-equation system

ẏ1 = A(y1, y3),
ẏ2 = A(y2, y1),
ẏ3 = A(y3, y2),

(1.9)

which is the general form associated with the directed ring of coupled cells in Figure 7. It
is not hard to show using Hopf bifurcation (see [7, 9]) that the system (1.9) can support a
discrete rotating wave y(t), where

y2(t) = y1

(
t− T

3

)
, y3(t) = y2

(
t− T

3

)
,

and y1 is periodic of period T . This solution yields a traveling wave solution for the network
in Figure 6. See a sample simulation in Figure 8. (The number 7 is not significant here: the
same ideas work for any chain containing three or more cells and with feedback from any cell
other than the first.)

More importantly, the three-cell ring in Figure 7 is a quotient network of the one in
Figure 6, where the quotient map β takes x1, x4, x7 to y1, x2, x5 to y2, and x3, x6 to y3.
We define “quotient” in section 8, but the key point is that solutions for the three-cell ring
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1

2 3

Figure 7. Three-cell directed ring: Quotient of the network in Figure 6.
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Figure 8. Traveling wave solution in seven-cell chain.

naturally “lift” to solutions for the seven-cell network via (1.8). The crucial features here are
that β induces an isomorphism from each input set in the first network to an input set in the
second network, and every coupled cell system of differential equations in the quotient lifts to
a coupled cell system in the first network.

We seek to isolate the abstract structural features that are responsible for the behavior
described in the above examples and to place the discussion in a rigorous formal context.
We structure the paper as follows. Coupled cell networks are rigorously defined in terms
of nodes and arrows in section 2. The key concept, the groupoid structure of a coupled
cell network, is defined in section 3 in terms of input sets. The phase space and admissible
vector fields associated to a coupled cell network are discussed in section 4. Basically, the
intuitive ideas presented in this introduction are formalized as equivariance with respect to the
symmetry groupoid of the network. Section 5 describes an extended example, which motivates
the rest of the paper. In section 6 we introduce two different notions of robust synchrony:
flow-invariant subspaces and balanced equivalence relations. We prove that these notions
are equivalent. Quotient maps and quotient networks, which constitute a fourth equivalent
notion for synchrony, are discussed in section 8. Quotient networks are an especially useful
concept because they illuminate the generic dynamics of vector fields restricted to synchronous
invariant subspaces, which can include phase-locked states and synchronized chaos. Examples
illustrating these points are discussed in section 7. The relationship between the dynamics
on a synchronous subspace and the induced dynamics on the quotient network is discussed in
section 9.
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2. Coupled cell networks. We begin by formally defining a coupled cell network. At
this stage we consider only the abstract network architecture (a labeled directed graph). The
associated family of ODEs is discussed in section 4.

Definition 2.1. A coupled cell network G consists of the following:
(a) A finite set C = {1, . . . , N} of nodes or cells.
(b) A finite set of ordered pairs E ⊆ C × C of directed edges or arrows. Each edge (c, d)

has a tail c and a head d.
(c) An equivalence relation ∼C on cells in C. The type or cell label of cell c is the ∼C-

equivalence class [c]C of c.
(d) An equivalence relation ∼E on edges in E. The type or coupling label of edge e is the

∼E-equivalence class [e]E of e. An edge (c, c) is an internal edge; a cell is active if it
has an internal edge. We assume that every cell is active, that is,

∆C = {(c, c) : c ∈ C} ⊂ E .(2.1)

In addition, we require the following compatibility conditions:
(e) Equivalent edges have equivalent tails and heads. That is, if (i, c) ∼E (j, d), then

i ∼C j and c ∼C d.
(f) Internal edges are equivalent if their tails are equivalent. Internal edges and noninter-

nal edges are never equivalent. That is, for all c, d, d′ ∈ C,

(c, c) ∼E (d, d′) ⇐⇒ d = d′ and d ∼C c.

Formally, the coupled cell network G is the quadruple G = (C, E ,∼C ,∼E).
We represent a coupled cell network G by a diagram constructed as follows.
(1) For each ∼C-equivalence class of cells choose a distinct node symbol ©,✷,�, and so

on.
(2) For each ∼E-equivalence class of noninternal edges, choose a distinct arrow →,⇒,❀,

and so on.
The compatibility conditions in Definition 2.1 state that arrows between distinct cells can

be identical only when the nodes at the heads are identical and the nodes at the tails are
identical, and that node symbols can be interpreted as arrows from a cell to itself.

The above definition is essentially the standard concept of a directed graph (or digraph)
in graph theory (see, for example, Tutte [13], Wilson [16]) modified to incorporate labeling
of nodes and edges. We assume that the graph is finite because this makes the associated
dynamical systems (discussed in section 4) finite-dimensional. However, most of the theory
generalizes to infinite graphs. The assumption that all cells are active can be removed, at the
expense of notational complications, but the details are routine and we do not treat this case
here.

Example 2.2. Suppose that the network G is defined by

C = {1, 2, 3, 4},
E = {(1, 2), (1, 3), (2, 4), (3, 1), (3, 4)(4, 1)},

∼C has equivalence classes {1}, {2, 3}, {4},
∼E has equivalence classes {(1, 2), (1, 3)}, {(2, 4), (3, 4)}, {(3, 1)}, {(4, 1)},
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and all nodes are active. Then the diagram of G has the form shown in Figure 9 for the given
choices of symbols.

4

1 2

3

Figure 9. Example of the diagram of a coupled cell network.

3. Input sets and groupoids. In this section we define the basic algebraic structure of a
coupled cell network—its symmetry groupoid. Some preliminary concepts are required.

Input sets. As discussed in more detail in section 4 the variables that appear in a given
component fc of the vector fields f associated to a coupled cell network depend only on those
cells that are linked to cell c by an arrow. This observation is abstracted as the following
definition.

Definition 3.1.The input set I(c) of a cell c is

I(c) = {i ∈ C : (i, c) ∈ E}.

Since all cells are active, c ∈ I(c). We call c the base cell of I(c).
Two cells with isomorphic input sets will be called “input equivalent.”
Definition 3.2. The relation ∼I of input equivalence on C is defined by c ∼I d if and only

if there exists a base cell preserving bijection

β : I(c) → I(d)(3.1)

(by which we mean that β(c) = d) such that for all i ∈ I(c)

(i, c) ∼E (β(i), d).(3.2)

Any such bijection β is called an input isomorphism from cell c to cell d. The set B(c, d)
denotes the collection of all input isomorphisms from cell c to cell d.

On setting i = c in (3.2), we see that c and d have the same type (c ∼C d) if they are
input equivalent (c ∼I d). The converse is easily seen to be false. Moreover, B(c, d) is empty
unless c ∼I d.

An important class of networks is one in which all cells are input equivalent. So we define
the following.

Definition 3.3. A homogeneous network is a coupled cell network such that B(c, d) �= ∅ for
every pair of cells c, d.

Examples of homogeneous networks are given in Figures 14 and 15.
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Example 3.4. We return to Example 2.2 whose diagram is shown in Figure 9. The input
sets are shown in Figure 10. There are three ∼I -equivalence classes: {1}, {2, 3}, and {4}. The
isomorphism between I(2) and I(3) is the bijection τ : {2, 1} → {3, 1} for which τ(2) = 3 and
τ(1) = 1.

4

3

4

21 1

1

3

2

3

Figure 10. Input sets for Figure 9.

The symmetry groupoid. We now introduce the central concept of this paper, the “sym-
metry groupoid” of a coupled cell network. The symmetry groupoid is a generalization of
the symmetry group of a symmetric network. It includes not just symmetries of the whole
network, but symmetries between particular subgraphs—namely, the input sets.

Definition 3.5. The symmetry groupoid of a coupled cell network G is the disjoint union

BG =
⋃̇

c,d∈CB(c, d).

The term “groupoid” was introduced by Brandt [1] and is developed at length in Hig-
gins [10]. The term refers to an algebraic structure that is similar to a group, with the
exception that products of elements may not always be defined. Different authors formalize
groupoids in slightly different (but mostly equivalent) ways. Essentially, a groupoid must
satisfy three conditions:

(1) The product operation is associative in the sense that whenever one of α(βγ) and
(αβ)γ is defined, then so is the other, and they are equal.

(2) There are distinguished elements εj that act as identity elements, in the sense that
εjα = α and αεj = α whenever these are defined. (Here the indices j correspond to
the “objects” of the groupoid, which in our case are the cells.)

(3) Every element α has an inverse α−1, in the sense that both αα−1 and α−1α are
identities.

In the case of BG, the groupoid structure is captured by the following:

(1) We define the product of β1 ∈ B(c, d) and β2 ∈ B(c′, d′) if and only if c′ = d, and then
we set β2β1 = β2◦β1 ∈ B(c, d′), where ◦ denotes composition of maps. Composition is
of course associative when it is defined.

(2) The identity elements idI(c) for c ∈ C are the groupoid identity elements.
(3) For inverses, observe that β ∈ B(c, d) if and only if β−1 ∈ B(d, c).

It follows in particular that B(c, c) is a group, the vertex group corresponding to c. Vertex
groups are important in groupoid theory and play a key role in this paper.
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Remark 3.6. The term “disjoint union” in Definition 3.5 is used in a technical sense. The
sets B(c, d) for different pairs (c, d) are not necessarily disjoint. For example, if C = {1, 2},
where cells 1 and 2 are inequivalent, each coupled to the other by inequivalent arrows, then
B(1, 1) and B(2, 2) both consist of the identity map on {1, 2}. It is convenient to make them
disjoint. One way to do this is to replace each bijection β ∈ B(c, d) by the triple (β, c, d). Then
β defines the permutation, c is an index specifying its “domain,” and d is an index specifying
its “range.” As far as the groupoid structure is concerned, the product β2β1 is defined only
when c′ = d. This occurs when the “range” of β1 is equal to the “domain” of β2, in the sense
just specified. However, the set-theoretic ranges and domains of the corresponding bijections
may permit the composition of β1 and β2 as functions in cases where we do not wish to permit
them to be multiplied in the groupoid.

The point here is that we are not dealing merely with bijections on sets but with base
point preserving bijections on based sets. Composition must respect the base points as well
as the sets.

For simplicity, we use β to denote an input isomorphism, rather than the cumbersome
(β, c, d), because the appropriate c, d are usually obvious.

Alternatively, it would be possible to represent the input structure of a given cell as
consisting of that cell, all cells connected to it, and the associated arrows. Input isomorphisms
then necessarily preserve the base point (the cell at the head of all arrows). Technically,
however, this choice causes other complications—for example, input isomorphisms now act
on subgraphs and not on subsets of cells—so we shall not use it here. However, it is a useful
informal way to visualize input isomorphisms.

Example 3.7. Again, we return to Example 2.2. The nonempty sets B(c, d) are as follows:

B(1, 1): The identity map on {1, 3, 4}.
B(2, 2): The identity map on {2, 1}.
B(3, 3): The identity map on {3, 1}.
B(4, 4): The identity map on {4, 2, 3} and the permutation σ on {4, 2, 3} for which σ(2) =

3, σ(3) = 2, σ(4) = 4.

B(2, 3): The map τ : {2, 1} → {3, 1} for which τ(1) = 1, τ(2) = 3.

B(3, 2): The inverse τ−1 of τ .

Subgroupoids and connected components. For the basics of groupoids see Brandt [1],
Brown [3], Higgins [10], and MacLane [11]. For applications see Weinstein [15]. Groupoids
combine several features of groups with features of graphs, and we discuss one of each now.
The group-theoretic notion is that of a subgroupoid; the graph-theoretic one is that of a
connected component.

A subset S ⊂ BG is a subgroupoid if S is closed under products (when defined) and taking
inverses.

The connected components of the groupoid BG are in one-to-one correspondence with ∼I -
equivalence classes on C. Specifically, let A be a ∼I -equivalence class. Then the subgroupoid

S(A) =
⋃̇

c,d∈AB(c, d)(3.3)

is a connected component of BG. Moreover, we have the following lemma.
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Lemma 3.8. The groupoid BG is the disjoint union of its connected components. That is,

BG =
⋃̇

A
S(A),

where A runs through the ∼I-equivalence classes in C. Moreover, if A,A′ are two such distinct
classes, and β ∈ S(A), β′ ∈ S(A′), then the product ββ′ is not defined.

We say that two cells c, d ∈ C are in the same connected component of BG if and only if
c ∼I d. The mental image here is that associated with any groupoid there is a graph, whose
elements are the vertices of the groupoid and whose (directed) edges are the groupoid elements.
It is the connected components of this graph that are being described. See Higgins [10, Chapter
3].

If c, d belong to the same connected component, then the vertex groups B(c, c) and B(d, d)
are conjugate, in the sense that there exists γ ∈ B(c, d) such that

B(c, c) = γ−1B(d, d)γ.

In particular, B(c, c) and B(d, d) are isomorphic groups.

Structure of B(c, d). For later use, we determine the general structure of the sets B(c, d).
(1) If c �∼I d, then B(c, d) = ∅.
(2) If c = d, then we define an equivalence relation ≡c on I(c) by

j1 ≡c j2 ⇐⇒ (j1, c) ∼E (j2, c)

for j1, j2 ∈ I(c). Let the ≡c-equivalence classes of I(c) be K0, . . . ,Kr for r = r(c) so
that

I(c) = K0 ∪̇ · · · ∪̇Kr.(3.4)

We may choose K0 = {c} by Definition 2.1(f). Let

ks = |Ks| (0 ≤ s ≤ r).

Then B(c, c) is a group given by

B(c, c) = Sk1 × · · · × Skr ,

where each Sks comprises all permutations of Ks, extended by the identity on I(c)\Ks.
(3) If c ∼I d and c �= d, define ≡d on I(d) in the same way. Let β ∈ B(c, d), and let

Ls = β(Ks) (0 ≤ s ≤ r(c)).

Then β and β−1 preserve ∼E , so the ≡d-equivalence classes of I(d) are the Ls(0 ≤ s ≤
r(c)), and r(d) = r(c).
Choose a fixed but arbitrary β0 ∈ B(c, d), having the above property. Then

B(c, d) = B(d, d)β0 = β0B(c, c).

Conversely, any β0 : I(c) → I(d) such that Ls = β0(Ks) for 0 ≤ s ≤ r(c) lies in B(c, d).
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4. Vector fields on a coupled cell network. We now define the class FP
G of vector fields

corresponding to a given coupled cell network G. This class consists of all vector fields that
are “compatible” with the labeled graph structure or, equivalently, are “symmetric” under
the groupoid BG. It also depends on a choice of “total phase space” P , which we assume is
fixed throughout the subsequent discussion. For example, in the two-cell system (1.1) we have
P = Rk × Rk, which depends on the choice of k.

For each cell in C define a cell phase space Pc. This must be a smooth manifold of
dimension ≥ 1, which for simplicity we assume is a nonzero finite-dimensional real vector
space. We require

c ∼C d =⇒ Pc = Pd,

and we employ the same coordinate systems on Pc and Pd. Only these identifications are
canonical. If Pc = Pd or Pc is isomorphic to Pd when c �∼C d, then the identification of Pc and
Pd will be deemed accidental and will have no significance for our present purposes. Although
the relation c ∼C d means that cells c and d have the same phase space, it does not imply
that they have isomorphic (that is, conjugate) dynamics.

Define the corresponding total phase space to be

P =
∏
c∈C

Pc

and employ the coordinate system

x = (xc)c∈C

on P .
The cell projection corresponding to cell c is the natural projection

πc : P → Pc.

More generally, suppose that D is any subset of C. Define

PD =
∏
c∈D

Pc

and let

πD : P → PD

be the natural projection. Further, write

xD = πD(x)

and suppress braces when D is a singleton. That is, πc(x) = xc = x{c}.
Finally, suppose that D1,D2 are subsets of C and that there is a bijection β : D1 → D2

such that β(d) ∼C d for all d ∈ D1. Define the pullback map

β∗ : PD2 → PD1
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by

(β∗(z))j = zβ(j) ∀j ∈ D1, z ∈ PD2 .(4.1)

By direct calculation it is easy to verify three simple properties of the pullback:

(βγ)∗ = γ∗β∗,
id∗ = id,

(γ−1)∗ = (γ∗)−1.
(4.2)

Note the reversed order in the first of these equations.

We use pullback maps to relate different components of the vector field associated with a
given coupled cell network. Specifically, the class of vector fields that is encoded by a coupled
cell network will be defined using the following concept.

Definition 4.1. A vector field f : P → P is BG-equivariant or G-admissible if the following
hold:

(a) For all c ∈ C the component fc(x) depends only on xI(c); that is, there exists f̂c :
PI(c) → Pc such that

fc(x) = f̂c(xI(c)).(4.3)

(b) For all c, d ∈ C and β ∈ B(c, d) (so that, in particular, d = β(c))

f̂d(xI(d)) = f̂c(β
∗(xI(d))) ∀x ∈ P.(4.4)

For brevity, we write this condition as

fβ(c)(x) = fc(β
∗(x)) ∀x ∈ P.(4.5)

When using (4.5) it is necessary to bear in mind the constraint that fd(x) depends only on
xI(d). Otherwise, β∗(x) is not defined.

We call (a) the domain condition and (b) the equivariance condition on f .

Remark 4.2. If β belongs to the vertex group B(c, c), then (4.5) implies that

fc(β
∗(x)) = fc(x) ∀x ∈ P.(4.6)

That is, fc is B(c, c)-invariant. It is easy to check that this property is the same as the usual
property of invariance under a group, provided we consider B(c, c) as acting on PI(c).

Definition 4.3. For a given choice of the Pc we define the class FP
G to consist of all G-

admissible vector fields on P .

These are the most general vector fields on P that are consistent with the coupled cell
network.

Example 4.4. We describe FP
G for the diagram of Figure 9. There are three cell types

©,✷,�, and we choose three corresponding phase spaces U, V,W . Then the state variable is
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x = (x1, x2, x3, x4), where x1 ∈ U , x2, x3 ∈ V , x4 ∈ W . There are four arrow types. We claim
that the G-admissible vector fields f are those of the form

f1(x) = A(x1, x3, x4), where A : U × V ×W → U,
f2(x) = B(x2, x1), where B : V × U → V,
f3(x) = B(x3, x1),
f4(x) = C(x4, x2, x3), where C : W × V × V → W,

and C is symmetric in x2, x3.
To prove this, we consider the equivariance condition (4.5) for all the bijections β listed

in Example 3.7. There are two nontrivial cases: B(2, 3) and B(4, 4). First, suppose that
c = 2andd = 3, and consider the bijection τ : I(2) → I(3) for which τ(2) = 3, τ(1) = 1.
Suppose that we define the function B : PI(2) → P2 by

B(x2, x1) = f2(x)

so that B = f̂2. Then f3(x) = f̂3(x3, x1), and we wish to express this in terms of B.
It is easy to work out the pullback of τ . If we write the elements of PI(3) in the form

x = (x3, x1), then y = τ∗(x) takes the form y = (y2, y1) ∈ PI(2), where

y2 = (x)τ(2) = x3,

y1 = (x)τ(1) = x1.

Then

τ∗(x3, x1) = (x3, x1),

and condition (4.5) tells us that

f̂3(x) = B(x3, x1)

as claimed. (The pullback τ∗ is not the identity, because its range and domain are different.
It is an identification.)

Similarly, if we consider σ ∈ B(4, 4), then we have a function C defined by f4(x) =
C(x4, x2, x3). Now the pullback σ∗ : PI(4) → PI(4) acts as

σ∗(x4, x2, x3) = (x4, x3, x2),

and condition (4.5) tells us that

C(x4, x2, x3) = f̂4(x) = C(x4, x3, x2)

so that C is symmetric in x2, x3.
Here and from now on we adopt the convention that xc is the first variable listed in the

argument of f̂c. We can show that f̂c is symmetric in some subset of variables by putting a
bar over that set so that here

f4(x) = C(x4, x2, x3).

(To do this, we have to order the variables suitably, and in some cases this cannot be done
consistently. The use of a bar is convenient for the purposes of this paper.) Note that the
network G is not symmetric under the 2-cycle (2 3), because the arrow from cell 3 to cell 1
does not correspond to an arrow from cell 2 to cell 1.
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Admissible vector fields. The proofs of the main theorems of this paper rely on the
construction of certain special G-admissible vector fields. In this subsection we describe these
constructions.

As motivation, consider Example 4.4. Here, the most general G-admissible vector field is
specified by three functions A,B,C. These functions can be assigned independently of each
other. There is one such function for each ∼I -equivalence class of cells, that is, each connected
component of BG. If c ∈ C, then fc is B(c, c)-invariant; if d ∼I c, then fd is uniquely defined
by fc through the condition of BG-equivariance. We now give a formal statement of these
properties and show that they are valid in general.

The main point is that Lemma 3.8 implies that BG-equivariance imposes conditions re-
lating components fc, fd of f when c, d lie in the same connected component of BG, but not
otherwise. We can therefore construct G-admissible vector fields g on P whose components
gc are zero for all c outside a fixed ∼I -equivalence class. We will prove that such vector fields
span FP

G .
Let Q ⊆ C be a ∼I -equivalence class. Define

FP
G (Q) = {f ∈ FP

G : fs(x) = 0 ∀ s �∈ Q}.(4.7)

Vector fields in FP
G (Q) are supported on Q. The subset FP

G (Q) is a linear subspace of FP
G .

The key constraint on a vector field in FP
G (Q) is B(q, q)-equivariance for some fixed but

arbitrary q ∈ Q. In fact we have the following lemma.
Lemma 4.5. Given a ∼I-equivalence class Q ⊆ C, let q ∈ Q and let gq : PI(q) → Pq be any

B(q, q)-invariant mapping. Then gq extends uniquely to a vector field in FP
G (Q).

Proof. For any r ∈ Q, choose β0 ∈ B(q, r) (which exists since r ∼I q) so that β0(q) = r.
Equivariance forces us to define

gr(y) = gq(β
∗
0(y)) ∀y ∈ PI(r),(4.8)

so the extension to r ∈ Q is unique if it exists. It is easy to show that gr does not depend on
the choice of β0. Finally, if r �∈ Q, we define gr(x) = 0.

We have now extended gq to a vector field g on the whole of P . We claim that g ∈ FP
G (Q).

Clearly, the components gr of g with r �∈ Q vanish. It is therefore sufficient to show that if
r ∈ Q, γ ∈ B(r, s), and z ∈ PI(s), then

gs(z) = gr(γ
∗(z)).(4.9)

The component gs is defined by choosing β1 ∈ B(q, s) and setting

gs(y) = gq(β
∗
1(y)) ∀y ∈ PI(s).(4.10)

To establish (4.9), let

δ = β−1
1 γβ0 ∈ B(q, q)

so that

γ = β1δβ
−1
0 .
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Then, using (4.2), we compute

gr(γ
∗(z)) = gr((β1δβ

−1
0 )∗(z))

= gr((β
∗
0)

−1δ∗β∗
1(z))

= gq(β
∗
0(β

∗
0)

−1δ∗β∗
1(z))

= gq(δ
∗(β∗

1(z)))

= gq(β
∗
1(z))

= gs(z)

(where gq(δ
∗(β∗

1(z))) = gq(β
∗
1(z)) because β∗

1(z) ∈ I(q) and gq is B(q, q)-invariant). This
calculation proves (4.9).

The importance of such vector fields g stems from the following proposition.
Proposition 4.6.

FP
G =

⊕
Q

FP
G (Q),

where Q runs over the ∼I-equivalence classes of G.
Proof. Suppose that f ∈ FP

G , so that f is BG-equivariant. Let Q be a ∼I -equivalence
class, and pick q ∈ Q. Define g ∈ FP

G (Q) by setting

gq(x) = fq(x) ∀x ∈ P,

which is B(q, q)-invariant since f is BG-equivariant. For the same reason,

gr(x) = fr(x) ∀x ∈ P, r ∈ Q,

where gr is defined as in Lemma 4.5. Recall that gs(x) = 0 for all s �∈ Q. Repeating this
construction for all ∼I -equivalence classes Q we see that

FP
G =

∑
FP
G (Q).

However, the definition of FP
G (Q) shows that

FP
G (Q) ∩

∑
R �=Q

FP
G (R) = {0}

(where R ranges over ∼I -equivalence classes other than Q), so the sum is direct.

5. Patterns of synchrony: Example. There are many kinds of synchrony in coupled cell
systems: for surveys see Boccaletti, Pecora, and Pelaez [2] and Wang [14]. Most notions of
synchrony depend on specific dynamics of cells and couplings. Some notions are model-inde-
pendent; that is, they are valid for any vector field consistent with the given cell architecture.
We believe that it is useful to distinguish model-independent properties from model-dependent
ones, because this separates the effect of the general architecture of the system from that of the
specific model equations employed, which clarifies the role of the model and its parameters.
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We now approach the central issue of this paper: conditions under which certain cells in
a coupled cell network can synchronize as a consequence of the network architecture. Because
the theoretical issues are somewhat abstract, we first discuss a motivating example.

Example 5.1. Consider the ten-cell network G1 of Figure 11. There are two cell types.
Cells 0 and 1 have type ©, and cells 2, 3, 4, 5, 6, 7, 8, 9 have type ✷. There are three arrow
types −→,=⇒,−−−.. The shading on the nodes divides C into three classes:

{0, 1}, {2, 3, 6, 8}, {4, 5, 7, 9}.(5.1)

2

0 1

3 4 5 6 7 8 9

Figure 11. A 10-cell system. The shading indicates a possible pattern of synchronous cells.

Figure 12. Input types for the 10-cell system, including shading.

There are three distinct input types, illustrated in Figure 12. Cells 2, 3, 6, 8 have no
inputs except themselves. Cells 4, 5, 7, 9 have two inputs: one is of type ©, and the other is
of type ✷ and in the class {2, 3, 6, 8}. Cells 0, 1 have four inputs, all of type ✷; of these, two
are in the class {2, 3, 6, 8}, and the other two are in the class {4, 5, 7, 9}.

(We have deliberately included some cells without inputs—in this case, cells 2, 3, 6, and
8—to make it clear that such cells can be considered synchronous in our formalism. Of course
such a form of synchrony is dynamically unstable, but in this paper we are studying existence,
not stability, and we do not wish to rule out unstable synchrony because it still corresponds
to an invariant subspace for the dynamics. It is easy to modify this example to add further
connections that provide inputs to these cells: for example, each of cells 2, 3, 6, and 8 can
receive one input from any of the cells 4, 5, 7, and 9.)
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With appropriate choice of phase spaces, a vector field f ∈ FP
G1

takes the form

f0 = A(x0, x2, x3, x4, x5), f5 = C(x5, x0, x2),
f1 = A(x1, x6, x7, x8, x9), f6 = B(x6),
f2 = B(x2), f7 = C(x7, x0, x8),
f3 = B(x3), f8 = B(x8),
f4 = C(x4, x1, x3), f9 = C(x9, x1, x8).

(5.2)

Consider the space

Y = {(u, u, v, v, w,w, v, w, v, w)}

determined by making entries constant on the classes (5.1). On Y the vector field f restricts
to

g0 = A(u, v, v, w,w), g5 = C(w, u, v),
g1 = A(u, v, w, v, w), g6 = B(v),
g2 = B(v), g7 = C(w, u, v),
g3 = B(v), g8 = B(v),
g4 = C(w, u, v), g9 = C(w, u, v).

(5.3)

By symmetry g0, g1 are identical. Bearing this in mind, we see that Y is flow-invariant for f .
Identifying elements of Y with triples (u, v, w), we obtain an induced vector field f of the

form

f0 = A′(u, v, w),
f1 = B(v),

f3 = C(w, u, v),

where

A′(u, v, w) = A(u, v, v, w,w).

This is the class of admissible vector fields for the simpler coupled cell network G2 shown
in Figure 13. Here cells v, w have the same type, but we have shaded cell v to show which
equivalence class it corresponds to.

The coupled cell network G2 is an example of a quotient network. What structure in G1

makes Y flow-invariant for all f ∈ FP
G1

and permits this reduction to G2 on Y ? The key
feature is how the three classes (5.1) relate to input isomorphisms. In section 6 we develop
the theory of flow-invariant subspaces, and in section 8 we develop the general theory of such
reductions.

6. Patterns of synchrony: Theory. We now isolate the abstract features of Example 5.1
that make Y flow-invariant. The classes (5.1) can be represented as the equivalence classes
corresponding to an equivalence relation. The properties of this equivalence relation, relative
to the symmetry groupoid of the network, turn out to control the existence of the flow-invariant
subspace Y and the quotient network G2. We begin by considering the equivalence relation.
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wv

u

Figure 13. Quotient network G2 of the 10-cell system G1. Shading relates cells to those in G1.

Let G = (C, E ,∼C ,∼E) be a coupled cell network. Choose a total phase space P , and let
.2 be an equivalence relation on C, partitioning the cells into equivalence classes. We assume
that .2 is a refinement of ∼C ; that is, if c .2 d, then c and d have the same cell labels. It
follows that the polydiagonal subspace

∆�� = {x ∈ P : xc = xd whenever c .2 d ∀c, d ∈ C}

is well defined since xc and xd lie in the same space Pc = Pd. The polydiagonal ∆�� is a linear
subspace of P .

For instance, in Example 5.1 we can define .2 to have equivalence classes (5.1), in which
case ∆�� = Y .

Definition 6.1. A trajectory x(t) of f ∈ FP
G is .2-polysynchronous if its components are

constant on .2-equivalence classes. That is,

c .2 d =⇒ xc(t) = xd(t) ∀t ∈ R

or x(t) ∈ ∆�� for all t ∈ R.
Polysynchronous states are patterns of synchrony. Trivially, any trajectory is polysyn-

chronous with respect to the relation of equality (which partitions C into its individual cells).
Only nontrivial polysynchrony is interesting.

Robust polysynchrony.
Definition 6.2. Let .2 be an equivalence relation on C. Then .2 is robustly polysynchronous

if ∆�� is invariant under every vector field f ∈ FP
G . That is,

f(∆��) ⊆ ∆�� ∀f ∈ FP
G .

Equivalently, if x(t) is a trajectory of any f ∈ FP
G , with initial condition x(0) ∈ ∆��, then

x(t) ∈ ∆�� for all t ∈ R.
We now find necessary and sufficient conditions on .2 to ensure that .2 is robustly polysyn-

chronous. We begin by showing that robust polysynchrony can occur only between cells that
have isomorphic input sets. This is intuitively clear because these are the only cells that
involve the “same” function in the corresponding components of admissible vector fields, and
the proof bears out this intuition.
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Lemma 6.3. If .2 is robustly polysynchronous, then .2 refines ∼I . That is, for all c, d ∈ C

c .2 d =⇒ c ∼I d.

Proof. By the discussion immediately preceding Lemma 3.8 we need to show that if c .2 d,
then c and d are in the same connected component Q of BG. Suppose they are not; then
we will show that ∆�� is not flow-invariant. Choose x(0) ∈ ∆�� so that xc(0) = xd(0) �= 0,
and choose f ∈ FP

G (Q), where d �∈ Q. Let x(t) be the solution to the differential equation f.
Since f ∈ FP

G (Q) implies that fd vanishes, xd(t) = xd(0) for all t. If we can choose f so that
fc(x(0)) �= 0, then xc(t) �= xc(0) for small t, so ∆�� is not flow-invariant, and we are finished.

It remains to choose such an f . By Lemma 4.5 we need only find a B(c, c)-invariant
mapping gc : PI(c) → Pc such that gc(x(0)) �= 0, since such an invariant mapping extends

to a vector field in FP
G (Q). For example, we may take gc(x) = xc(0) �= 0, which is

B(c, c)-invariant.

Balanced equivalence relations. In order to motivate our characterization of robustly
synchronous equivalence relations .2, we repeat the analysis of Example 5.1 with a slightly
different equivalence relation. Suppose that we partition the ten cells into the classes

{0, 1}, {2, 3, 8}, {4, 5, 6, 7, 9}

so that the color of cell 6 is now gray instead of white, all other colors remaining as in Figure 11.
Now the associated polydiagonal is

Y ′ = {(u, u, v, v, w,w,w,w, v, w)}.

The general vector field (5.2) remains unchanged, but its restriction (5.3) to Y changes in just
one component: now

g1 = A(u,w,w, v, w).

This is no longer the same as g0, so no reduction to the three-cell network is possible.
What is the source of this difference? The symmetry property of A (that is, its B(1, 1)-

invariance) implies that the order of the v’s and w’s does not matter, but there are three
occurrences of w in g1 and only two occurrences in g0. Similarly there is one occurrence of
v in g1, but there are two occurrences in g0. This difference in “multiplicity” makes g1 differ
from g0 and so destroys the possibility of Y ′ being an invariant subspace.

This and similar examples lead to the following concept.
Definition 6.4. An equivalence relation .2 on C is balanced if for all c, d ∈ C with c .2 d

and c �= d, there exists γ ∈ B(c, d) such that i .2 γ(i) for all i ∈ I(c).
In particular, B(c, d) �= ∅ implies c ∼I d. Therefore, balanced equivalence relations refine

∼I .
The equivalence relation for Example 5.1 is balanced; the modified equivalence relation is

not balanced. It turns out that this is the crucial distinction when it comes to constructing a
quotient network; see Theorem 6.5 below.
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There is a relatively simple graphical way to test whether a given equivalence relation .2
is balanced. Color the cells in a network so that two cells have the same color precisely when
they are in the same .2-equivalence class. Then .2 is balanced if and only if every pair of
.2-equivalent cells is connected by a color preserving groupoid element.

For example, consider the seven-cell network in Figure 14. Let .2 be the equivalence
relation with equivalence classes

{1, 4, 7}, {2, 5}, {3, 6},
as indicated by the colors in Figure 14. Observe that the pink (light gray) cells have input
sets “white to pink,” the white cells have input sets “blue (dark gray) to white,” and the blue
cells have input sets “pink to blue.” So .2 is a balanced equivalence relation, since all cells in
the same equivalence class have identically colored input sets.

1 2 3 4 5 6 7

Figure 14. Seven-cell linear network with ��-equivalence classes indicated by color.

The main theorem on polysynchrony. An examination of these examples leads to the
following general result.

Theorem 6.5. Let .2 be an equivalence relation on a coupled cell network. Then .2 is
robustly polysynchronous if and only if .2 is balanced.

Proof. If .2 is balanced, then Definition 6.4 implies that ∆�� is invariant under any ad-
missible vector field; that is, .2 is robustly polysynchronous. This is obvious in the “color”
interpretation: as we have seen, .2 is balanced if and only if every pair of cells of the same
color are related by a color preserving input isomorphism. This implies that if f ∈ FP

G and
c .2 d, then fc(x) = fd(x) for all x ∈ ∆��. That is, ∆�� is flow-invariant for f .

To prove the converse, suppose that .2 is robustly polysynchronous. Then every f ∈ FP
G

maps ∆�� to ∆��. We wish to prove that .2 is balanced; that is, if c .2 d and c �= d, then there
exists γ ∈ B(c, d) such that i .2 γ(i) for all i ∈ I(c). Since .2 refines ∼I (Lemma 6.3), the set
B(c, d) is nonempty.

Define K0, . . . ,Kr as in (3.4) so that there is a partition

I(c) = K0 ∪̇ · · · ∪̇ Kr,

where i, i′ belong to the same Ks if and only if (i, c) ∼E (i′, c). Similarly, there is a partition

I(d) = L0 ∪̇ · · · ∪̇ Lr

with the corresponding property. We may choose the numbering so that

i ∈ Ks, j ∈ Ls =⇒ (i, c) ∼E (j, d), 1 ≤ s ≤ r.(6.1)

As before, we may take K0 = {c}, L0 = {d}. (Because c ∼I d, the sets Ks and Ls have the
same cardinality for 0 ≤ s ≤ r, and the same r occurs for I(c) and I(d).)
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Suppose that we can prove that for any s with 0 ≤ s ≤ r and any .2-equivalence class
U ⊆ C,

|U ∩Ks| = |U ∩ Ls|.(6.2)

Then we can define a bijection γ : I(c) → I(d) such that

γ(U ∩Ks) = U ∩ Ls (0 ≤ s ≤ r)(6.3)

for all U . By (6.1), γ ∈ B(c, d). Moreover, (6.3) implies that γ(i) .2 i for all i ∈ I(c). For we
may take U such that i ∈ U , and then γ(i) ∈ U as well.

Thus it remains to prove the cardinality condition (6.2). To do so, we introduce a BG-
equivariant map h, which depends on s, and apply it to an element y ∈ ∆�� that depends on
U , as follows.

Let M : Pi → Pc be a nonzero linear map, where i ∈ Ks. Let hc : PI(c) → Pc be defined
by

hc(x) = M

(∑
i∈Ks

xi

)
,(6.4)

which is B(c, c)-invariant, since Ks is a B(c, c)-orbit. By Lemma 4.5 we may then define, for
all other c′ ∈ C,

hc′(x) = hc(β
∗(x)) =

∑
j∈β(Ks)

M(xj),

where β is some (hence any) element of B(c, c′) and c′ ∼I c, and

hc′(x) = 0

otherwise. Moreover, the resulting h is BG-equivariant. Since .2 is polysynchronous, h maps
∆�� to itself.

Next, define y ∈ P by

yj =

{
v, j ∈ U,
0, j �∈ U,

for some fixed v ∈ Pa for which M(v) �= 0, where a ∈ U ∩Ks.
We are assuming that c ∼I d so that B(c, d) �= ∅. Let β ∈ B(c, d), which implies that

β(Ks) = Ls. Clearly

hd(x) =
∑
j∈Ls

M(xj) ∀x ∈ ∆��.(6.5)

Since h preserves ∆��,

hc(x) = hd(x) ∀x ∈ ∆��.(6.6)
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Apply (6.5),(6.6) to y:

hc(y) = |U ∩Ks|M(v),

hd(y) = |U ∩ Ls|M(v).

By (6.6), since M(v) �= 0, we deduce that

|U ∩Ks| = |U ∩ Ls|

for all U and all 0 ≤ s ≤ r. However, this is (6.2), so .2 is balanced.

7. Dynamics on polysynchronous subspaces. As illustrated in Example 5.1 the restric-
tion of a coupled cell vector field to a polysynchronous subspace has itself a special structure.
The restriction is an admissible vector field for an associated “quotient” coupled cell network.
In this section we construct the quotient network for a given polysynchronous subspace and
illustrate some of the implications for the dynamics of the restriction. We begin with an
example.

Example 7.1. Consider the five-cell network illustrated in Figure 15 (left). All cells are cell-
equivalent, so a phase space for this network has the form P = (Rk)5 for some k. Since all
cells are also input-equivalent (that is, have isomorphic input sets) the diagonal (x, x, x, x, x)
is polysynchronous. Recall that a network is homogeneous when all of its cells are input
isomorphic.

1

2

3

4

5

1

2

3

4

5

x

yz

Figure 15. A homogeneous five-cell network with a balanced relation leading to a quotient three-cell bidi-
rectional ring.

There is, however, a more interesting 3k-dimensional polysynchronous subspace ∆�� asso-
ciated to the balanced relation illustrated in Figure 15 (center). That subspace is

∆�� = {(x, y, x, y, z) : x, y, z ∈ Rk}.

Next we discuss the structure of the restriction of an admissible coupled cell vector field
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to ∆��. The general admissible vector field has the form

ẋ1 = f(x1, x2, x5),
ẋ2 = f(x2, x3, x5),
ẋ3 = f(x3, x4, x5),
ẋ4 = f(x4, x1, x5),
ẋ5 = f(x5, x1, x2),

(7.1)

where f : (Rk)3 → Rk is symmetric in the last two arguments. The restriction of (7.1) to ∆��

has the form

ẋ = f(x, y, z),
ẏ = f(y, z, x),
ż = f(z, x, y).

(7.2)

Observe that (7.2) is the general vector field associated to the three-cell bidirectional ring
illustrated in Figure 15 (right). We will show that there is a general construction that leads to
this three-cell quotient, but first we discuss some implications for the dynamics of the five-cell
system.

Observe also that the restriction (7.2) has D3 symmetry and is, in fact, the general D3-
equivariant vector field on (Rk)3. So it is possible for a quotient network to have symmetry
even when the original network has none. It is known that when k ≥ 2, such vector fields can
support discrete rotating waves and solutions where two cells are out of phase, while the third
cell has twice the frequency of the other two [9, 7]. These solutions are also solutions to the
original five-cell system. Typical simulations are shown in Figure 16. The middle and right
simulations are obtained just by changing initial conditions.
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Figure 16. Simulations in homogeneous five-cell network in Figure 15. (Left) rotating wave; (middle)
double frequency in cells 2 and 4; (right) double frequency in cell 5.

It is also possible for the restricted system to exhibit symmetric chaos, as illustrated in
the five-cell simulations in Figures 17 and 18.

Perhaps the simplest example of a network that has no symmetry but does have a quotient
network with symmetry is the three-cell network in Figure 19. This is the same as the “master-
slave” network of Pecora and Carroll [12]. This network is part of the same family of networks
as the seven-cell network described in section 1 (Figure 6) and again in section 6 (Figure 14).
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Figure 17. Simulations in homogeneous five-cell network in Figure 15. (Left) time series for chaotic
attractor with Z2 symmetry; (middle) phase plane with cells 1, 3, 5 and cells 2, 4 exhibiting symmetry on average;
(right) double frequency in cell 5.
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Figure 18. Simulations in homogeneous five-cell network in Figure 15. (Left) time series for chaotic
attractor with Z3 symmetry; (right) phase planes with all cells exhibiting symmetry on average.

Construction of the natural quotient network. Let .2 be a balanced equivalence relation
on a coupled cell network G = (C, E ,∼C ,∼E). In a series of steps we construct the quotient
network G�� corresponding to the polysynchronous subspace ∆��. To do this we need to
define the cells and edges of the quotient network and the equivalence relations on them; that
is, we must define C��,∼C�� , E��,∼E�� . Most steps are straightforward, but those related to
edge-equivalence are more complicated.

(A) Let c denote the .2-equivalence class of c ∈ C. The cells in C�� are the .2-equivalence
classes in C; that is,

C�� = {c : c ∈ C}.

Thus we obtain C�� by forming the quotient of C by .2; that is, C�� = C/ .2.

(B) Define

c ∼C�� d ⇐⇒ c ∼C d.

This is well defined since .2 refines ∼C .
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213

Figure 19. A three-cell network with no symmetry having a quotient two-cell network with Z2 symmetry.

(C) The edges in the quotient network are the projection of edges in the original network
that do not link distinct but .2-equivalent cells. That is,

E�� = {(i, c) : (i, c) ∈ E , i �.2 c} ∪ {(c, c) : c ∈ C}.

(D) We now define ∼E�� . Suppose that (j, d) ∈ E��, and let c ∈ C satisfy c = d. Define

Ωc(j) = {i ∈ I(c) : i = j}.(7.3)

Now let (j1, d1), (j2, d2) ∈ E��. We say that

(j1, d1) ∼E�� (j2, d2)

if and only if for some c1, c2 ∈ C with c1 = d1, c2 = d2 there exists γ ∈ B(c1, c2) such that

γ(Ωc1(j1)) = Ωc2(j2).(7.4)

Remark 7.2. We interrupt our discussion to provide a word picture of the construction of
edge-equivalence ∼E�� . Suppose that the cells of C are colored by .2-equivalence classes, as
discussed previously. So every cell in C�� can be identified with a unique color. The set Ωc(j)
consists of those cells in the input set I(c) having color j. The edges (j1, d1) and (j2, d2) are
∼E��-equivalent if there is an input equivalence of I(c1) to I(c2) that maps cells of color j1 to
cells of color j2. In particular, the number of cells in I(c1) of color j1 must equal the number
of cells in I(c2) of color j2.

This completes the construction of G�� = (C��, E��,∼C�� ,∼E��), except for one final techni-
cal remark. As stated, the definition of ∼E�� appears to depend on the choice of c1, c2 in (D).
In fact, it does not.

Lemma 7.3. Suppose that .2 is balanced. Let c1, c2, c
′
1, c

′
2 ∈ C, where c1 .2 c′1 and c2 .2 c′2.

Let j1, j2 ∈ C��. Suppose that there exists β ∈ B(c1, c2) such that

β(Ωc1(j1)) = Ωc2(j2).

Then there exists β′ ∈ B(c′1, c′2) such that

β′(Ωc′1(j1)) = Ωc′2(j2).

Proof. Since .2 is balanced, there exists (for k = 1, 2) an element γk ∈ B(ck, c
′
k) such that

γk(i) .2 i for all i ∈ I(ck). Therefore,

γk(Ωck(jk)) = Ωc′k(jk).
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Clearly β′ = γ2βγ
−1
1 is an input isomorphism and by construction β′(Ωc′1(j1)) = Ωc′2(j2).

Lemma 7.3 implies that if (D) holds for some choice of c1, c2 satisfying the required con-
ditions, then it holds for any choice of c1, c2.

Finally, we show that G�� is a coupled cell network. To do so, we must verify the compat-
ibility conditions in Definition 2.1(e,f).

(E) If (j1, d1) ∼E�� (j2, d2), then j1 ∼C�� j2 and d1 ∼C�� d2.
Choose c1, c2 ∈ C such that c1 = d1 and c2 = d2. The definition of ∼E�� implies there exists

γ ∈ B(c1, c2) such that γ(Ωc1(j1)) = Ωc2(j2). Since γ is an input isomorphism, it preserves
cell type, so c1 ∼C c2. However, now the definition of ∼C�� shows that d1 ∼C�� d2. Next
choose any i ∈ Ωc1(j1). Then γ(i) ∈ Ωc2(j2), and i ∼C γ(i). Therefore, j1 ∼C�� j2.

(F) Internal edges are never equivalent to noninternal ones; that is,

(j1, j1) ∼E�� (j2, d2) ⇐⇒ j2 = d2 and j2 ∼C�� j1

for all j1, j2, d2 ∈ C��.
We prove =⇒. Assume that (j1, j1) ∼E�� (j2, d2) and choose c1, c2 ∈ C such that c1 =

j1 and c2 = d2. The definition of ∼E�� implies that there exists γ ∈ B(c1, c2) satisfy-
ing (7.4): γΩc1(j1) = γΩc2(j2). Suppose that Ωc1(j1) = {c1, i1, . . . , ip}. Then Ωc2(j2) =

{γ(c1), γ(i1), . . . , γ(ip)} = {c2, γ(i1), . . . , γ(ip)} and d2 = c2 = γ(i1) = · · · = γ(ip) = j2 by
definition of Ωc2(j2). Thus j2 = d2. As j2 = c2, j1 = c1, and c1 ∼c c2 (since B(c1, c2) �= ∅),
then j1 ∼C�� j2.

The converse is obtained by direct calculation.
It remains to prove that the restriction of each G-admissible vector field to ∆�� is a G��-

admissible vector field. This result follows from Theorem 9.2, whose proof uses “quotient
maps,” which are introduced in section 8.

Remark 7.4 (on the symmetry groupoid of the natural quotient). It is reasonable to ask for
a characterization of the symmetry groupoid of the natural quotient G/ .2 in terms of the
symmetry groupoid of G and its relation to .2.

Define

Σ��(c, d) = {σ ∈ B(c, d) : σ(i) .2 i ∀i ∈ I(c)},
T��(c, d) = {τ ∈ B(c, d) : i .2 j ⇐⇒ τ(i) .2 τ(j) ∀i, j ∈ I(c)}.

Then define two subgroupoids of BG by

Σ�� =
⋃̇

c,d∈CΣ
��(c, d),

T�� =
⋃̇

c,d∈CT
��(c, d).

It turns out that T�� consists precisely of the .2-compatible elements of BG, a concept that
we introduce later in Definition 8.6. It follows that BG/�� consists precisely of the bijections
induced on C/ .2 by the subgroupoid T�� of BG.

Moreover, the elements of Σ�� act as the identity on C/ .2. In fact, they form the isotropy
subgroupoid of any generic element of the polydiagonal ∆�� (that is, an element x ∈ ∆�� such
that xi = xj ⇔ i .2 j). By analogy with the group-symmetric case, we expect BG/�� to be
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equal to the quotient groupoid T��/Σ��. Moreover, T�� ought to be the “normalizer groupoid”
of Σ�� in BG.

Dias and Stewart [5] prove the above statements. We omit the proofs here because they
involve technicalities about quotient groupoids that would take us too far afield.

Remark 7.5 (on the lifting of G�� admissible vector fields). In symmetric dynamics the is-
sue of “hidden symmetry” arises. Here, the restriction of an equivariant vector field onto
the fixed-point space of a subgroup Σ is always equivariant under the normalizer of Σ, but
sometimes it obeys extra constraints. See [9, 7]. The next example shows that the same issue
arises in the groupoid context. In particular, vector fields that are admissible with respect to
the quotient network G�� do not always lift to vector fields that are admissible with respect
to the original coupled cell network G.

Consider the four-cell network in Figure 20 (left). The equivalence relation .2 indicated
by color is balanced, and consider the natural quotient three-cell network in Figure 20 (right).

1
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3

4

1

2

3
φ

Figure 20. A four-cell example.

Admissible vector fields of the four-cell network have the form

ẋ1 = A(x1, x2, x3, x4),
ẋ2 = B(x2),
ẋ3 = B(x3),
ẋ4 = B(x4).

(7.5)

Admissible vector fields of the three-cell network have the form

u̇1 = f(u1, u2, u3),
u̇2 = g(u2),
u̇3 = g(u3).

(7.6)

If we identify (x1, x2, x3, x4) with (u1, u2, u3, u3), we induce a vector field from (7.5), and we
thereby obtain one of the form

u̇1 = A(u1, u2, u3, u3),
u̇2 = B(u2),
u̇3 = B(u3),

(7.7)

which is admissible by (7.6).
Note that not every G��-admissible vector field (7.6) can be extended to a G-admissible

vector field. Compare the linear terms in A (namely, αu1+β(u2+2u3)) with the linear terms
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in f in (7.6) (namely, αu1+βu2+γu3). This is a groupoid analogue of hidden symmetry and
raises similar issues. Dias and Stewart [5] give a complete groupoid-theoretic characterization
of the cases when every G��-admissible vector field extends to a G-admissible vector field.

8. Quotient maps. In this section we give a formal definition of a quotient map φ : G1 →
G2, where G1 and G2 are coupled cell networks. The definition is purely graph-theoretic.

Definition 8.1. Let Gi = (Ci, Ei,∼Ci ,∼Ei) be coupled cell networks. The map

φ : C1 → C2

is a quotient map if the following hold:

(a) Cells lift: φ is surjective.
(b) Input arrows lift: If (i, c) ∈ E1, then (φ(i), φ(c)) ∈ E2. Conversely, if (j, d) ∈ E2 and

c ∈ C1 such that φ(c) = d, then there exists i ∈ C1 such that φ(i) = j and (i, c) ∈ E1.
(c) Input isomorphisms lift: Let d, d′ ∈ C2 and β2 ∈ B(d, d′). Choose c, c′ ∈ C1 such that

φ(c) = d and φ(c′) = d′. Then there exists β1 ∈ B(c, c′) such that

β2(φ(i)) = φ(β1(i))(8.1)

for all i ∈ I(c).

There are several observations that follow directly from the definition of a quotient map
φ : C1 → C2. Define the equivalence relation .2φ on C1 by

c .2φ c′ ⇐⇒ φ(c) = φ(c′).(8.2)

That is, any two cells in C1 that project by φ onto the same cell in C2 have the same color
(that is, are .2φ-equivalent).

Lemma 8.2. Let φ : C1 → C2 be a quotient map. Then the following hold:

(a) If φ(c) = d, then

φ(I(c)) = I(d).(8.3)

(b) For every c, c′ ∈ C1 such that φ(c) = φ(c′) there is an input isomorphism β ∈ B(c, c′)
such that

φ(i) = φ(β(i))(8.4)

for all i ∈ I(c).
(c) The equivalence relation .2φ is balanced.

Proof. Part (a) follows directly from Definition 8.1 (b). Part (b) follows from Defini-
tion 8.1 (c) by setting d = d′ and β2 = id on I(d). The existence of β ∈ B(c, c′) in Part
(b) implies that c ∼I1 c′ and hence c ∼C1 c′. Using (8.2), identity (8.4) is equivalent to
i .2φ β(i) for all i ∈ I(c), which is the definition of “balanced” in Definition 6.4. Thus Part (c)
holds.
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Quotient networks are examples of quotient maps.
Theorem 8.3. Assume that .2 is a balanced equivalence relation on C, and let C�� be the

natural coupled cell network whose cells are the equivalence classes of .2. Let c denote the
.2-equivalence class of the cell c ∈ C. Then the map φ : C → C�� defined by c  → c is a quotient
map.

Proof. We verify that φ : C → C�� is a quotient map; that is, we verify Definition 8.1
(a)–(c).

(a) Cells lift since φ is onto by construction.

(b) Input arrows lift by definition. See part (C) in the construction of the network C��.
(c) We show that input isomorphisms lift. Recall that Definition 8.1 (c) states the fol-

lowing: For every d, d′ ∈ C��, c, c′ ∈ C such that c = d, c′ = d′, and β2 ∈ B(d, d′), there
exists β1 ∈ B(c, c′) such that β2(i) = β1(i) for all i ∈ I(c). So we must construct the input
isomorphism β1 : I(c) → I(c′).

We first show that input sets lift; that is, I(c) = I(c) for each c ∈ C. Suppose that
j ∈ I(c). Since input arrows lift, there exist i′, c′ ∈ C such that i′ = j, c′ = c, and (i′, c′) ∈ E .
By construction of C��, c′ and c are .2-equivalent. Since .2 is balanced, there exists γ ∈ B(c′, c)
for which i = γ(i′) .2 i′. It follows that γ(i′, c′) = (i, c) ∈ E and that i = j. Thus each input
arrow in I(c) lifts to an input arrow in I(c).

Next we show that β1 exists. The set Ωc(j), defined in (7.3), consists of cells in I(c) that
are .2-equivalent and project onto the node j ∈ C��. Therefore, we can choose a finite set J of
j such that

I(c) =
⋃̇

j∈JΩc(j).

Since input sets lift, the existence of β2 implies that

I(c′) =
⋃̇

j∈JΩc
′(β2(j)).

We construct the permutation β1 by finding bijections

β1|Ωc(j) : Ωc(j) → Ωc′(β2(j))

for all j ∈ J and letting β1 be their union. The existence of β2 ∈ B(d, d′) implies that
(j, d) ∼E�� (β2(j), d

′). Recall from (7.4) that the definition of ∼E�� implies that there exists
γ ∈ B(c, c′) such that γ(Ωc(j)) = Ωc′(β2(j)). Thus β2(i) = γ(i) for all i ∈ Ωc(j). Now set
β1|Ωc(j) = γ.

Nonuniqueness and universality.
Theorem 8.4. Assume that .2 is a balanced equivalence relation on C, and let G�� be the

associated natural quotient network with quotient map φ. Then the pair (G��, φ) is universal.
That is, if G′ is a coupled cell network with a quotient map φ′ with .2φ′=.2, then there is a
quotient map ξ : G�� → G′ such that φ′(c) = ξ(φ(c)) for all c ∈ C.

In this situation we say that (G′, φ′) factors through (G��, φ). Note that with the definition
of φ given in Theorem 8.3, c .2 d if and only if c .2φ d.
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First, we give an example to show that quotient networks need not be unique. Then we
prove Theorem 8.4, which shows that the natural quotient is universal. That is, all other
quotient networks are quotients of G�� of a rather trivial kind: distinct cells remain distinct.

Example 8.5. Figure 21 shows three coupled cell networks. The network G is the seven-
cell chain of Figure 6. The network G�� is the three-cell ring of Figure 7 in which all three
arrows are equivalent. The network G′ is another three-cell ring, in which the arrows are not
equivalent. It is easy to see that there exist three quotient maps φ : G → G��, φ

′ : G → G′,
and ξ : G�� → G′, shown by the coloring of the figure. Moreover,

φ′(c) = ξ(φ(c)) ∀c ∈ C.
Clearly φ and φ′ induce the same equivalence relation on G; that is, .2φ = .2φ′ . However, G��

and G′ are not isomorphic.
In fact, there are three other quotient networks with the same equivalence relation.

Namely, form a three-cell ring and define two arrows to be equivalent but the third to be
different. These three networks can be inserted between G�� and G′.

’

’

G

G G

φ φ

ξ

Figure 21. Two distinct quotients with the same equivalence relation.

The essential point now is that Example 8.5 exhibits the only way in which uniqueness
fails. The natural quotient G�� defined above is the one in which as many arrows as possible
are edge-equivalent. All other quotients are obtained from the natural one by employing the
same cells and refining ∼E .

It will be helpful to introduce the following concept.
Definition 8.6. Let γ : J → K be a bijection between subsets J,K ⊂ C, and let .2 be an

equivalence relation on C. Say that γ is .2-compatible if for all j1, j2 ∈ J

j1 .2 j2 ⇔ γ(j1) .2 γ(j2).(8.5)

Essentially, the point here is that γ permutes .2-equivalence classes. Note that in the
definition of “balanced” we have the stronger condition i .2 γ(i), in which γ fixes .2-equivalence
classes.
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Such maps arise for the following reason. Suppose that φ : G → G′ is any quotient map of
coupled cell networks, and let β ∈ BG′ be an input isomorphism. The definition of “quotient”
requires there to exist a lift β̃ ∈ BG. The definition of “lift” clearly implies that

β̃ is .2φ -compatible(8.6)

with J = I(c),K = I(d), whence β̃ ∈ B(c, d) (if β ∈ B(φ(c), φ(d)) ⊆ BG′).
Proof of Theorem 8.4. Suppose that G is a coupled cell network and .2 is a balanced

equivalence relation on C. Let (G��, φ) be the natural quotient by .2 so that .2φ = .2. Let
(G′, φ′) be any quotient network with .2φ′ = .2. We claim that φ′ factors through φ.

Define ξ : G�� → G′ as follows. Let c ∈ C�� be a cell of G��. Define

ξ(c) = φ′(c).

The map ξ is well defined because .2φ′ = .2= .2φ. It is a bijection ξ : C�� → C′.
We claim that ξ is a quotient map. The defining properties are obvious, except for the

condition that input isomorphisms lift from G′ to G��. Suppose that β ∈ BG′ . Then β lifts
from G′ to G, yielding an input isomorphism β̃ ∈ BG. By (8.6), β̃ is .2-compatible. Therefore,
it induces a bijection γ on C�� defined by

γ(c) = β̃(c).

The definition of edge-equivalence in the construction of G�� implies that γ is an input iso-
morphism in G��. Therefore, every β ∈ BG′ lifts to some γ ∈ BG�� .

Several other properties follow directly from this proof. To state them, we need the
following definition:

Definition 8.7. Let ξ : G → G′ be bijective on cells. Then G′ is an edge-refinement of G if

ξ(i, c) ∼E′ ξ(j, d) ⇒ (i, c) ∼E (j, d).

Corollary 8.8.
(a) Every quotient network corresponding to a given balanced equivalence relation .2 is an

edge-refinement of the natural quotient G��.
(b) Conversely, every edge-refinement of G�� is a quotient network corresponding to .2.
(c) Let G′, G′′ be edge-refinements of G��. Then G′′ is an edge-refinement of G′ if and

only if BG′ ⊇ BG′′.
(d) The condition BG′ ⊇ BG′′ is equivalent to FP

G′ ⊆ FP
G′′ for any choice of phase space P

on cells, where cells in G′, G′′ are identified if they correspond to the same .2-class of
cells in G.

The above corollary establishes that the phenomena described in Example 8.5 are typical
of the general case.

9. Induced vector fields are admissible. Now we come to the second main theorem of
this paper. We show that any quotient map φ : G1 → G2 converts G1-admissible vector fields
into G2-admissible vector fields in a natural way.

The basic idea is the following. Let ∆φ denote the polydiagonal subspace correspond-
ing to the equivalence relation .2φ (previously denoted ∆��φ). We claim that the space of



642 I. STEWART, M. GOLUBITSKY, AND M. PIVATO

G1-admissible vector fields restricted to ∆φ can be naturally identified with a subspace of
the space of G2-admissible vector fields. The main consequence of this observation is that
interesting dynamics (rotating waves, symmetric chaos) in this subspace for the cell system
G2 corresponds to the same dynamics in the cell system G1, in which .2-equivalent cells are
synchronous.

We first choose cell phase spaces Pc for c ∈ C1. Then φ(c) ∈ C2, and we let the corre-
sponding cell phase space be P φ(c) = Pc. The space P φ(c) is well defined since quotient maps
preserve the relation ∼c.

Choose a set of representatives R for the map φ. That is, R ⊆ C1 and for each d ∈ C2

there exists a unique c ∈ R such that φ(c) = d. Thus the set of all φ(c) runs through the
elements of C2 without duplication when c runs through R. Then define

P =
∏
c∈R

P φ(c) =
∏
c∈R

Pc.

If x = (xc)c∈C1 defines coordinates on P , we can consider y = (yφ(c))φ(c)∈C2
as defining coor-

dinates on P . Moreover, for each c ∈ C1 there exists a unique r ∈ R such that φ(c) = φ(r),
and then yφ(c) is identified with yφ(r).

In section 8 we introduced the notion of a quotient map between coupled cell networks.
The key property that we wish to ensure is that a quotient map φ : G1 → G2 induces a natural
mapping φ̂ : FP

G1
→ FP

G2
, where P is obtained by identifying the relevant factors of P .

Quotients preserve admissibility. We now establish an important property of quotient
maps: they induce admissible vector fields.

Suppose that φ : G1 → G2 is a quotient map. There is an injective map α : P → P
defined by

α(y)c = yφ(c) ∀c ∈ C1, y ∈ P .(9.1)

Note that ∆φ = α(P ), so α : P → ∆φ is a bijection. Replacing y by α−1x, for x ∈ ∆φ, (9.1)
becomes

(α−1x)φ(c) = xc ∀c ∈ C1.(9.2)

Definition 9.1. Since f ∈ FP
G1

leaves ∆φ invariant, we can define a vector field f on P , the

induced vector field, by restricting f to ∆φ and projecting the result onto P by α−1. More
precisely,

f(y) = α−1(f(α(y))) ∀y ∈ P .(9.3)

We will also denote f by φ̂(f).
The main result of this section is Theorem 9.2 below. Several applications of this theorem

can be found in [6].

Theorem 9.2. For any f ∈ FP
G1

, the induced vector field f lies in FP
G2

.

Proof. Since f ∈ FP
G1

is G1-admissible, it satisfies the two conditions of Definition 4.1: the
domain condition (4.3) and the equivariance condition (4.5).
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The domain condition states the following: For all c ∈ C1 there exists a function f̂c :
PI(c) → Pc such that

fc(x) = f̂c(xI(c)).(9.4)

Equivalently, fc depends only on variables from cells in I(c).
BG1-equivariance states the following: For all c, c

′ ∈ C1 and for all γ ∈ B(c, c′) we have

f̂c′(x) = f̂c(γ
∗(x)) ∀x ∈ PI(c′),(9.5)

where

(γ∗(x))i = xγ(i) ∀i ∈ I(c)(9.6)

and is undefined elsewhere.
We must verify Definition 4.1. That is, we must show the following:
(a) The vector field f satisfies the domain condition for G2.
(b) The vector field f satisfies the equivariance condition for G2.
To prove (a), let d ∈ C2, and suppose that φ(c) = d. We must show that fd(y) depends

only on yI(d) for y ∈ P . We have

fd(y) = fφ(c)(y)

= (f(y))φ(c)

= (α−1(f(α(y))))φ(c) by (9.3)

= (f(α(y)))c by (9.2)
= fc(α(y)) by definition.

By (9.4), the value of fc(α(y)) depends only on (α(y))I(c). However, by (9.1),

(α(y))I(c) = yφ(I(c)) = yI(d)

since φ(I(c)) = I(d) by (8.3). This proves (a).
We interrupt this proof to verify a lemma.
Lemma 9.3. Let d, d′ ∈ C2 and let β ∈ B(d, d′). Choose c, c′ ∈ C1 such that φ(c) = d, φ(c′) =

d′. Suppose that β lifts to β̃ ∈ B(c, c′). Then for all y ∈ P we have

β̃∗(α(y)) = α(β∗(y)).(9.7)

Proof. For all i ∈ I(c) we have

(β̃∗(α(y)))i = (α(y))β̃(i) by (9.6)

= yφ(β̃(i)) by (9.1)

= yβ(φ(i)) by (8.1)

= (β∗(y))φ(i) by (9.6)

= (α(β∗(y)))i by (9.1),

which proves (9.7).
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Now we return to the proof of Theorem 9.2. To prove (b) we must show that for all
d, d′ ∈ C2 and β ∈ B(d, d′),

fd′(y) = fd(β
∗(y)) ∀y ∈ PI(d′),(9.8)

where by definition

(β∗(y))i = yβ(i).

Choose c, c′ ∈ C1 such that φ(c) = d, φ(c′) = d′. Use Definition 8.1 (c) to lift β : I(d) →
I(d′) to β̃ : I(c) → I(c′). That is, by (8.1),

β(φ(i)) = φ(β̃(i)) ∀i ∈ I(c).

We know that

fc′(x) = fc(β̃
∗(x)) ∀x ∈ P.

Therefore, setting x = α(y), we have

fc′(α(y)) = fc(β̃
∗(α(y))) ∀y ∈ P .(9.9)

By Lemma 9.3,

fc′(α(y)) = fc(α(β
∗(y))).(9.10)

Now, by definition (9.3), f(y) = α−1(f(α(y))). Therefore,

fd′(y) = (α−1(f(α(y))))d′

= (α−1(f(α(y))))φ(c′)
= (f(α(y)))c′ by (9.2)
= fc′(α(y)).

Similarly,

fd(β
∗(y)) = (f(β∗(y)))d

= (α−1(f(α(β∗(y)))))d
= (f(α(β∗(y))))c by (9.2)
= fc(α(β

∗(y)))
= fc(β̃

∗(α(y))) by (9.7),

and the result follows from (9.9).
Theorem 9.2 is valid for all of the quotients in Example 8.5. However, it is clear that

BG′ is a proper subset of BG�� . Therefore, im(φ̂) = im(φ̂′) ⊆ FG�� ⊂ FG′ , so we gain more
information about induced vector fields f and their lifts f if we work with (G��, φ) rather than
(G′, φ′).

Note that Example 7.5 is the natural quotient, so φ̂ need not be surjective when φ is
natural. It is never surjective when φ is not the natural quotient map.
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10. Final comments. The formalism of symmetry groupoids proposed in this paper can
be set up for many analogous systems that possess a network structure. Here, we have
associated to each cell (node of the network) a continuous-time dynamical system defined on
a manifold, and to each directed edge a coupling between such systems. We briefly consider
variations on this theme.

Extra constraints can be imposed, an important one being to make the system Hamilto-
nian; see [8]. An analogous formalism can be introduced for discrete-time dynamics (coupled
map lattices and generalizations to networks), or discrete-time discrete-space dynamics (cellu-
lar automata), and groupoid-equivariance implies constraints on the dynamics (in particular,
on patterns of synchrony). If cells represent states of a stochastic process and edges represent
transitions, then the network corresponds to a Markov chain, and now the symmetry groupoid
implies constraints on the stationary probability density function. We can also extend the
groupoid formalism to stochastic differential equations and delay-differential equations.

The theory developed here is a preliminary step toward a formal understanding of pattern-
formation in general, not necessarily symmetric, coupled cell networks. Its main focus is robust
synchrony. Many other questions about the dynamics of coupled cell networks can be tackled
within the groupoid framework; indeed, work is in progress on several of these. In all cases,
the central role of the symmetry groupoid as a formal algebraic structure that captures the
constraints imposed by the network topology is paramount.
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Abstract. We consider pulse formation dynamics in an actively mode-locked laser. We show that an amplitude-
modulated laser is subject to large transient growth and we demonstrate that at threshold the
transient growth is precisely the Petermann excess noise factor for a laser governed by a nonnormal
operator. We also demonstrate an exact reduction from the governing PDEs to a low-dimensional
system of ODEs for the parameters of an evolving pulse. A linearized version of these equations
allows us to find analytical expressions for the transient growth below threshold. We also show that
the nonlinear system collapses onto an appropriate fixed point, and thus in the absence of noise the
ground-mode laser pulse is stable. We demonstrate numerically that, in the presence of a continuous
noise source, however, the laser destabilizes and pulses are repeatedly created and annihilated.
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1. Introduction. Lasers play a crucial role in a number of optical devices and technologies.
They are at the core of various consumer devices, and they are responsible for the rate of
increase in the speed of our optical communication networks [20]. The need for stable pulsed
lasers continues, and this continues to fuel research into either improving current devices or
inventing new ones [37].

While the variety of lasers on the marketplace today is quite astounding, a typical laser
is composed of an optical resonator, a laser gain medium, and a pump source [33]. The
resonator can in principle support a large number of longitudinal (along the resonator axis)
and transverse (transverse to the resonator axis) modes. The resonator also introduces losses,
which are frequency-dependent. The frequency band over which laser oscillation can occur
is determined by the frequency region over which the gain of the laser medium exceeds the
resonator losses.

In terms of the longitudinal modes, most lasers have many modes within the gain band, and
the laser output consists of radiation at a number of closely spaced frequencies. In the absence
of any further control elements, random fluctuations and nonlinear effects in the laser result
in an output that varies in an unpredictable way. If, on the other hand, the oscillating modes
are forced to maintain equal frequency spacing and a fixed phase relationship, it is possible
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to obtain a variety of mode-locked behaviors, including a frequency-modulated output and a
continuous train of laser pulses. The technique of mode-locking was proposed theoretically by
Lamb in 1964 [25].

In the same year a number of experimental studies were published on the use of internal
modulation to obtain mode-locking in gas lasers. Hargrove, Fork, and Pollack [16] experimen-
tally obtained a train of pulses from an He-Ne laser by mode-locking with an internal acoustic
loss modulator. Harris and Targ [17] used an internal frequency modulator to mode-lock the
same laser, resulting in a frequency-modulated output. In the following years, the techniques
of mode-locking were demonstrated in other laser systems, including the argon ion laser [7],
the ruby laser [4], and the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser [6].
In each case, the pulse-widths achieved were on the order of tens of pico-seconds, but the
pulse trains were subject to fluctuations and instabilities. Other means of mode-locking were
also employed, including self-locking [3] and the use of saturable absorbers [8].

Theoretical work on active mode-locking developed in concert with experimental work,
with emphasis on either internal amplitude modulation (AM) or frequency modulation (FM).
DiDomenico [5] showed theoretically that mode-locking could be obtained by internal loss
modulation, while Harris and McDuff [18] developed an internal FM theory. Haken and
Pauthier [15] showed later that mode-locked laser pulses are described by a harmonic-oscillator
eigenfunction. Nelson [29] extended this work and showed that the steady-state laser pulse is
described by a Gaussian envelope modulated by polynomials. These efforts were all carried
out in the frequency domain.

The first theoretical results in the time domain were obtained by Kuizenga and Sieg-
man [23], who were able to predict the width of mode-locked pulses in AM and FM lasers.
These predictions were confirmed experimentally by the same authors for FM laser opera-
tion [24] and by Smith et al. [36] for an AM laser. The theory of Kuizenga and Siegman
was based on the assumption that a circulating Gaussian pulse exists in the resonator. By
imposing a self-consistency condition after one round-trip, they showed in a simple way that a
steady-state Gaussian pulse could exist. Kim, Marathe, and Rabson [22] later showed that the
Gaussian pulse was in fact a solution of an integral equation and that higher-order solutions
also existed—the Hermite–Gaussian modes. Haus [19] demonstrated two years later that the
higher-order modes are linearly unstable and hence unrealizable in the steady-state.

The technique of internal modulation introduces two parameters—the depth of the mod-
ulation and the degree to which the modulation period is detuned from the round-trip time of
the laser cavity. While the steady-state effects of detuning were considered in the early years
of mode-locked lasers, it is only more recently that the dynamic effects of detuning have come
under scrutiny. In 1998, Morgner and Mitschke [27] investigated the influence of detuning
on the pulse formation dynamics in mode-locked lasers. They found experimentally that in
an actively mode-locked laser the equilibrium position of the laser pulse shifts linearly with
respect to the detuning parameter—in close agreement with the steady-state predictions of
Kuizenga and Siegman [23]. More importantly, they found that perturbations to the steady-
state laser pulse grow and “drift” through the pulse with a constant velocity. As the detuning
is increased, their findings suggest that no stable pulse can be maintained as perturbations
can grow large enough to compete with the existing laser pulse. This results in a destabilizing
of the laser which they identify as a drift instability.
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More recently, Kärtner, Zumbühl, and Matuschek [21] suggested that this instability ex-
hibits a transition to turbulence. They showed that the detuned laser is an example of a
nonnormal system and, as a result, perturbations to the ground-mode pulse are subject to
strong transient growth analogous to that experienced by the laminar state in fluid pipe
flow [38]. Furthermore, they quantified the effect of detuning and predicted that the transient
growth scales with the exponential of the detuning parameter. The precise nature of the in-
stability was not considered, however; nor was the connection to the drift velocity of Morgner
and Mitschke.

Similar results have been predicted for the frequency-modulated laser by Longhi and
Laporta [26]. In addition to showing that perturbations are subject to large transient amplifi-
cation due to the nonorthogonality of the laser modes, they also showed that the laser exhibits
a strongly enhanced sensitivity to external noise. The existence of so-called excess noise was
first predicted by Petermann [30] in 1979 in the context of a gain-guided laser amplifier but
has since been generalized to a wide array of optical systems, including general nonorthogonal
optical systems [34, 35] and even nonorthogonal polarization modes [39]. As a result, the
response of any laser system to noise is often characterized by the Petermann excess noise
factor.

The purpose of this paper is to conduct a careful investigation of the dynamics of pulse
formation in an amplitude-modulated laser. We show that the transient growth expected at
the lasing threshold is equivalent to the Petermann excess noise factor, and we find exact
expressions for the transient growth factor away from threshold. Moreover, we find an exact
reduction from the governing PDEs to a low-dimensional system of ODEs for the parameters
of a circulating pulse. We show that the evolving ground-mode pulse is a globally attracting
solution of this system. In the presence of noise, however, we demonstrate numerically that
the laser destabilizes and undergoes a repeating cycle of pulse creation and annihilation.
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� ��

0 1 2 3 4 5 6 7 8
0

Time

T
M

Loss

Pulse

(a) (b)

Figure 2.1. (a) An actively mode-locked laser consisting of an optical resonator, a laser medium, and an
amplitude modulator. (b) Laser pulses can form only when the losses are minimum.
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2. Governing equations. A schematic of an actively mode-locked laser is shown in Fig-
ure 2.1. An amplitude modulator is placed inside a laser cavity, with a modulation period TM
that closely matches the round-trip time TR of the laser cavity. As a result of the losses intro-
duced by the modulator, the laser pulses are expected to have a pulse-width much shorter than
the round-trip time of the cavity, which allows us to describe the laser on two independent
time scales. The cavity time T is sampled on the cavity round-trip time TR, which is typically
on the order of nano-seconds. In contrast, the local time t resolves the resulting pulse shape,
which may be on the order of pico-seconds. The evolution equations for the complex electric
field envelope A(T, t) and the laser gain g(T ) for t ∈ (−∞,∞) and T ∈ [0,∞) are [21, 10]

TR
∂A(T, t)

∂T
=
(
g(T )− l − µt2

)
A(T, t) + Γ

∂A(T, t)

∂t
+D

∂2A(T, t)

∂t2
,(2.1)

dg(T )

dT
= α− γg(T )− βg(T )||A(T, ∗)||2 ,(2.2)

where the pulse energy, ||A(T, ∗)||2, is defined in terms of the standard inner-product on
L2(−∞,∞), i.e.,

||A(T, ∗)||2 = 〈A(T, ∗), A(T, ∗)〉 =

∫ ∞

−∞
|A(T, t)|2dt.

The evolution equation (2.1) for the pulse envelope includes a number of relevant physical
effects. The pulse experiences both gain, g(T ), and loss, D∂tt− l−µt2, as it propagates in the
cavity. The parameter l represents the fixed cavity losses which are frequency-independent,
while D represents the curvature of the intracavity losses in the frequency domain which
limits the bandwidth of the laser. The parameter µ is proportional to the depth of the loss
modulation. While the losses are actually modulated periodically, the modulation depth is
relatively large so that radiation can only build up during the time of low intracavity loss,
which is much shorter than the modulator period. In that case, the cosine modulation is
approximated by a parabola so that µ actually represents the curvature of the loss modulation
at the point of minimum loss. In addition, the loss modulation period is not perfectly matched
to the round-trip time and this detuning is captured by Γ = TM − TR.

The dynamics of the gain medium is captured in (2.2). The gain in the cavity, g(T ),
depends on the amount of energy driving the laser, the rate at which the gain medium can
radiate the laser photons, and the number of photons present in the cavity. The parameter
α accounts for the rate of energy gain due to pumping, γ represents the gain relaxation rate,
and β is related to the saturation power of the gain medium. The number of photons in the
cavity at any given time T is proportional to the pulse energy, ||A(T, ∗)||2.

The evolution equations, (2.1) and (2.2), are of course supplemented with both initial,
A(T = 0, t) and g(T = 0), and boundary conditions. Our search for pulse-like solutions
requires us to satisfy vanishing or Dirichlet boundary conditions for the pulse amplitude, i.e.,

lim
t→±∞A(T, t) = 0.(2.3)

Finally, there are several restrictions on the parameters, all of which are assumed real in
this paper. Γ may be positive or negative, while l, µ, D, α, γ, and β are all positive. For
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the purpose of the simulations presented in this paper, the following fixed values were used:
l = 0.01, µ = 1, D = 0.0001, γ = 0.01, β = 0.1, and TR = 1. The parameters Γ and α were
varied as needed.

3. Steady-state solutions. The steady-state solutions of (2.1)–(2.2) are defined when
both A(T, t) = As(t) and g(T ) = gs are independent of T , i.e.,

(
gs − l − µt2 + Γ∂t +D∂tt

)
As = 0,(3.1)

α− γgs − βgs||As||2 = 0.(3.2)

A cursory inspection of (3.1)–(3.2) reveals that there is a trivial steady-state solution,
As = 0 and gs = α/γ. This corresponds to the laser being “off.” There are, of course,
steady-state solutions which correspond to the laser being on and mode-locked and which can
be found by looking for nontrivial solutions to (3.1) subject to the boundary conditions (2.3).
These nontrivial solutions can be determined by looking for a solution of the form

As(t) = ψ(t) exp

(
−(t− a)2

2σ2

)
,(3.3)

where a and σ are free parameters to be determined. Substituting ansatz (3.3) into (3.1)
results in

Dψtt +

(
Γσ2 − 2D(t− a)

σ2

)
ψt

+

(
gs − l − µt2 +

D(t− a)2 −Dσ2 − Γσ2(t− a)

σ4

)
ψ = 0 .(3.4)

This equation can be transformed into the Hermite equation by a judicious choice of a
and σ. If we define

σ2 =
√

D/µ,(3.5)

a = −σ2Γ/2D(3.6)

and transform the variable t by t → σu, the resulting equation is

ψuu − 2uψu +
1√
µD

(
gs − l −

√
µD − Γ2

4D

)
ψ = 0 .(3.7)

This is precisely the Hermite equation if

1√
µD

(
gs − l −

√
µD − Γ2

4D

)
= 2n; n = 0, 1, 2, . . . ,(3.8)

which must be true in order to satisfy the boundary conditions (2.3). In other words, a
nontrivial solution exists for the pulse amplitude ψ(t) if the steady-state gain, gs = gn, is
given by

gn = l +

(
2
√

µD

(
∆2 + n+

1

2

))
, n = 0, 1, 2, . . . ,(3.9)
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where ∆ is a normalized detuning, ∆ = σΓ/
√
8D. If this is the case, then (3.7) is the Hermite

equation with the usual Hermite polynomials Hn(u) as solutions. Each value of n in (3.9)
gives us a steady-state pulse As(t) = An(t), which is a Hermite–Gaussian mode of the form

An(t) = Kn Hn

(
t

σ

)
exp

(
−(t− a)2

2σ2

)
.(3.10)

The pulse amplitudes, Kn, are determined via (3.2), which gives

||An||2 =
α − γ gn

βgn
.(3.11)

Since the sequence gn increases linearly with n, the threshold for lasing operation is given
by α = αth = γ g0, as this is the first value of α which permits the existence of a pulse.
We expect the ground-mode (n = 0) to dominate, at least close to the lasing threshold. The
basic lasing solution is a Hermite–Gaussian pulse of width σ centered at t = a = −√

2σ∆. If
the modulator period matches the round-trip period perfectly, i.e., ∆ = 0, then the pulse is
centered at t = 0, which corresponds to the minimum loss point. If, on the other hand, there
is any slight detuning, i.e., ∆ 
= 0, then the pulse will be shifted away from the minimum loss
point by an amount proportional to the detuning.

4. Linear stability analysis. Haus [19] demonstrated that the trivial solution loses stability
to the ground-mode at α = αth = γg0, and to the nth-order mode when α = γgn. He also
showed that the ground-mode is linearly stable to the higher-order modes and that the higher-
order modes are linearly unstable to the lower-order modes. As mentioned earlier, we would
therefore expect that, close to threshold, the ground-mode will be favored.

These linear stability results are limited, however, for reasons that will be detailed in the
following section on transient growth. Both for completeness and as a means of motivating
this work, we include here a detailed linear stability analysis. Linearization of the governing
equations, (2.1) and (2.2), about one of the steady-state solutions (A = As, g = gs) leads to

TR
∂

∂T
A(T, t) =

(
gs − l − µt2 + Γ∂t +D∂tt

)
A(T, t) + g(T )As(t),(4.1)

d

dT
g(T ) = − α

gs
g(T )− βgs (〈As, A〉+ 〈A,As〉) ,(4.2)

where A(T, t) and g(T ) now represent perturbations to the steady-state solution.

4.1. Trivial steady-state. We begin by considering the stability of the trivial solution,
As = 0 and gs = α/γ. In this case the linearized equations reduce to

TR
∂

∂T
A(T, t) =

(
α

γ
− l − µt2 + Γ∂t +D∂tt

)
A(T, t),(4.3)

d

dT
g(T ) = −γg(T ).(4.4)

Note that the pulse envelope and the gain are now decoupled. Perturbations to the gain
clearly decay to zero on a time scale of 1/γ. Turning to the pulse envelope equation, the
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eigenvalues, λn, and eigenfunctions, φn(t), of (4.3) subject to the boundary conditions (2.3)
follow naturally from the steady-state solutions (3.10), and we have

(
α

γ
− l − µt2 + Γ∂t +D∂tt

)
φn(t) = λnφn(t),(4.5)

λn =
α

γ
− gn, n = 0, 1, 2, . . . ,(4.6)

φn(t) = Hn

(
t

σ

)
exp

(
−(t− a)2

2σ2

)
.(4.7)

Recalling the nature of gn, (3.9), reveals that as the pumping parameter α is increased the
trivial solution first loses stability to the n = 0 mode at αth = γg0. Increasing α further will
result in the trivial solution also losing stability to the n = 1 mode at α = γg1, the n = 2
mode at α = γg2, and so forth.

4.2. Nontrivial steady-state. Linearizing the governing equations about one of the nontriv-
ial solutions, A = An and g = gn, leads to the set of equations

TR
∂

∂T
A(T, t) =

(
gn − l − µt2 + Γ∂t +D∂tt

)
A(T, t) + g(T )An(t),(4.8)

d

dT
g(T ) = − α

gn
g(T )− βgn (〈An, A〉+ 〈A,An〉) ,(4.9)

where A(T, t) and g(T ) represent perturbations to the nontrivial solution.

We now seek a solution for A(T, t) in the form of a time-dependent linear combination of
the first N + 1 Hermite–Gaussian modes,

A(T, t) =

N∑
j=0

Cj(T )Hj

(
t

σ

)
exp

(
−(t− a)2

2σ2

)
,(4.10)

where a and σ take the values shown in (3.5) and (3.6). If we substitute (4.10) into (4.8) and
(4.9) and use the recursive properties of the Hermite polynomials and the linear independence
of the Hermite–Gaussians, we arrive at the set of linear ODEs

TR
d

dT
Cn(T ) = Kng(T ),(4.11)

TR
d

dT
Cj(T ) = (gn − gj)Cj(T ), j = 0, 1, 2, . . . , N, j 
= n,(4.12)

d

dT
g(T ) = − α

gn
g(T )− 2βgnKn

N∑
j=0

MnjCj(T ),(4.13)

where the interaction matrix elements, Mnj , are given by

Mnj =

∫ ∞

−∞
Hn

(
t

σ

)
Hj

(
t

σ

)
exp

(
−(t− a)2

σ2

)
dt.
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Let us first consider the stability of the ground-mode, n = 0. The eigenvalues, {λj}N+2
j=1 ,

of this system of N + 2 linear differential equations can be determined explicitly and are

λ1 = −αTR
2g0


1 +

√
1− 8(α− γg0)g2

0

α2TR


 ,(4.14)

λ2 = −αTR
2g0


1−

√
1− 8(α− γg0)g2

0

α2TR


 ,(4.15)

λj = g0 − gj−2, j = 3, 4, . . . , N + 2.(4.16)

The first two eigenvalues involve the coupling between perturbations to the ground-mode and
to the gain. Recalling that α − γg0 > 0 for the ground-mode to exist implies that these
perturbations are always damped since both eigenvalues have negative real parts. The third
eigenvalue governs the dynamics of perturbations along the n = 1 mode and the coupling
between it, the ground-mode, and the gain. These perturbations are always damped since
g1 > g0. The other eigenvalues follow suit, and perturbations along the higher-order modes
are more heavily damped. We therefore conclude that the ground-mode is linearly stable to
arbitrary perturbations. If we consider the stability of the higher-order modes, n > 0, then
(4.12) shows that these modes are always unstable to each of the lower-order modes.

In summary, then, we have confirmed that if α < αth, the trivial solution is linearly stable.
If, on the other hand, α > αth, the trivial solution is linearly unstable, and the n = 0 mode
begins to grow. The other modes also turn on as α is further increased. The n = 0 mode is
linearly stable to arbitrary perturbations if α > αth, and the higher-order modes are linearly
unstable to the n = 0 mode. Linear analysis suggests, therefore, that below threshold the
laser will remain “off,” while above threshold the laser will “turn on” and form a mode-locked
pulse.

5. Transient growth. Linear stability theory guarantees only that infinitesimal perturba-
tions will die off asymptotically; short-term growth is a possibility. If the linear operator is
normal [1, 28], then this can be strengthened further and we can conclude that perturbations
cannot grow. On the other hand, nonnormal operators allow for short-term transient growth
of perturbations.

The importance of nonnormal operators emerged recently in the context of viscous shear
flow [11, 31, 32, 38] as a possible mechanism for the instability of the laminar flow below
threshold. The nonorthogonality of the eigenfunctions of the linear operator results in short-
term transient growth of perturbations to the laminar state. The subsequent interplay between
transient growth and nonlinear mixing may be enough to then destabilize the system. The
calculation of the magnitude of transient growth expected [31] and of the types of perturbations
which experience maximum transient growth [11] is complicated by the nature of the linear
operator.

In the context of actively mode-locked lasers, Kärtner, Zumbühl, and Matuschek [21]
pointed out that the linearized amplitude-modulated laser is governed by a nonnormal opera-
tor. They suggested that the degree of nonnormality depends strongly on the detuning ∆ and
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that transient growth on the order of exp(4∆2) could be expected. Longhi and Laporta [26]
have reported similar findings for the frequency-modulated laser.

The relevance of nonnormal operators to laser systems is much older, however, than the
dates of these studies might suggest. It has been known since the seminal work of Petermann
in 1979 that, in the presence of stochastic forcing, laser systems governed by nonnormal
operators are subject to excess noise [30, 34, 35]. (Laser operation depends on the presence
of such stochastic forcing in the form of spontaneous emission noise.) The Petermann excess
noise factor (K) is a measure of the enhancement of the noise source and is given by

K =
〈u, u〉 〈v, v〉

〈u, v〉2 ,(5.1)

where u is the eigenfunction of the linear operator, v is the adjoint eigenfunction, and 〈∗, ∗〉
is an appropriate inner-product.

We will show in section 5.1 that the growth sustained by perturbations at the lasing
threshold is precisely the Petermann excess noise factor. Furthermore, it will become clear
that the perturbation which leads to maximum growth is the adjoint eigenmode, in agreement
with known results in viscous shear flow [11]. Below threshold we compute the optimal growth
curve [32, 38] by evaluating the norm of the solution operator to the linearized equation; the
solution operator is based on the truncated Hermite expansion discussed in [2]. We find
that the transient growth below threshold is bounded in magnitude by exp(4∆2) and that the
perturbation which experiences most growth is closely related to the adjoint mode. In section 6
we confirm these numerical results by finding explicit analytical expressions for the transient
growth below threshold as well as the form of the relevant perturbation. In section 5.2 we
compute the optimal growth curve for the linear operator above threshold and find again
that the growth is bounded by exp(4∆2). The perturbation which gives rise to the maximum
transient growth in this case is the adjoint mode.

5.1. Below threshold. In light of this, let us reconsider the linear stability of the nonlasing
solution. Recall that the nonlasing solution is defined by As = 0 and gs = α/γ. The linearized
equations, already introduced in section 4, are

TR
∂

∂T
A(T, t) = LA(T, t),(5.2)

d

dT
g(T ) = −γg(T ),(5.3)

L =
α

γ
− l − µt2 + Γ∂t +D∂tt,(5.4)

where again g(T ) and A(T, t) represent perturbations to the nonlasing solution. We have
already determined the eigenvalues, λn, and eigenfunctions, φn(t), of L subject to boundary
conditions (2.3),

Lφn(t) = λnφn(t),(5.5)

λn =
α

γ
− gn, n = 0, 1, . . . ,(5.6)

φn(t) = Hn

(
t

σ

)
exp

(
−(t− a)2

2σ2

)
.(5.7)
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We will also require the adjoint modes. The adjoint operator, defined as usual by

〈u,Lv〉 = 〈L∗u, v〉,(5.8)

is given by

L∗ =
α

γ
− l − µt2 − Γ∂t +D∂tt.(5.9)

The adjoint operator L∗ can be obtained from L by making the transformation Γ → −Γ. The
eigenvalues µn and eigenfunctions ψn of L∗ subject to the boundary conditions (2.3) are given
by

L∗ψn(t) = µnψn(t),(5.10)

µn =
α

γ
− gn, n = 0, 1, . . . ,(5.11)

ψn(t) = Hn

(
t

σ

)
exp

(
−(t+ a)2

2σ2

)
.(5.12)

The dependence of gn on Γ2 leaves the eigenvalues unchanged under the transformation, and
the linear dependence of a on Γ means that the adjoint modes are the Hermite–Gaussians
with the Gaussian centered at t = −a.

The general solution to (5.2) is given by

A(T, t) =

∞∑
n=0

anφn(t)e
λnT/TR ,

where the an’s are chosen to satisfy the initial condition

A(0, t) =

∞∑
n=0

anφn(t).

Recalling that the eigenfunctions and their adjoints form a biorthogonal set [28, 33], we can
determine the coefficients an by projecting onto the adjoint to give

an =
〈A(0, t), ψn(t)〉
〈φn(t), ψn(t)〉 ,

where 〈∗, ∗〉 is again the standard inner-product on L2(−∞,∞). The general solution to the
linearized problem is then

A(T, t) =

∞∑
n=0

〈A(0, t), ψn(t)〉
〈φn(t), ψn(t)〉 φn(t) e

λnT/TR .

Below the lasing threshold, all of the eigenvalues are negative. As we approach threshold,
however, the leading eigenvalue approaches zero. Let us first consider the perturbation dy-
namics at threshold. Since λ0 = 0 and . . . λ3 < λ2 < λ1 < 0, in the limit as T → ∞ we find
that

A∞(t) = lim
T→∞

A(T, t) =
〈A(0, t), ψ0(t)〉
〈φ0(t), ψ0(t)〉 φ0(t)
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so that the dynamics eventually collapse onto the ground-mode as we would expect since the
ground-mode is neutrally stable at threshold and all other modes are unstable. The energy of
this solution is then

||A∞(t)||2 = 〈A∞(t), A∞(t)〉 = 〈A(0, t), ψ0(t)〉2〈φ0(t), φ0(t)〉
〈φ0(t), ψ0(t)〉2 .

For a given ground-state mode this depends only on the initial condition, and the energy is
maximized if the initial condition is parallel to the adjoint ground-mode, i.e.,

A(0, t) ∝ ψ0(t).(5.13)

In this case the energy growth factor is

Growth =
||A∞(t)||2
||A(0, t)||2 =

〈φ0(t), φ0(t)〉〈ψ0(t), ψ0(t)〉
〈φ0(t), ψ0(t)〉2 ,(5.14)

which is precisely the Petermann excess noise factor of (5.1). The inner-products are given by

〈φ0(t), φ0(t)〉 =
∫ ∞

−∞
exp

(
−(t− a)2

σ2

)
dt = σ

√
π,

〈ψ0(t), ψ0(t)〉 =
∫ ∞

−∞
exp

(
−(t+ a)2

σ2

)
dt = σ

√
π,

〈φ0(t), ψ0(t)〉 =
∫ ∞

−∞
exp

(
−(t− a)2

2σ2

)
exp

(
−(t+ a)2

2σ2

)
dt,

= exp

(
−a2

σ2

)∫ ∞

−∞
exp

(
− t2

σ2

)
dt,

= σ
√
π exp

(
−a2

σ2

)
,

and the energy growth is then

Growth = exp

(
2a2

σ2

)
= exp

(
4∆2

)
,

which agrees with the results of Kärtner, Zumbühl, and Matuschek [21].
We have shown that if we linearize the governing equations about the trivial solution,

then the resulting linear system can be solved exactly. Since the leading eigenvalue is zero at
threshold, any perturbation eventually collapses onto the ground-mode, which is a Gaussian
pulse located at t = a. If we ask which perturbation leads to the most growth in energy, it is
the adjoint ground-mode, which corresponds to a Gaussian pulse located at t = −a. We show
in section 6 how such a perturbation evolves into the ground-mode, but in any case the linear
growth experienced by such a perturbation has an exponential dependence on ∆2.

Below threshold, we compute the optimal growth curve in order to identify the optimal
perturbation which leads to maximum transient growth [32, 38]. The optimal growth energy is
defined as the norm of the solution operator to (5.2), i.e., || exp(Lt/TR)||2, where L is defined



658 JOHN B. GEDDES, WILLIE J. FIRTH, AND KELLY BLACK

(a) (b)

Figure 5.1. (a) Optimal growth curves below threshold for various values of α and ∆. (b) Location of
optimum pulse.

in (5.4). Our algorithm is based on a spectral Hermite approximation, as discussed in [2]. In
each computation discussed below we use 128 basis functions. We vary α and ∆ and set all
other parameters to the values given in section 2.

In Figure 5.1(a) we show the natural logarithm of the optimal growth energy against cavity
time T for different values of ∆ and α. For each value of ∆ we vary α from its threshold value to
5% below threshold. (Recall that αth depends on ∆.) At threshold, the optimal growth energy
increases exponentially before leveling off at the expected value of exp(4∆2). Below threshold,
the optimal growth energy increases exponentially, reaches a maximum value, and then decays
exponentially. While the maximum energy obtained in each case is less than that obtained at
threshold, it is still of the same order. In addition, the time taken to reach maximum energy
depends on ∆ and decreases as we move below threshold. The precise relationship between
α, ∆, the maximum energy, and the time taken to reach maximum energy can be obtained
exactly and is discussed in section 6.

The optimal perturbation which leads to maximum transient growth is determined by first
finding the time of maximum growth and then computing the SVD of the matrix exponential;
the leading singular vector gives the optimal perturbation [32, 38]. We find numerically that
the optimal perturbation is a single Gaussian pulse of equilibrium width. In Figure 5.1(b)
we graph the optimal pulse location determined numerically (symbols) and the exact optimal
location (solid lines) obtained in section 6. These results demonstrate that at threshold the
pulse occupies the adjoint location as expected. Below threshold, however, the optimal pulse
location moves toward the origin.

The transient pulse formation dynamics are captured in Figure 5.2, which shows a contour
plot of the pulse amplitude as a function of local time t and cavity time T for ∆ = 1 at 5%
below threshold. An initial optimum pulse grows exponentially as it sweeps across the domain
into position. The time taken to attain maximum energy roughly coincides with the time taken
to sweep into position. After this point, the pulse-amplitude decays exponentially to zero. In
section 6, we will find an explicit solution for the pulse-location and pulse-amplitude as a
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Figure 5.2. Contour plot of pulse-amplitude versus local time t and cavity time T for ∆ = 1 at 5% below
threshold. The initial condition corresponds to an optimum pulse centered at t =

√
1.85× 0.1TR.

function of T which will confirm these numerical experiments.

5.2. Above threshold. Above threshold, the growth of an optimal perturbation to the
trivial solution is no longer transient since the trivial solution itself becomes unstable to the
ground-mode pulse. In this regime, we need to consider the equations linearized about the
ground-mode, A0 and g0. In this case they are

TR
∂

∂T
A(T, t) =

(
g0 − l − µt2 + Γ∂t +D∂tt

)
A(T, t) + g(T )A0(t),(5.15)

d

dT
g(T ) = − α

g0
g(T )− βg0 (〈A0, A〉+ 〈A,A0〉) ,(5.16)

where A(T, t) and g(T ) represent perturbations to the ground-mode solution.
In Figure 5.3(a) we show the optimal growth results for several different values of ∆ with

α held at 5% above threshold. In each case, we compute the norm of the solution operator
to the linearized equations, (5.15) and (5.16). Above threshold, the optimal energy initially
grows exponentially before dying off. The nature of the die-off changes as we increase ∆ since
the leading eigenvalue becomes complex. The oscillation period matches that predicted by
linear stability analysis. In Figure 5.3(b) we set ∆ = 3 and show the results as we change α
from its threshold value to 5% above threshold. At threshold, the linear operator governing
perturbations to an equilibrium ground-mode pulse matches the linear operator which governs
perturbations to the trivial solution. The growth at threshold should therefore be exp(4∆2),
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(a) (b)

Figure 5.3. Optimal growth curves above threshold: (a) Natural logarithm of optimal growth energy versus
cavity time as a function of ∆ at 5% above threshold; (b) natural logarithm of optimal growth energy versus
cavity time as a function of α for ∆ = 3.

and this is indeed the case. The growth above threshold is bounded by this value, and
computing the SVD of the matrix exponential at the time of maximum energy reveals that
the adjoint mode is in fact the optimal perturbation. We have checked this result for various
values of ∆ and up to 50% above threshold.

6. Nonlinear dynamics. The linear stability analysis of section 4 and the details on tran-
sient growth of section 5 provide us with a general picture of the linear dynamics of per-
turbations to both the trivial solution and the ground-mode pulse. We now consider the full
nonlinear dynamics of pulse formation. We begin by considering the evolution of a single pulse,
for which an exact reduction to a low-dimensional system of nonlinear ODEs is available—the
so-called pulse-parameter equations. We use a linearized version of these equations to extend
our results on transient growth, and we show analytically that above threshold a ground-
mode pulse is an attracting fixed point of the nonlinear system. These results are confirmed
by direct simulation of the ODEs using an implicit method [2].

We conclude this section with a series of full simulations of the governing PDEs in the
presence of noise. In the first set of simulations, we consider the interaction between a ground-
mode pulse and a single noise pulse. In concert with our transient growth predictions, we
find that a ground-mode pulse undergoes a strong interaction with a noise pulse but that
a ground-mode pulse eventually re-emerges from this interaction. In the second and final
set of simulations, we include a stochastic noise source and find that the ground-mode pulse
repeatedly undergoes a process of creation and annihilation which could be interpreted as
turbulent dynamics [21].

6.1. Single pulse evolution. In this section we address the question of how a single
ground-mode pulse evolves from the trivial solution. A reduction to a set of pulse-parameter
equations is achieved by seeking a ground-mode pulse whose pulse parameters depend on T .
This is motivated by the steady-state circulating Gaussian pulse analysis work of Kuizenga



PULSE DYNAMICS IN AN ACTIVELY MODE-LOCKED LASER 661

and Seigman [23], but we derive dynamic pulse-parameter equations in a systematic manner.
We first assume a pulse solution of the form

A(T, t) = ψ(T ) exp

(
−(t− a(T ))2

2σ2(T )

)
,(6.1)

where the pulse parameters ψ(T ), a(T ), and σ(T ) represent the pulse-amplitude, pulse-
location, and pulse-width, respectively. In light of our choice of real parameters, we may
choose the pulse parameters to be real without loss of generality. The following derivatives
are required:

Γ
∂A

∂t
= −Γψ(t− a)

σ2
exp

(
−(t− a)2

2σ2

)
,

D
∂2A

∂t2
=

(
−Dψ

σ2
+

Dψ(t− a)2

σ4

)
exp

(
−(t− a)2

2σ2

)
,

TR
∂A

∂T
=

(
TRψT +

TRψaT (t− a)

σ2
+

TRψ(σ
2)T (t− a)2

2σ4

)
exp

(
−(t− a)2

2σ2

)
,

and we write µt2 = µ(t − a)2 + 2aµ(t − a) + µa2. Substituting these derivatives into the
governing equation (2.1) and grouping terms into the form of standard polynomials give

TR

(
ψTP0(u) +

aT
σ

ψP1(u) +
σT
σ

ψP2(u)
)
exp

(
−u2

2

)

=

(
g − l − µa2 − D

σ2

)
ψP0(u) exp

(
−u2

2

)

−
(
2µσa+

Γ

σ

)
ψP1(u) exp

(
−u2

2

)

+

(
D

σ2
− µσ2

)
ψP2(u) exp

(
−u2

2

)
,

where u = (t− a)/σ and Pj(u) = uj . Linear independence of the polynomials Pj(u) leads to
the following set of differential equations for the pulse-parameters:

TR
d

dT
σ2 = 2(D − µσ4),

TR
d

dT
a = −Γ− 2µσ2a,

TR
d

dT
ψ =

(
g − l − µa2 − D

σ2

)
ψ.

Turning our attention to the gain equation, (2.2), the pulse ansatz (6.1) leads to

d

dT
g = α− γg − βgψ2

∫ ∞

−∞
exp

(
−(t− a)2

σ2

)
dt

= α− γg − βgψ2σ
√
π.
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The pulse-parameter equations are then

TR
d

dT
σ2 = 2(D − µσ4),(6.2)

TR
d

dT
a = −Γ− 2µσ2a,(6.3)

TR
d

dT
ψ =

(
g − l − µa2 − D

σ2

)
ψ,(6.4)

d

dT
g = α− γg −√

πβσgψ2.(6.5)

The system of equations (6.2)–(6.5) forms a hierarchy in the following sense. The pulse-
width, σ(T ), evolves independently of the other pulse-parameters. The pulse-location, a(T ),
is driven by the dynamics of the pulse-width. The pulse-amplitude, ψ(T ), and gain, g(T ),
are mutually coupled and depend on the pulse-width and pulse-position. There are two fixed
points of this dynamical system. In both cases, the equilibrium pulse-width and pulse-location
take the values

σ2
s =

√
D/µ, as = − Γ

2µσ2
s

.

One of the fixed points corresponds to the trivial solution,

gs = α/γ, ψs = 0,

while the other corresponds to the ground-mode pulse,

gs = l + µa2
s +D/σ2

s , ψ2
s =

α− γgs
βgs

√
πσs

.

These agree precisely with the results derived in section 3.

6.1.1. Linear dynamics. Before discussing the general solution of the pulse-evolution
equations, let us first reconsider the dynamics of transient linear pulse formation below thresh-
old. If we linearize the pulse-amplitude and gain equations about the trivial solution (ψs = 0
and gs = α/γ), the result is

TR
d

dT
σ2 = 2

(
D − µσ4

)
,(6.6)

TR
d

dT
a = −Γ− 2µσ2a,(6.7)

TR
d

dT
ψ =

(
α

γ
− l − µa2 − D

σ2

)
ψ,(6.8)

d

dT
g = −γg,(6.9)

where ψ(T ) and g(T ) represent perturbations to the trivial solution. Note that the pulse-
amplitude and gain are now decoupled. The perturbation to the steady-state gain dies off
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on the time scale of 1/γ, while the pulse-amplitude perturbation is driven only by the pulse-
location and pulse-width.

In order to simplify the resulting analysis, let us assume that the pulse-width is in steady-
state, i.e., σ = σs. Equation (6.7) is a nonhomogeneous first-order differential equation and
has the solution

a(T ) = as + (a0 − as) exp

(
−2

√
µD T

TR

)
,(6.10)

where a0 is the initial location of the pulse. The pulse therefore sweeps into position monoton-
ically on a time scale of TR/2

√
µD. Note that while the velocity of the pulse, da/dT , depends

on its current location, it depends linearly on the detuning Γ, in agreement with the drift
velocity findings of Morgner and Mitschke [27].

Recalling the definition of g0, (3.9), the pulse-amplitude equation, (6.8), can be written as

TR
d

dT
ψ =

((
α

γ
− g0

)
+ µ(a2

s − a2)

)
ψ(6.11)

and is therefore separable. An explicit solution in terms of T is possible, but it is more
revealing to write the solution as a function of pulse-location a(T ),

ψ(T ) = ψ0 exp

(
(α− γg0)T

γTR

)
exp

(
(a(T ) + as)

2 − (a0 + as)
2

4σ2
s

)
,(6.12)

where ψ0 is the initial amplitude of the pulse.
Let us first consider the linearized dynamics at threshold, in which case α = γg0. The

first exponential in (6.12) therefore drops out. Moreover, since a(T ) changes monotonically,
we see that ψ(T ) must also change monotonically, and we also know that limT→∞ a(T ) = as.
Therefore,

ψs = lim
T→∞

ψ(T ) = ψ0 exp

(
4a2

s − (a0 + as)
2

4σ2
s

)
.(6.13)

What then should the initial location of the pulse be in order to maximize the growth in
pulse-amplitude? The quadratic nature in a0 of the exponent above reveals that the optimum
value is a0 = −as, i.e., the adjoint location. In this case, the pulse experiences a growth of

Growth =
ψ2
s

ψ2
0

= exp

(
2a2

s

σ2
s

)
= exp(4∆2),(6.14)

which agrees with our results from section 5.
We can extend our analysis further by considering the transient growth below threshold,

for which α < γg0. In this case, the first exponential in (6.12) no longer vanishes but represents
a decaying exponential function of T . Multiplication by the other exponential, which changes
monotonically in T , shows that the growth experienced by a pulse below threshold is less
than that at threshold. The maximum amplitude obtained by the pulse can be determined by
finding the time T ∗ at which ψT = 0. Let us denote the pulse-amplitude and pulse-location
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at this time as ψ̄ and ā, respectively, i.e., ψ̄ = ψ(T ∗) and ā = a(T ∗). Then (6.11) shows that
the maximum amplitude is obtained when

(
α

γ
− g0

)
+ µ

(
a2
s − ā2

)
= 0.(6.15)

If we denote α = αth(1−ε) so that ε represents the % below threshold, then the pulse-location
corresponding to maximum amplitude is given by one of the roots of

ā2 = a2
s

(
1− εg0

µa2
s

)
,(6.16)

which shows that close to threshold the pulse-location decreases linearly with ε.

There are, of course, two solutions to (6.16). A simple calculation shows that one of these
corresponds to a maximum amplitude and the other to a minimum amplitude. The maximum
energy growth is therefore achieved if we place the initial pulse in the minimum location, i.e.,
a0 = −ā. At threshold, this optimum pulse is just the adjoint pulse, but below threshold this
optimum pulse is located closer to the origin as discussed in section 5.

The time T ∗ at which the maximum amplitude is obtained can now be determined from
(6.10). If we assume that the pulse begins in the optimum location, a0 = −ā, then

2
√
µD

TR
T ∗ = ln

(
εg0

µa2
s

)
− 2 ln

(
1−

√
1− εg0

µa2
s

)
.(6.17)

The time taken to reach maximum energy therefore decreases according to ln(ε). The maxi-
mum energy can now be determined directly from (6.12) if we evaluate this expression with
T = T ∗, a(T ∗) = ā, and a0 = −ā. The result is

ln

(
ψ̄2

ψ2
0

)
= 4∆2

√
1− εg0

µa2
s

− 2εg0T
∗

TR
,(6.18)

which shows that the maximum energy obtained by the pulse below threshold is always less
than that at threshold.

These results are summarized in Figure 6.1, in which we graph both the exact results
obtained above (solid lines) and those from direct numerical simulation of the governing
linearized PDE (symbols). In Figure 6.1(a) we show the maximum relative energy attained
by the pulse as a function of ε, while in Figure 6.1(b) we show the time taken to achieve
maximum relative energy versus ε. These results demonstrate that close to threshold the
initial optimum pulse experiences growth on the order of exp(4∆2), and that this growth
shows a weak drop-off versus ε.

6.1.2. Nonlinear dynamics. Now let us consider the general solution of the pulse-parameter
equations, (6.2)–(6.5). The equations for the pulse-width and pulse-location can be solved ex-
actly. In the limit as T → ∞ both σ and a approach their steady-state values, σs and as. In
terms of the long-term behavior we can therefore consider the pulse-amplitude and gain equa-
tions with both the pulse-width and pulse-location in steady-state. Under these conditions
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(a) (b)

Figure 6.1. Transient growth of an optimal perturbation to the trivial solution below threshold: (a) Natural
logarithm of the maximum relative pulse energy versus percentage below threshold; (b) time taken to reach
maximum relative energy versus percentage below threshold.

the equations are

TR
d

dT
ψ = (g − g0)ψ,(6.19)

d

dT
g = α− γg −√

πβσsgψ
2.(6.20)

It is convenient at this stage to use the pulse-energy E =
√
πσsψ

2 and rewrite the equations
as

ET = 2
(g − g0)

TR
E,(6.21)

gT = α− γg − βgE.(6.22)

This system represents a set of nonlinear differential equations in the plane. As a result,
there is a limited number of solutions available, including evolution to a fixed point and
limit cycles [14]. As we already know, the fixed point corresponding to the trivial solution,
g = α/γ, E = 0, exists for all α, is linearly stable for α < αth, and is linearly unstable
for α > αth. In addition, the fixed point corresponding to the ground-mode lasing solution,
g = g0, E = (α− γg0)/βg0, exists only if α > αth and is linearly stable there. In what follows
we will show that closed orbits are not possible. The system therefore evolves so as to collapse
onto the appropriate fixed point. Below threshold this is the trivial solution, while above
threshold this is the ground-mode lasing solution.

In order to rule out the existence of closed orbits, we will make use of Dulac’s criterion [14]
in the first quadrant, E > 0, g > 0. In this context, Dulac’s criterion amounts to finding a con-
tinuously differentiable real-valued function u(E, g) such that ∂E(u(E, g)ET ) + ∂g(u(E, g)gT )
is of one sign throughout the first quadrant. It suffices to choose u(E, g) = 1/Eg, and we find



666 JOHN B. GEDDES, WILLIE J. FIRTH, AND KELLY BLACK

that

∂E(u(E, g)ET ) + ∂g(u(E, g)gT ) = ∂E

(
2
(g − g0)

TREg
E

)
+ ∂g

(
(α− γg − βgE)

Eg

)

= ∂E

(
2
(g − g0)

TRg

)
+ ∂g

(
α

Eg
− γ

E
− β

)

= 0 + ∂g

(
α

Eg

)

= − α

Eg2

< 0 in the first quadrant.

There are therefore no closed orbits in the first quadrant, and the system must collapse onto
the appropriate fixed point.

In order to confirm these predictions, we have run simulations of the governing ODEs
(6.2)–(6.5) both above and below threshold. In Figures 6.2 and 6.3 we show the results for the
case of ∆ = 3. The initial conditions correspond to the pulse-width in steady-state (σ(0) = σs),
the pulse-location in the optimum location (a(0) = −ā), an initial pulse amplitude of 10−8,
and an initial gain of g0.

In Figure 6.2(a)–(d) we show the results when we operate at 5% below threshold. Fig-
ure 6.2(a) shows that the pulse sweeps into position exponentially with T , as expected from
(6.10). For these parameter values, our linear analysis suggests that we should see amplitude
growth on the order of exp(2∆2) ≈ 6.5 × 107 and that the maximum amplitude should be
reached when T ≈ 2.2×100TR. Figure 6.2(c) shows that this is still true in the presence of the
nonlinear coupling between the gain and the pulse-amplitude. The gain dynamics are shown
in Figure 6.2(b). After initially decaying, the gain rebounds and assumes its equilibrium value
of α/γ = 0.1805. In Figure 6.2(d) we show the corresponding contour plot of the nonlinear
pulse formation process, reconstructed from the ODE simulation.

In Figure 6.3(a)–(b) we show the pulse-amplitude dynamics when we operate the laser at
5% above threshold. After it overshoots its mark, the pulse-amplitude oscillates briefly before
reaching its equilibrium value of ψ0 ≈ 0.168. The contour plot of the pulse evolution is shown
in Figure 6.3(b).

6.2. Single pulse and noise. In the previous section we showed that, above threshold,
an initial optimum pulse evolves nonlinearly into a ground-mode pulse. In the early stages of
its evolution it experiences large energy growth on the order of exp(4∆2). After it has swept
into position, the nonlinear interaction between the pulse amplitude and the gain arrests this
growth and allows a ground-mode pulse of the correct energy to form.

The linear stability of this ground-mode pulse was addressed earlier. We showed that per-
turbations to the ground-mode pulse can experience similar levels of linear transient growth.
In the presence of the nonlinearity the question of the outcome of these perturbations arises.
In order to answer this question we have run a series of full PDE simulations. Our algorithm
is based on a spectral Hermite approximation, as detailed in [2]. In the results that follow,
we used 128 spectral modes and a time step of 0.01. Unless stated otherwise, all parameters
are set to those given in section 2.
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(a) (b)

(c) (d)

Figure 6.2. Nonlinear evolution of a pulse at 5% below threshold for ∆ = 3 as governed by (6.2)–(6.5). (a)
Pulse-location, (b) gain, (c) pulse-amplitude, and (d) contour plot of the pulse amplitude. The initial conditions
correspond to an optimum pulse of equilibrium width and amplitude 10−8 and an initial gain of g0.

In the first set of simulations, we consider the nonlinear interaction between a ground-
mode pulse and a single perturbation pulse which initially occupies the adjoint location. In
Figure 6.4 we show the results of a simulation for the case of ∆ = 3 at 5% above threshold.
The adjoint pulse has an initial amplitude of 10−8 and is injected at T = 10 × 100TR. In
Figure 6.4(a) we show the energy in the cavity as a function of T . The amplitude of the noise
pulse grows very quickly as it sweeps across the domain and, by the time it arrives in position,
its amplitude is comparable to that of the existing ground-mode pulse! It then begins to
interact with the ground-mode pulse, and out of this interaction emerges a new ground-mode
pulse, as shown in Figure 6.4(b). After some relaxation oscillations, the new ground-mode
pulse settles into equilibrium.

In the second set of simulations, we consider the full nonlinear dynamics (2.1)–(2.2) in
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(a) (b)

Figure 6.3. Nonlinear evolution of a pulse at 5% above threshold for ∆ = 3 as governed by (6.2)–(6.5). (a)
Pulse-amplitude and (b) contour plot of the pulse amplitude. The initial conditions correspond to an optimum
pulse of equilibrium width and amplitude 10−8 and an initial gain of g0.

(a) (b)

Figure 6.4. Pulse-dynamics at 5% above threshold for ∆ = 3 as governed by (2.1)–(2.2). (a) Pulse-energy
and (b) contour plot of the pulse-amplitude. With the pulse-amplitude and gain in equilibrium, a single adjoint
noise pulse of amplitude 10−8 is injected at T = 10× 100TR.

the presence of stochastic noise. Our noise source is white with an amplitude of 10−8. In
Figure 6.5 we show the results of a simulation for ∆ = 3 at 5% above threshold. Figure 6.5(a)
shows the energy in the cavity as a function of T , while Figure 6.5(b) shows the contour plot
of the pulse-amplitude.

Figure 6.5 suggests that in the presence of a continuous noise source, the process of
adjoint noise pulse growth occurs over and over again in the following sense. Out of the noise
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(a) (b)

Figure 6.5. Pulse dynamics at 5% above threshold for ∆ = 3 as governed by (2.1)–(2.2) in the presence of
white noise of amplitude 10−8. (a) Pulse-energy and (b) contour plot of A(T, t).

spectrum, a pulse that begins in the adjoint location dominates as it experiences the most
transient growth. As it grows and sweeps into position, it begins to compete with an existing
ground-mode pulse. Out of this interaction emerges a new ground-mode pulse, which is now
susceptible to the growth of another adjoint pulse. This process then repeats endlessly, with
the time between successive pulses dictated by the transient growth time.

7. Conclusion. In this paper we have considered the linear and nonlinear dynamics of
pulse formation in an actively mode-locked laser. The trivial solution of the laser equations
loses stability at the lasing threshold to an off-center Gaussian pulse. The delay in the laser
pulse with respect to the minimum loss point is proportional to the normalized modulator
detuning ∆. The lowest-order Hermite–Gaussian mode is linearly stable to perturbations,
while the higher-order modes are linearly unstable to the lower-order modes. One would
therefore expect that at threshold the laser would turn on and emit stable ground-mode laser
pulses.

As a result of the nonnormality of the linear operator, however, the laser is subject to large
transient growth on the order of exp(4∆2) at the lasing threshold, in agreement with previous
findings by Kärtner, Zumbühl, and Matuschek [21]. We also find that the transient growth
at threshold is precisely the Petermann excess noise factor [30, 34, 35] for a laser governed by
a nonnormal operator. Below threshold we found exact expressions for the transient growth,
and we showed that the perturbation which experiences maximum growth is closely related
to the adjoint laser mode.

Our reduction of the governing PDEs to a low-dimensional system of ODEs for an evolving
pulse is novel. It provides us with an insight into the pulse formation dynamics. The linearized
version allowed us to determine exact results on transient growth, such as the maximum energy
attained and the time taken to reach maximum energy. We also showed that the nonlinear
system collapses onto the appropriate fixed point and that no limit cycles are possible. In the
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absence of a continuous noise source, there are no interesting dynamics; an initial perturbation
grows and sweeps into position and is stable there. In the presence of noise, however, the laser
effectively destabilizes as new laser pulses are repeatedly formed out of the noise spectrum.

The importance of nonnormal operators is well known to both the fluids [38] and op-
tics [35] communities. In viscous shear flow, much of the focus has been on the transient
growth experienced by a single perturbation; the resulting dynamics are often a matter of
conjecture, although simple models have been proposed which couple transient growth and
nonlinear mixing [13]. In laser physics, the presence of a stochastic noise source, in the form
of spontaneous emission noise, is vital for laser operation. The Petermann excess noise factor
is a measure of the influence that the nonorthogonal laser modes have on the strength of the
noise source. At the lasing threshold, these two factors—transient growth and excess noise—
are identical. This results from the fact that the transient growth experienced at threshold is
determined by the projection of the initial perturbation onto the ground-mode laser pulse. If
the initial perturbation is the adjoint laser mode, then this is precisely the excess noise factor.

Comparable results have been reported by Longhi and Laporta [26] in the context of
a frequency-modulated laser. The results obtained here could be extended to cover the
frequency-modulated case by allowing the modulation parameter µ to become complex. In
addition, an immediate extension of the work presented here would be to spatio-temporal as
opposed to temporal laser pulses. In this case, Dunlop, Firth, and Wright [9] have derived the
appropriate spatio-temporal master equation that describes pulse formation and have applied
it to a Kerr lens mode-locked laser. Allowing for both AM and FM and including both space
and time in the laser operator would represent a complete generalization of the model studied
here.

Acknowledgments. We thank the referees for their excellent feedback, particularly the
comments relating to the optimal growth curves.
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